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We consider two different Stefan problems for a semi-infinite material for the 
non-classical heat equation with a source that depends on the heat flux at the fixed 
face. One of them, with constant temperature at the fixed face, was already studied 
in literature and the other, with a convective boundary condition at the fixed face, 
is presented in this work. Due to the complexity of the exact solution it is of interest 
to compare with approximate solutions obtained by applying heat balance inte-
gral methods, assuming a quadratic temperature profile in space. A dimensionless 
analysis is carried out by using the parameters: Stefan number and the generalized 
Biot number. In addition it is studied the case when Biot number goes to infinity, 
recovering the approximate solutions when a Dirichlet condition is imposed at the 
fixed face. Some numerical simulations are provided in order to verify the accuracy 
of the approximate methods. 
 Key words: Stefan problem, convective boundary condition, similarity solution, 

heat balance integral method, refined integral method 

Introduction

 Stefan problems model heat transfer processes that involve a change of phase. They 
constitute a broad field of study since they arise in a great number of mathematical and indus-
trial significance problems [1]. A review on analytical solutions is given in [2]. In this paper, 
firstly, we consider a free boundary problem, P, with a non-classical heat equation for a semi-in-
finite material [3] defined:

( )
2

2 0, , , 0 ( ), 0U U Uc k F t t x S t t
t xx

ρ γ∂ ∂ ∂ − = − < < > ∂ ∂∂  
(1)

( )0, 0, 0U t u t∞= > > (2)

( ) , 0, 0U S t t t  = >  (3)

( ) ( ), , 0k S t t lS t t∂   = − > ∂
(4)
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(0) 0S = (5)

where the thermal coefficients k, ρ, c, l, and γ are positive constants and the control function F 
depend on the evolution of the heat flux at the boundary x = 0: 

( ) ( )0
1/20, , 0,U UF t t t

x xt
λ∂ ∂  = ∂ ∂ 

(6)

where λ0 > 0 is a given constant. This problem was studied in [4].
The phase-change problem is also considered with a convective condition [5] at the 

fixed face x = 0. It states that heat flux at the fixed face is proportional to the difference between 
the material temperature and the neighbourhood temperature, that is:

	
( ) ( ) ( )0, 0,Uk t H t U t u

x ∞
∂  = − ∂

where H(t) characterizes the heat transfer at the fixed face and 0 < U(0,t) < u ∞. We take a free 
boundary problem with a convective condition of the form:

	
( ) 1/2

hH t
t

=

where h > 0 characterizes the heat transfer coefficients [6]. More precisely, we consider a free 
boundary problem, Ph, which is defined by eq. (1), conditions (3)-(5) of problem, P, and the 
condition:

( ) ( )( )1/20, 0, ,        0U hk t U t u t
x t ∞

∂
= − >

∂ (7)

instead condition (2) of problem, P. 
Due to the non-linear nature of this type of problems exact solutions are limited to a 

few cases. Although it can be found exact solutions, it is usefull to solve them either numeri-
cally or approximately. Despite having the exact solution the problem that we will study, it is 
very complicated to find the exact solution. The heat balance integral method introduced by 
Goodman [7] is a well-known approximate mathematical technique for solving the location of 
the free front in heat-conduction problems involving a phase of change. This method consists 
in transforming the heat equation into an ODE over time by assuming a quadratic temperature 
profile in space. In [8-11] this method is applied using different accurate temperature profiles 
such as: exponential, potential, etc.

Recently, various papers has been published applying integral methods to a variety 
of thermal and free boundary problems, especially to non-linear heat conduction and fractional 
diffusion [12-17].

In this paper, we obtain approximate solutions through heat balance integral methods 
and variants obtained thereof proposed [18] for the problems, P, and Ph. As one of the mecha-
nisms for the heat conduction is the diffusion, the excitation at the fixed face x = 0 (for example, 
a temperature, a flux or a convective condition) does not spread instantaneously to the material 
x > 0. However, the effect of the fixed boundary condition can be perceived in a bounded inter-
val [0, δ(t)] (for every time t > 0) outside of which the temperature remains equal to the initial 
temperature. The heat balance integral method presented [7] established the existence of a func-
tion δ = δ(t) that measures the depth of the thermal layer. In problems with a phase of change, 
this layer is assumed to be the free boundary, i. e. δ(t) = s(t). 
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From condition (3), using eq. (1), we obtain the new condition: 

[ ] ( )
2 2

0
2 1/2( ) (, [ ]), 0,U l U Uk S t t t

x k
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c xx
t t

t
λ

γ
 ∂ ∂ ∂   = − −  ∂ ∂∂    

(8)

From eq. (1) and conditions (3)-(4) we obtain the integral condition: 

( )

0 1/2
0

(0, )d ( )( , )d ( )
d

S t U t S t lxU x t x k S t
t c ct

γλ
ρ

∂
 ∂= − + −  ∫  (9)

The classical heat balance integral method introduced in [7] to solve problem, P or 
Ph, proposes the resolution of a problem that arises by replacing the eq. (1) by the condition 
(9), and the condition (4) by the condition (8), keeping all others conditions of the problem, P 
or Ph, equals.

In [18], a variant of the classical heat balance integral method was proposed by replac-
ing only eq. (1) by condition (9), keeping all others conditions of the problem, P or Ph, equals.

From eq. (1) and conditions (2) and (3) we can also obtain: 

( )
( ) 2

0 1/2
0 0

( (1, d d ) (0, ) 0, ) ( )
2

S t x
U S U Ut x t ku k t S t
t c x xt

tξ ξ γλ
ρ ∞

 ∂ ∂ ∂
= − − − 

∂ ∂ ∂  
∫ ∫ (10)

The refined heat balance integral method introduced in [19] to solve the problem, P, 
proposes the resolution of the approximate problem that arises by replacing eq. (1) by condition 
(10), keeping all others conditions of the problem, P or Ph, equals.

For solving the approximate problems previously defined we propose a quadratic tem-
perature profile in space:

	
( ) ( ) ( ) ( )
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, 1 1 , 0 , 0x xU x t Au Bu x S t t
S t S t∞ ∞

   
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  
−


= + − < < >
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 

where A
~
 and B

~
 are unknown constants to be determined. Notice that U satisfies condition (3).

The goal of this paper is to study different approximations for 1-D one-phase Stefan 
problems with a source function that depends on the flux. It is considered two different prob-
lems, which differ from each other in the boundary condition imposed at the fixed face x = 0: 
temperature (Dirichlet) condition or convective (Robin) condition. In next section we present 
the exact solution of the problem, P, which was given in [4]. Taking advantage of the exact 
solution of P, we obtain approximate solutions using the heat balance integral method, an al-
ternative method of it and the refined integral method, comparing each approach with the exact 
one. A similar study is done in following section for the problem with a convective condition at 
the fixed face, Ph. In order to make this analysis, we obtain previously the exact solution of Ph. 
We also study the limit cases of the obtained approximate solutions when h → ∞, recovering the 
approximate solutions when a temperature condition at the fixed face is imposed.

Exact and approximate solutions to the  
one-phase Stefan problem for a non-classical  
heat equation with a source and a temperature  
condition at the fixed face

 In this section we present the exact solution of the problem, P, and we obtain ap-
proximate solutions by using heat balance integral methods, comparing each approach with the 
exact one.
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Exact solution of problem, P

In [4], it has been proved that for each dimensionless parameter:

 	
0

1/2 0
( )k c
γλ

λ
ρ

= >

the free boundary problem, P, where, F, defined by (6), has a unique similarity solution of the 
type: 
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where 

( ) ( ) ( ) ( ) ( )2 2
1/2

0 0

4, erf ( )d ,    exp exp d
x x

E x x f r r f x x r rλλ = + = −
π ∫ ∫ (11)

and ξ > 0 is the unique solution:

( )2 1/2

0

Steexp erf ( ) 2 2 ( )d Ste ( ) , 0
x

x x x x f r r f x xλ
 
 − − π = − >
  
∫ (12)

where 

	
( ) ( )2

1/2
0

2erf exp   d
x

x r r= −
π ∫

and the dimensionless parameter defined by Ste = cu∞ /l represents the Stefan number. We re-
mark that function f defined in (11), is called the Dawson’s integral.

From now on, we will consider the case Ste ∈ (0, 1), due to the fact that for most 
phase-change materials candidates over a realistic temperature, the Stefan number will not 
exceed one [20].

Approximate solution using the  
classical heat balance integral method

The classical heat balance integral method in order to solve the problem, P, proposes 
the resolution of the approximate problem, P1, defined by eqs. (2), (3), (5), (8), and (9). Propos-
ing the following quadratic temperature profile in space: 

	
( ) ( ) ( )

2

1 1 1 1
1 1

, 1 1 ,        0 ( ), 0x xu x t A u B u x s t t
s t s t∞ ∞

   
 +  
     

= − < <


− >

the free boundary takes the form: 

	 ( ) 1/2
1 12 ,  0s t a t tξ= >

where the constants A1, B1, and ξ1 will be determined from the conditions (2), (8), and (9). We 
obtain: 

	

( )
( )

( )
( )

2 2
1 1 1 1

1 12 2
1 1 1 1

2 3 Ste 12 Ste 6Ste 3 2 Ste 6 Ste 3Ste
, 

Ste 6 3 Ste 6 3
A B

ξ λ ξ ξ λ ξ

ξ λξ ξ λξ

− + + + + − −
= =

+ + + +
	

and ξ1 must be a positive solution of the polynomial equation: 
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( ) ( ) ( )
( ) ( ) ( )

5 2 2 4 4 3

2 2 2

4 3 2Ste 2 12 9Ste 2Ste 12 3 2Ste 12 9 16Ste 4Ste

12 1 2Ste 3 6 1 Ste 72 Ste 1 2Ste 18Ste 3Ste 0,    0

z z z
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λ λ λ

λ λ
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 + + − + − + + + + = >  	

It is easy to see that eq. (13) has at least one solution. Descartes’ rule of signs states 
that if the terms of a single-variable polynomial with real coefficients are ordered by descending 
variable exponent, then the number of positive roots of the polynomial is either equal to the 
number of sign differences between consecutive non-zero coefficients, or is less than it by an 
even number. Therefore, in our case, to have a unique solution of (13) is enough to take λ such 
that 12 + 9Ste + 2Ste2 – 12λ2(3 + 2Ste) < 0:

	
( )

1/222Ste 9Ste 12 Ste
36 24Ste

gλ
 + +

> ≡  + 

and as g is an increasing function then for 0 < Ste < 1 it is sufficient to take λ > g(1) ≅ 
0.61913991873.

As the approximate methods we are 
working with are designed as a technique for 
tracking the location of the free boundary, the 
comparisons between the approximate solu-
tions and the exact one will be done on the free 
boundary thought the coefficients that charac-
terizes them. That is to say, we will compare the 
known exact solution of the Stefan problem, P, 
and the approximate solution of the problem, 
P1, by computing the coefficients ξ and ξ1 that 
characterizes the free boundaries, which are 
obtained by solving (12) and (13), respectively. 
In fig. 1, we plot the dimensionless coefficients 
ξ and ξ1 against Ste, fixing λ = 7. 

Approximate solution using a modified method  
of the classical heat balance integral method

An alternative method of the classical heat balance integral method in order to solve the 
problem, P, proposes the resolution of the approximate problem, P2, defined by eqs. (2)-(5), and (9).

Proposing the following quadratic temperature profile in space:

	

2

2 2 2 2
2 2

1 1 , 0( , )
( ) ( )

 0 ( ),x xu A u B u x s t t
s

t
s

x
t t∞ ∞

   
   
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= − + − < < >

the free boundary takes the form s2(t) = 2aξ2 t1/2, t > 0, where the constants A2, B2, and ξ2 will be 
determined from the conditions (2), (4) and (9). We obtain: 

	
2 2

2 2 2 2
2 2, 1

Ste Ste
A Bξ ξ= = −

and ξ2 must be a positive solution of the polynomial equation:

( )4 3 26 6 Ste 6 Ste 3Ste 0, 0z z z z zλ λ+ + + − − = > (15)
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Figure 1. Plot of the dimensionless coefficients ξ 
and ξ1 against Stefan number, for λ = 0.7
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It is easy to see, using the Descartes’ rule 
of signs, that (15) has a unique positive solution.

To compare the free boundaries obtained 
in problem, P, and the approximate problem, 
P2, we compute the coefficient that characteriz-
es the free boundaries. The exact value of ξ and 
the approach ξ2 are the unique roots of eqs. (12) 
and (15), respectively.

In fig. 2 we show, for 0 < Ste < 1, how 
the dimensionless coefficient ξ2, which charac-
terizes the location of the free boundary s2, ap-
proaches the coefficient ξ, corresponding to the 
exact free boundary s, when the dimensionless 
parameter is λ = 0.7. 

Approximate solution using  
the refined integral method

 The refined heat balance integral method in order to solve the problem, P, proposes 
the resolution of an approximate problem, P3, formulated by conditions (2)-(5) and (10). Pro-
posing the following quadratic temperature profile in space: 

	

2

3 3 3 3
3 3

1 1 , 0( , )
( ) ( )

 0 ( ),x xu A u B u x s t t
s

t
s

x
t t∞ ∞

   
   
   

= − + − < < >
	

the free boundary takes the form s3(t) = 2aξ3 t1/2, t > 0, where the constants A3, B3, and ξ3 will be 
determined from the conditions (2), (4) and (10). We obtain: 

	
2 2

3 3 3 3
2 2, 1

Ste Ste
A Bξ ξ= = −

and ξ3 must be a positive solution of the polynomial equation: 

( )3 26 6 Ste 6 Ste 3Ste 0, 0z z z zλ λ− − + + + = > (16)

It is easy to see, using the Descartes’ rule 
of signs, that (16) has a unique positive solu-
tion.

To compare the free boundaries obtained 
in problem, P, and the approximate problem, 
P3, we compute the coefficient that character-
izes the free boundaries. The exact value of ξ 
and the approach ξ3 is obtained by solving the 
equations obtained in (12) and (16), respec-
tively.

For every Ste < 1, we plot the numerical 
value of the dimensionless coefficient ξ3 ob-
tained by applying the refined integral method, 
against the exact coefficient ξ, fig. 3.
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Figure 3. Plot of the dimensionless coefficients ξ 
and ξ2 against Stefan number, for λ = 0.7 
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Comparisons between solutions

In this subsection, for different Stefan numbers, we make comparisons between the 
numerical value of the coefficient ξ given by eq. (12) and the approximations ξ1, ξ2, and ξ3 given 
by eqs. (13), (15), and (16), respectively. In order to compare the approximate solution with the 
exact one, and to obtain which technique gives the best agreement, we display in tab. 1, the ex-
act dimensionless free front, and its different approaches, showing also the percentage relative 
error committed in each case being:

 	
( ) i

rel i 100  , 1, 2,3 E i
ξ ξ

ξ
ξ
−

= =

Table 1. Dimensionless free front coefficients and its relative errors for λ = 0.7
 Ste  ξ(P)  ξ1(P1) Erel(ξ1)  ξ2(P2)  Erel(ξ2)  ξ3(P3)  Erel(ξ3)
0.1  0.2351  0.2401  2.139%  0.2363  0.545%  0.2373  0.963% 
0.3  0.4091  0.4348  6.284%  0.4162  1.753%  0.4211  2.932% 
0.5  0.5238  0.5750  9.776%  0.5392  2.934%  0.5489  4.788% 
0.7  0.6125  0.6903  12.69%  0.6373  4.048%  0.6524  6.510% 
0.9  0.6857  0.7897  15.16%  0.7206  5.087%  0.7413  8.102% 

It may be noticed that the relative error committed in each approximate technique 
increases when the Stefan number becomes greater, reaching the percentages 16.25%, 5.579%, 
and 8.854% for the problems, P1, P2, and P3, respectively.

Exact and approximate solutions to the one-phase  
Stefan problem for a non-classical heat equation with  
a source and a convective condition at the fixed face

In this section we present the exact solution of the problem, Ph, and we obtain different 
approaches by using heat balance integral methods, comparing them with the exact one.

Exact solution of problem Ph 

In this subsection we will obtain the exact solution of the problem, Ph, given by eqs.
(1), (3)-(5), and (7) instead of condition (2) of problem, P. In similar way as [4], if we define the 
similarity variable η = x/(2at1/2) and Φ(η) = uh(x, t), then Ph, turns equivalent to the following 
ordinary differential problem: 

h( ) 2 ( ) 2 (0), 0Φ η ηΦ η λΦ η ξ′′ ′ ′+ = < < (17)

[ ](0) 2Bi (0) uΦ Φ ∞′ = − (18)

( ) ( )h h h0, 2
Ste
u

Φ ξ Φ ξ ξ∞′= = − (19)

where the dimensionless parameter defined by Bi = ha/k represent the generalized Biot number 
and ξh is the coefficient that characterizes the free boundary sh. It is a simple matter to find the 
solution (17)-(19) and thus the solution, Ph, which is given:

	

( ) ( )
( )

( ) ( )
1/2

h h h1/2
h

1/2
h h

Bi  , , , , 0
1 Bi  

)

,

2(

uu x t E E
E

s a tt

Φ η ξ λ η λ η ξ
ξ λ

ξ

∞π  = = − < < + π

=
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where the function E is given by eq. (11) and ξh > 0 must be a solution:

( ) ( ) ( ) ( )2 1/2

0

Ste  exp     erf 2 2 d Ste  ,    0
x

kxx x x x f r r f x x
ha

λ
 
 − − π − = − >
  
∫ (20)

We can apply similar results obtained in [4] to prove that there exists a unique solution 
ξh of eq. (20).

Notice that in problem, Ph, a convective boundary condition (7) characterized by the 
coefficient h at the fixed face x = 0 is imposed. This condition constitutes a generalization of the 
Dirichlet one in the sense that if we take de limit when h → ∞ we must obtain U(0, t) = u∞. From 
definition of Biot number, studying the limit behaviour of the solution our problem, Ph, when  
h → ∞ is equivalent to study the case when Bi → ∞. 

If for every h, we define ξh as the unique solution (20) then, it can be observed that 
{ξh} is increasing and bounded, and so convergent. In addition, it can be easily seen that  
ξh → ξ where ξ is the unique solution (12). Then, we can state that the solution problem, Ph, 
converges to the solution problem, P, when Bi → ∞ (i. e. h → ∞), that is: lim h → ∞ sh(t) = s(t) and
lim h → ∞ uh(x, t) = u(x, t), 0 < x < s(t), t > 0.

Approximate solution using the classical  
heat balance integral method

 The classical heat balance integral method in order to solve the problem, Ph, proposes 
the resolution of the approximate problem, Ph1, defined by eqs. (3), (5), (7)-(9). For the quadrat-
ic temperature profile in space: 

	
1 1 1 1

1 1

2

h h h
h h

1 1 , 0 ( ), 0( , )
( ) ( ) h

x xu A u B ux x s t t
s

t
st t∞ ∞

   
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   
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the free boundary takes the form sh1(t) = 2aξh1 t1/2, t > 0 where the constants Ah1, Bh1, and ξh1 will 
be determined from the conditions (7)-(9). We obtain:
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h h h h

h h
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h h h h
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and ξh  > 0 must be a solution of the polynomial equation: 
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(21)
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It is easy to see that eq. (21) has at least one solution. In order to prove uniqueness, we 
are going to use Descartes’ rule of signs. Therefore, if we rewrite eq. (21):

	

5

0

0i
i

i

a z
=

=∑
we have to analyse the sign of each coefficient ai. Clearly, a5 < 0 and a0 > 0. For 0 < Ste < 1 and 
λ > 0.62, as in problem, P1, a4 < 0 for all Bi. Under these hypothesis: a3 < 0 and a1 > 0 if and 
only if:

	
3 10SteBi

12 Ste (1 2Ste)λ
+

>
+

Moreover the solution problem, Ph1, converges to the solution problema, P1, when  
Bi → ∞.

To compare the solutions obtained in Ph 
and Ph1, we compute the coefficient that charac-
terizes the free boundary in each problem. The 
exact value of ξh and the approach ξh1 are ob-
tained by solving the equations obtained in (20) 
and (21), respectively. In fig. 4 we plot the co-
efficients ξh and ξh1 against Biot number in order 
to visualize the behaviour of the approximate 
solution, fixing Ste = 0.5 and λ = 0.7. In order 
that the convergence mentioned previously of 
ξh → ξ and ξh1 → ξ1 when Bi → ∞, could be 
appreciated, we also plot ξ and ξ1 given by the 
solution of (12) and (13), respectively.

Approximate solution using a modified 
method of the classical heat balance method

An alternative method of the classical heat balance integral method in order to 
solve the problem, Ph, proposes the resolution of the approximate problem, Ph2, defined by  
eqs. (3)-(5), (7), and (9):

	
2 2 2 2

2 2

2

h h h
h h

1 1 , 0 ( ), 0( , )
( ) ( ) h

x xu A u B u x s t
s

x t t
st t∞ ∞

   
   
      

= − + − < < >

then the free boundary takes the form sh2(t) = 2aξh2 t 1/2, t > 0 where the constants Ah2, Bh2, and ξh2 
will be determined from the conditions (4), (7), and (9). We obtain:

	

2 2 2

2 2 2

2

3 2
h h h

2
h h h

h

2 1
2 Ste SteBi, 

1Ste
Bi

A B
ξ ξ ξ

ξ
ξ

− − +
= =

+

and in this way, it turns out that ξh2 > 0 must be a solution of the polynomial equation: 

( )4 3 22 36 6 Ste 6 Ste 3Ste 0, 0
Bi Bi

z z z z zλ λ   + + + + − + − = >   
   

(22)

where existence and uniqueness of solution for it can be easily seen by Descartes’ rule of signs.

Figure 4. Plot of the dimensionless coefficients 
ξh and ξh1 against Biot number, for Ste = 0.5  
and λ = 0.7
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Moreover, the solution problem, Ph2, converges to the solution problem, P2, when  
Bi → ∞.

Comparisons between the exact solution 
ξh with the approximate one ξh2 are shown in  
fig. 5. We plot them against Biot number for  
Ste = 0.5 and λ = 0.7. In order that the con-
vergence of ξh → ξ and ξh2 → ξ2 when Bi → ∞, 
could be appreciated, we also plot ξ and ξ2.

Approximate solution using  
the refined integral method

The refined heat balance integral method 
in order to solve the problem, Ph, proposes de 
resolution of an approximate problem, Ph3, for-
mulated by conditions: (3)-(5), (7), and (10). If 
we propose: 

	
( )

3 3 3 3
3 3

2

h h h
h h

, 1 1 , )
( ) ( )

 0 ( , 0h
x xu

t
x t A u B u x s t t

s ts∞ ∞

   
   = − + − < < >
   
   

then the free boundary takes the form sh3(t) = 2aξh3 t 1/2, t > 0 where the constants Ah3, Bh3, and ξh3 
will be determined from the conditions (4), (7), and (10). We obtain: 

3 3 3

3 3 3

3

3 2
h h h

2
h h h

h

2 1
2 Ste SteBi, 

1Ste
Bi

A B
ξ ξ ξ

ξ
ξ

− − +
= =

+
(23)

and ξh3 > 0 must be a solution of the polynomial equation: 

( )3 21 36 6 Ste 6 Ste 3Ste 0, 0
Bi Bi

z z z zλ λ   − + − + + − + = >   
   

(24)

Clearly, by Descartes’ rule of signs, we 
can assure that eq. (24) has a unique positive 
solution.

In addition, the solution problem, Ph3, 
converges to the solution problem, P3, when  
Bi → ∞.

In fig. 6, the coefficient that characteriz-
es the free boundary of the exact solution ξh of 
problem, Ph, is compared with the coefficient 
ξh3 that characterizes the free boundary of the 
approximate problem, Ph3, when we fix Ste = 
0.5 and λ = 0.7. We also show the value of ξ and 
ξ3 in order to visualize the mentioned conver-
gence when Bi → ∞. 

Figure 5. Plot of the dimensionless coefficients  
ξh and ξh2 against Biot number, for Ste = 0.5  
and λ = 0.7
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Figure 6. Plot of the dimensionless coefficients  
ξh and ξh3 against Biot number, for Ste = 0.5  
and λ = 0.7
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Comparisons between solutions

Let us compare, for different Biot numbers, the numerical value of the coefficient ξh 
given by eq. (20) and the approximations ξh1, ξh2, and ξh3 given by eqs. (21), (22), (24), respec-
tively. In order to obtain which technique gives the best agreement, we display in tab. 2, varying 
Biot number between 1 and 100, the exact dimensionless free front, and its different approach-
es, showing also the percentage relative error committed in each case:

	
( ) i

i

h h
rel h

h
100E

ξ ξ
ξ

ξ

−
=

Table 2. Dimensionless free front coefficients and its relative errors
 Bi  ξh(Ph)  ξh1(Ph1)  Erel(ξh1)  ξh2(Ph2) Erel(ξh2)  ξh3(Ph3) Erel(ξh3)
10  0.5051  0.5504  8.965%  0.5185  2.657%  0.5286  4.655% 
30  0.5175  0.5667  9.501%  0.5322  2.840%  0.5421  4.745% 
50  0.5200  0.5700  9.610%  0.5350  2.878%  0.5448  4.763% 
70  0.5211  0.5714  9.657%  0.5362  2.894%  0.5459  4.770% 

100  0.5219  0.5725  9.693%  0.5371  2.906%  0.5468  4.776% 

From tab. 2, for the fixed values Ste = 0.5 and λ = 0.7, we can appreciate that the error 
committed in each approximation increases when Biot number becomes greater. We can notice 
that for the problems, Ph1, Ph2, and Ph3 the percentage errors do not exceed 9.693%, 2.906%, 
and 4.776%, respectively.

Conclusions

In this paper we have considered two different Stefan problems for a semi-infinite ma-
terial for the non-classical heat equation with a source which depends on the heat flux at the fixed 
face x = 0. The problem, P, with a prescribed constant temperature on x = 0 and the problem, Ph, 
with a convective boundary condition at the fixed face which was studied in this article, proving 
existence and uniqueness of an exact solution. We have obtained, for λ = 0.7 that the best approx-
imate solution problem, P, was given by, P2, obtaining a relative percentage error that does not 
exceed 5%. Furthermore the best approximation problem, Ph, was obtained by, Ph2, obtaining a 
relative error of 2.9%. Therefore, it can be said that in general the optimal approximate technique 
for solving P and Ph was given by the alternative form of the heat balance integral method, in 
which the Stefan condition is not removed and remains equal to the exact problem.

In addition it was studied the case when Biot number goes to infinity in the solution 
the exact problem, Ph, and the approximate problems, Ph1, Ph2, and Ph3, recovering the solutions 
to the exact problem, P, and the approximate problems P1, P2, and P3. Some numerical simula-
tions were also provided in order to visualize this asymptotic behaviour.
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Nomenclature

a2	 – thermal diffusivity (= k/ρc), [m2s–1] A
~
, B

~`
   	– coefficients in the prescribed temperature 

profile U, [–] 
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