Volver al buscador
Últ. actualización: 10/03/2021

Natale, María Fernanda

El contenido de este perfil es responsabilidad exclusiva del docente investigador.

Artículos en Revistas CientíficasPapers in Scientific Journals

TRABAJOS DE INVESTIGACIÓN PUBLICADOS EN REVISTAS NACIONALES E INTERNACIONALES

1)   A.C. BRIOZZO, M.F. NATALE, D.A. TARZIA, “Determination of unknown thermal coefficients through a free boundary problem for a nonlinear heat conduction equation with a convective term”, International Communications in Heat and Mass Transfer, 24 Nº6 (1997) 857-868.

See: Briozzo-Natale-Tarzia-IntCommHeatMassTransfer-24(1997)857-868

2)   A.C. BRIOZZO, M.F. NATALE, D.A. TARZIA, “Determination of unknown thermal coefficients for Storm’s type materials through a phase-change process”, International Journal of Non-Linear Mechanics, 34 (1999) 329-340.

See: Briozzo-Natale-Tarzia-IntJNonLinearMech-34(1999)329-340

3)   M.F. NATALE, D.A. TARZIA, “Explicit solutions to the two-phase Stefan Problem for Storm’s type materials”, Journal of Physics A: Mathematical and General, 33 (2000) 395-404.

See: Natale-Tarzia-JPhysAMathGen-33(2000)395-404

4)   M. F. NATALE, D.A. TARZIA, “An exact solution for a one-phase Stefan problem with nonlinear thermal coefficient”, MAT- Serie A, #5 (2001) 33-36.

5)   M.F. NATALE, E.A. SANTILLAN MARCUS, “The effect of Heat Convection on Drying of Porous Semi-Infinite Space with a Heat Flux Condition on the Fixed Face x=0”, Applied Mathematics and Computation, 137, n0 1 (2003) 109-129.

6)   M.F. NATALE, D.A. TARZIA, “Explicit solutions to the one-phase Stefan Problem with temperature-dependent thermal conductivity and a convective term”, International Journal of Engineering Science, 41 (2003) 1685-1698.

See: Natale-Tarzia-IntJEngSci-41(2003)1685-1698

7)   A. C. BRIOZZO, M. F. NATALE, D. A. TARZIA, “An explicit solution for a two-phase Stefan problem with a similarity exponential heat sources”, MAT-Serie A, #8 (2004) 11-19.

See: http://web.austral.edu.ar/descargas/facultad-cienciasEmpresariales/mat/Briozzo-Natale-Tarzia-MAT-SerieA-8(2004)11-19.pdf

8)   M.F. NATALE, D.A. TARZIA, “An integral equation in order to solve a one-phase Stefan problem with non-linear thermal conductivity”, MAT-Serie A, #7 (2004) 15-24.

9)   A. C. BRIOZZO, M. F. NATALE, D. A. TARZIA, “A one-phase Lamé-Clapeyron- Stefan problem with nonlinear thermal coefficients”, MAT-Serie A, #10 (2005) 11-16.

10)        M.F. NATALE, D.A. TARZIA, “Explicit solutions for a one-phase Stefan Problem with temperature-dependent thermal conductivity”, Bollettino della Unione Matematica Italiana, U.M.I. (8) 9-B (2006) 79-99.

See: Natale-Tarzia-BollUnMatItaliana-9B(2006)79-99

11)        A. C. BRIOZZO, M. F. NATALE, D. A. TARZIA, “Existence of an exact solutions for a one-phase Stefan problem with nonlinear thermal coefficients from Tirskii’s method”, Nonlinear Analysis, 67 (2007) 1989-1998.

See:  Briozzo-Natale-Tarzia-NonlinearAnal-67(2007)1989-1998

12)        A. C. BRIOZZO, M. F. NATALE, D. A. TARZIA, “Explicit Solutions for a two-phase unidimensional Lamé-Clapeyron-Stefan problem with source terms in both phases”, Journal of Mathematical Analysis and Applications, 329 (2007) 145-162.

See: Briozzo-Natale-Tarzia-JMathAnalAppl-329(2007)145-162

13)        M. F. NATALE, E. A. SANTILLAN MARCUS, D. A. TARZIA, “Simultaneous determination of two unknown thermal coefficients of a semi-infinite porous material through a desublimation moving boundary problem with coupled heat and moisture flows”, JP Journal of Heat and Mass Transfer, Volume 2, 1 (2008) 73 – 116.

See: SantillanMarcus-Natale-Tarzia-JPJHeatMassTransfer-2(2008)73-116

14)        M. F. NATALE, D. A. TARZIA, “The classical one-phase Stefan problem with temperature-dependent thermal conductivity and a convective term”, MAT-Serie A, #15 (2008), 1-16.

See: Natale-Tarzia-MAT-SerieA-15(2008)1-16

15)        M. F. NATALE, E. A. SANTILLAN MARCUS, D. A. TARZIA, “Determinación de dos coeficientes térmicos a través de un problema de desublimación con acoplamiento de temperatura y humedad”, MAT-Serie A, #14 (2007), 25-30.

16)        M. F. NATALE, E. A. SANTILLAN MARCUS, D. A. TARZIA, “Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion”, Nonlinear Analysis Series B: Real World, 11 (2010), 1946-1952.

See: Natale-SantillanMarcus-Tarzia-NonlinearAnalRealWorldAppl-11(2010)1946-1952

17)        A. C. BRIOZZO, M. F. NATALE, D. A. TARZIA, “The Stefan problem with temperature-dependent thermal conductivity and a convective term with a convective condition at the fixed face”, Communications on Pure and Applied Analysis, Volume 9, 5 (2010), 1209-1220.

See: Briozzo-Natale-Tarzia-CommPureApplAnal-9(2010)1209-1220

18)        A. C. BRIOZZO, M. F. NATALE, “On a nonlinear moving boundary problem for a diffusion-convection equation”, International Journal of Non-Linear Mechanics, 47 (2012), DOI information: 10.1016/j.ijnonlinmec.2011.11.012, 712-718.

19)        E. A. SANTILLAN MARCUS, M. F. NATALE, “Existence of solutions for drying with coupled phase-change in a porous medium”, Nonlinear Analysis Series B: Real World Applications, 13 (2012), 2063-2078.

20)        A. C. BRIOZZO, M. F. NATALE, “One-dimensional nonlinear Stefan problems in Storm’s materials”, Mathematics, Special ISSUE on Partial Differential Equations, 2 (2014); doi:10.3390/math2010001, 1-11.

21)        A. C. BRIOZZO, M. F. NATALE, “Two Stefan problems for a non-classical heat equation with nonlinear thermal coefficients”, Differential and Integral Equations, 27, Nº 11-12 (2014), 1187-1202.

22)        A. C. BRIOZZO, M. F. NATALE, “One-phase Stefan problem with temperature-dependent thermal conductivity and a convective condition”, Journal of Applied Analysis, 21, 2 (2015), 89-97.

23)        A. C. BRIOZZO, M. F. NATALE, “Nonlinear Stefan problem with convective boundary condition in Storm’s materials”, Zeitschrift für angewandte Mathematik und Physik (ZAMP), 67(2) (2016), 1-11, DOI 10.1007/s00033-015-0615-x, http://link.springer.com/article/10.1007/s00033-015-0615-x

24)        A. C. BRIOZZO, M. F. NATALE, “A nonlinear supercooled Stefan Problem”, Zeitschrift für angewandte Mathematik und Physik (ZAMP), 68 (2017) 46-61 DOI:10.1007/s00033-017-0788-6.

25)        J. B.     BOLLATI, M.F. NATALE, J.A. SEMITIEL, D.A. TARZIA, “Approximate solutions to the one-phase Stefan problem with non-linear temperature-dependent thermal conductivity”, Chapter 1, In Heat Conduction: Methods, Applications and Research, J. Hristov – R. Bennacer (Eds.), Nova Science Publishers, Inc. (2019), pp 1-20.

26)        A. C. BRIOZZO, M. F. NATALE, “Non-classical Stefan problem with nonlinear thermal coefficients and a Robin boundary condition”, Nonlinear Analysis: Real World Applications 49 (2019) 159–168.

27)        J. B.     BOLLATI, M.F. NATALE, J.A. SEMITIEL, D.A. TARZIA, “Integral balance methods applied to non-classical Stefan problems”, Thermal Science, 24 Nº 2B (2020) 1229-1241 https://doi.org/10.2298/TSCI180901310B, ISSN 2334-7163

See: Bollati-Natale-Semitiel-Tarzia-ThermalSci-24 No. 2B (2020)1229-1241

28)        J. B.     BOLLATI, M.F. NATALE, J.A. SEMITIEL, D.A. TARZIA, “Existence and uniqueness of solution for two one-phase Stefan problems with variable thermal coefficients”, Nonlinear Analysis: Real World Applications 51 (2020) https://doi.org/10.1016/j.nonrwa.2019.103001

See:  Bollati-Natale-Semitiel-Tarzia-NonlinearAnalRealWorldAppl-51Art ID 103001(2020)1-11

29)        A. C. BRIOZZO, M. F. NATALE, “On a two phase Stefan problem with convective boundary condition including the density jump at the free boundary”, Mathematical Methods in the Applied Sciences, 43 No 6 (2020) 3744-3753 https://doi.org/10.1002/mma.6152

30)        J. B. BOLLATI, M.F. NATALE, J.A. SEMITIEL, D.A. TARZIA, “Existence and uniqueness of the p-generalized modified error function”, Electronical Journal of Differential Equations, 2020 (2020) No.35, 1-11

See: https://ejde.math.txstate.edu/Volumes/2020/35/bollati.pdf

31)        A. C. BRIOZZO, M. F. NATALE, “Two-phase Stefan problem with nonlinear thermal coefficients and a convective boundary condition”, Nonlinear Analysis: Real Word Applications, 58 (2021),103204. https://doi.org/10.1016/j.nonrwa.2020.103204

See: https://doi.org/10.1016/j.nonrwa.2020.103204

ARTICULOS EN CONGRESOS CIENTIFICOS CON REFERATO PUBLICADOS

1)    M. F. NATALE – E. A. SANTILLAN MARCUS – D. A. TARZIA, “Soluciones Explícitas para un Problema de Frontera Libre a Dos Fases con Contracción o Dilatación del Material” en II MACI 2009, Congreso de Matemática Aplicada, Computacional e Industrial, E. M. Mancinelli, E. A. Santillan Marcus, D. A. Tarzia (Eds.), Matemática Aplicada, Computacional e Industrial, 2(2009), 359-362.

2)    A. C. BRIOZZO, M. F. NATALE, D. A. TARZIA, “Solución explícita a un problema de Stefan a una fase con conductividad térmica dependiente de la temperatura y con condición convectiva en el borde fijo x=0”, proceeding de conferencia MACI 2 – II Congreso de Matemática Aplicada, Computacional e Industrial, Universidad Austral Rosario – Universidad Nacional de Rosario, 2(2009) 363-366.

3)    A. C. BRIOZZO – M. F. NATALE – D. A. TARZIA, “Solución Explícita a un Problema de Stefan a una Fase con Conductividad Térmica Dependiente de la Temperatura y con Condición Convectiva en el Borde Fijo x = 0” en II MACI 2009, Congreso de Matemática Aplicada, Computacional e Industrial, E. M. Mancinelli, E. A. Santillan Marcus, D. A. Tarzia (Eds.), Matemática Aplicada, Computacional e Industrial, 2(2009), 363-366.

4)    A. C. BRIOZZO – M. F. NATALE, “Solución Explícita de un problema de Stefan a dos Fases con Coeficientes Térmicos no Lineales” en Congreso de Matemática Aplicada, Computacional e Industrial, IV MACI 2013, G. La Mura, D. Rubio, E. Serrano (Eds.), Matemática Aplicada, Computacional e Industrial, 4(2013), 497-500.

5)    A. C. BRIOZZO – M. F. NATALE, “Un problema de Stefan para un líquido super-enfriado” en VI MACI 2017, Congreso de Matemática Aplicada, Computacional e Industrial, G. Soto, N. Costa (Eds.), Matemática Aplicada, Computacional e Industrial, 6 (2017), 376-379.

6)    J. BOLLATI – J. A. SEMITIEL – M. F. NATALE – D.A. TARZIA, “Existencia de solución para un problema de Stefan a dos fases con coeficientes térmicos variables” en VII MACI 2019, Congreso de Matemática Aplicada, Computacional e Industrial, 8 al 10 de mayo en Río Cuarto, Provincia de Córdoba, Argentina, 7 (2019) 389-392.

7)    J. BOLLATI – J. A. SEMITIEL – M. F. NATALE – D.A. TARZIA, “Existencia y unicidad de solución para un problema de Stefan a una fase con coeficientes térmicos variables” en VII MACI 2019, Congreso de Matemática Aplicada, Computacional e Industrial, 8 al 10 de mayo en Río Cuarto, Provincia de Córdoba, Argentina, 7 (2019) 393-396.