JP Journal of Heat and Mass Transfer

Volume 2, Number 1, 2008, Pages 73-116

This paper is available online at http://www.pphmj.com
“ © 2008 Pushpa Publishing House

SIMULTANEOUS DETERMINATION OF
TWO UNKNOWN THERMAL COEFFICIENTS OF A
SEMI-INFINITE POROUS MATERIAL THROUGH A
DESUBLIMATION MOVING BOUNDARY PROBLEM
WITH COUPLED HEAT AND MOISTURE FLOWS

EDUARDO A. SANTILLAN MARCUS*, MARIA F. NATALE* and
DOMINGO A. TARZIA* f

*Departamento de Matematica

F. C. E., Universidad Austral
Paraguay 1950, (S2000FZF) Rosario
Argentina

TCONICET, Argentina

e-mail: Domingo.Tarzia@fce.austral.edu.ar

Abstract

An analytical model of freezing (desublimation) of moisture in a porous
medium with an overspecified condition at the fixed face is considered
in order to determine simultaneously two unknown thermal coefficients
of a semi-infinite phase-change material. When the evaporation front is
experimentally determined, a moving boundary problem with coupled
heat and moisture flows (Luikov type equations) with eight heat
parameters can be considered. We obtain the explicit expression of the
temperature of the two phases and the mass-transfer potential in the
humid region, and we also give formulae for the two unknown thermal
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coefficients and the necessary and sufficient condition for the
parameters in order to obtain the existence of a solution for 28 different

cases.
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1. Nomenclature

thermal diffusivity of the phase-i

moisture diffusivity
specific heat capacity of the phase-i

thermal conductivity of the phase-i

Kossovitch number

Luikov number

Posnov number

coefficient that characterizes the heat flux
atx =0

latent heat

position of the evaporation front

time

temperature of the phase-i

initial temperature

temperature at the fixed face x = 0
phase-change temperature (t; < t, < tg)

mass-transfer potential

initial mass-transfer potential
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Greek symbols

) mass density
8 thermal gradient coefficient
c constant which characterizes the moving

boundary (to be determined experimentally)

y; G =1, .., 36) parameters used in the text

Subscripts
i =1 freezing region
1=2 region in which there are coupled heat and

moisture flows
2. Introduction

Heat and mass transfer with phase-change problems, taking place in
a porous medium, such as evaporation, condensation, freezing, melting,
sublimation and desublimation, have wide applications in separation
processes, food technology, heat and mixture migration in solids and
grounds, etc. Due to the non-linearity of the problem, solutions usually
involve mathematical difficulties. Only a few exact solutions have been
found for idealized cases (see [2], [3], [4], [5], [7], [18] for example). A
large bibliography on free and moving boundary problems for heat-
diffusion equation was given in [20]. The computation of temperature and
moisture content fields in capillary porous media, from the knowledge of
initial and boundary conditions, as well as of the thermophysical
properties appearing in the formulation, constitutes a direct problem of
heat and mass transfer. Mathematical formulation of the heat and mass
transfer in capillary porous bodies has been established by Luikov ([9],
[10]), and it was recently considered in [6], [8], [13], [14], {21], and [22].
Two different models were presented by Mikhailov [11] for solving the
problem of evaporation of liquid moisture from a porous medium. For the
problem of freezing (desublimation) of humid porous half-space,
Mikhailov [12] also presented an exact solution. In [15] an exact solution

was presented for temperature and moisture distributions in a humid
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porous half-space with a heat flux condition on the fixed face x = 0 of the
type «[i In [16] the model developed in [12] and [15] was considered as a

free boundary problem with an overspecified condition on the fixed face in
order to obtain the temperatures of the two phases and the mass transfer
potential in the humid region, the phase-change interface and one
unknown thermal coefficient under certain specified restrictions upon
data.

Now in this paper we consider the same model [16] with the phase-
change interface as a moving boundary problem. That is to say, we
consider that we experimentally know the position of the phase-change

interface x = s(t) given by the expression s(t) = 26Vt with ¢ > 0 a given

constant. We consider a desublimation problem with an overspecified
condition on the fixed face of the type given in [18]. So, we can calculate
two unknown thermal coefficients under certain restrictions upon data,
following the idea of [19] for one phase and [17] for two phases.

Let us consider the flow of heat and moisture through a porous half-
space during freezing. The position of phase-change front at time ¢t is
given by x = s(¢). It divides the porous body into two regions. In the

freezing region, 0 < x < s(¢), there is no moisture movement and the

temperature distribution is described by the heat equation:

Ry

O (,
pcy

=2y 0<x<s), t>0. (1)
ox?

The region s(t) < x < +o is humid capillary porous body in which there
are coupled heat and moisture flows. The process is described by the well-
known Luikov’s system [10] for the case € = 0 (g is the phase conversion

factor of liquid into vapor) given by

aT2( k2 8T2(

t) = t), x>s(t) t>0, 2

2
g—'t‘(x, t) = ap Z_;(x’ t), x>s), t>0. ®3)
X
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The initial distributions of temperature and moisture are uniform

{Tz(x, 0) = T2(+CD, t) = to,

u(x, 0) = u(+w, t) = ug. @)

It is assumed that on the surface of the half-space, the temperature is
constant

TI(O’ t) = ts’ (5)

where t; < t,,.
On the freezing front, there exists the continuity of the temperatures:
Ty(s(t), t) = To(s). t) = t,, t >0, (6

where t, < t;. Heat and moisture balance at the freezing front yields
1 (s(2). t) - kz 2 (s(2), £) = prus(z), t) S0, t>0, O

( @), t) + 5 (s(t) t) = t > 0. ®)

We also consider an overspecified condition on the fixed face x = 0 [1];
considering that the heat flux depends on the time, like in [18]

oT;
b 00)= T, ©)

where g > 0 is a coefficient which characterizes the heat flux at the

fixed face x = 0.

The moving boundary x = s(t) defined for ¢ > 0 with s(0) = 0, is
given by
s(t) = 20+t, (10)

where o > 0 is a given positive constant which must be experimentally
determined. For example, for a desublimation experiment as described
before we can use the regression method in order to determine the

s(t)
2Vt

The goal of this paper is to find formulae for the simultaneous

constant ¢ = for n data obtained for times iy, g, ..., t,.
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determination of two unknown thermal coefficients chosen among p (mass
density), a,, (moisture diffusivity), ¢; (specific heat of the frozen region),

co (specific heat of the humid region), k; (thermal conductivity of the
frozen region), ky (thermal conductivity of the humid region), & (thermal
gradient coefficient), r (latent heat) together with the temperatures 7}
(temperature of the freezing region), T, (temperature of the humid

region) and the moisture u. We obtain the necessary and/or sufficient
conditions for data in order to find explicit expressions for the two
thermal unknown coefficients. This can be obtained in all of the 28
different cases.

3. Unknown Thermal Coefficients through a Moving
Boundary Problem

The set of equations and conditions (1)-(10) is called problem P.

Am _ PAmC2
(02} k2

Ty(x, t) = ¢, - T\g?%l— [—erf(yo Ej—z) + erf(yoo)],

0<x<s(t) t>0  (11)
g —t L L
To(x, t) = ¢, + W{erf{"ﬁ —2x—«/t—j - erf(";’%cﬂ,
1-erf P

x> s(t), t >0, (12)

Following [15], for the general case Lu = # 1 we can obtain

u(x, t) =uy - 11 erf(‘[%:: -2—%]
exp((% - 1) a%:’— 02) [1 - erf(2 :mt D

ey '

x>s(), t>0 13)
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with

= /pﬁ _dpancolto -t,)  Pn
L L 1 a9
Lu

where the two unknown thermal coefficients must satisfy the following
system of transcendental equations:

{7

Y2 exp(~(y¢0)?) - Flug“—u GJ =7y30il-1|1-—=L< |},  (15)
m ’Eu

erf(ygo) = ;1: (16)
with
o0 [me rw _ [Zu,,
Veakap(ty - t,) coky (o —t,) G
Vclklp(tv - ts)

where the real functions F; and @ are defined by

2
Fi(x) = (T‘*"_Pg—.;fx(x% Q) = vrxexp(e?) (L —erf(x)  (18)

with the following properties:
F0)=1 F(+»)=+o, F/(x)>0 Vx>0, (19)
QO)=0, Q(H+x)=1 @Q(x)>0 Vx>0. (20)

For the resolution of problem P, i.e., for the system (15) and (16), we can
consider 28 different cases. The summary of these results are given in
Appendix A, which shows also both the necessary and sufficient
conditions to be verified by the data for the existence (and the uniqueness
in several cases) of the solution of the problem and the expressions of the
two unknown coefficients. Constants and functions used in this paper
appear in Appendix B and Appendix C, respectively.
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Now, we shall give necessary and sufficient conditions in order to
obtain solution to above system (15) and (16) in all the cases.

First, we have the following preliminary lemma:

Lemma 1. We have

-1
— Q) ©
1700

E(x) = Vx >0, Vm >0, m #1.

Proof. See [16].

Theorem 1 (Case 1: Determination of the unknown coefficients c;

and k). If

= 95
Y = — Fl( 5—”0)”30 1-yy1-—¥am /1o 21)
m

12 Q( ﬂcj
am
with y;, Yo and y3 defined in (14) and (17), and F; and Q defined in

(18), then there exists a unique solution to problem P which is given by
(11)-(13), and the thermal coefficients k; and c; are given by the following

expressions:

‘/_qo F| 1 22)

w D)

=
S
|

G = J;qo F3 1 , (23)

oplt, —ts) \,10 (LJ

g
Y5

where the real functions Fy and F3 are defined by
Fy(x) = erf(") Fy(x) = x erf(x). @4
Proof. Considering x = 1,&0 and y “pclkl (t, - , the system

kl «/_qo
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(15)-(16) can be written in the following way:

exp(-x?) = v5, (25)
erf(x) = y. (26)
By considering that y5 is always a positive number by Lemma 1 from (25)
we obtain that x = \/:—l;g(—y{) by imposing the condition ys <1, that is
to say (21). So, from (26) it follows that y = erf(\/——_lm. Finally, after

some calculations we have the expressions (22) and (23) for the thermal
coefficients ¢; and ky, respectively.

Theorem 2 (Case 2: Determination of the unknown coefficients p and
ay) If

_ kil -ts) 2 27
Y6 = Jrogg T @7
and
_ 1 (, ocage expl-(F5*(ve))*’] . Filyq) o ®
8 =y, {1 kirug  (Fy(vg))? * VrKqv7 ¢ G DUl =)

with yq = aky 1 , then the solution to problem P is given by
c2k1 F5(ye)

(11)-(13), and the thermal coefficients p and a,, are given by

p = L[ (1) 28)
G
2

ay, = ;’—2 (29)

where E is the unique solution of the equation

F4(.')C) = F5(x), X > 0, (30)

where

Fy(x) = Ys[clkz = 1} Fs(x) =1~ ) .
ki [Fyl(ye)P Q[ ’312_2 11 )
c2f1 [Fy~(v6)]
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Proof. From (16) and imposing (27), we have that (28) holds. Then,
from (15) we have

L[l _ ocqo exp[-(Fy ' (v6))°] L Flm) ][Clk2 x2 _IJ
P ki [Fy(ye)P VrKoyr )\ e2k1 [Fyl(ye)P

(o)
. |
Qy7)

where
_ Clkz 1
7 = ‘f— R —
c2h1 [Fy(yg)]

that is to say (30). It is easy to see that if Yg = 0, then there always exists
a unique solution & to (30), but if yg < 0, then we can only have a unique

solution § when yg < (-1). In both cases a,, is given by (29).

Theorem 3 (Case 3: Determination of the unknown coefficients p and
¢g). If (27) holds and

yro = 99190 expl-(F ' (v6))’]
O hrue (R (g )

>1, (31)

then there exists at least one solution to problem P which is given by
(11)-(13), where the coefficient p is given by (28) and the coefficient cy 1S

given by the expression

cky £
=2 (32)
ki [F5l(vg)]

where & is a solution of the equation
Fg(x) = Fy(x), x>0 (33)
with

Fg(x) = yi0 - y11H(x), H(x) = xF(x),

(o}
Y11 = clk2 (tO — tv) F. (x) =1- amanZ Q(\/&;) )
T Varughy F'aef o® —aux? Q)
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Proof. Working in the same way as in Theorem 2, from (16) and
imposing (27), it follows that (28) holds. Then, from (15) and taking into

account that x = Jﬁ%& —_11——- we have that
C2R1 [Fg ™ (ve))

1 oago exp-(F )], ks _Go-t) o
kirwo  (Fyl(rg)?  Vrrugky [Fyl(yg)P

o

- 02 - a,nx2 Q(x) ’

that is to say (33). Function F; has the following properties:

F,(00) =1, F;(+®)=1+ Pr{l - Q[JG_)] > 1. (34)

So we can say that we have at least a solution & of (33) if we impose
that y;o > 1. It is easy to see that (32) follows from the definition of x.

Theorem 4 (Case 4: Determination of the unknown coefficients r and
ay) If

t t k l(u‘;:zc)
_b Yy ’02 2 2
1Py <1, (35)

- ty —ts F2(YO)

then problem P has infinite solutions given by (11)-(13), where the
coefficient r is given by

713(72 exp(-(100)?) - Fl( *;eﬂc))
2

r =

(36)

Q[ ’ ]

1- Pn 1- va,
ks fpcz
pPamCo ! Q( kz 0-)

_ (to —ty) |coko
oug np

for each a,, € R™, where y;3
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Proof. If problem data verify (16), first we fix a,, € R*, and after

some calculations in (15) we have (86). Taking into account the previous
Lemma, it is easy to check that » > 0 if we impose

Fl(\’%cj <72 eXP("(YOG)Z)- 37)

Combining (16) and (37) we obtain (35). This analysis can be done for
each given q,, > 0.

Theorem 5 (Case 5: Determination of the unknown coefficients ¢y

and ko). If
ypg =l ,/—clkl Fa(v0) > 1, (38)
oTUg p

where the function Fg is defined by

2
Fy(x) = %(f‘(j;)—) (39)

then there exist infinite solutions to problem P which are given by
(11)-(13), the coefficient cq is given by

o = 282, (40)
o%p
where & is a solution of equation
Fi(x) = Fg(x), x>0 (41)
for each ky € R* with
Fy(w) = 22 expl-(roo)"] + LG =10 (o) (2)

Jro? priyg
Proof. First, as in Theorem 4, problem data must verify (16). Then

from (15) and considering x = "22 c we have
2

Q(__‘l_)
6O _ e (ro0)?]+ 2200 =) o ) -1 - P _Uap

- Oprig Jro®pruy 6% - ax? Qlx)
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that is to say (41). Function Fg has the following properties:

Fy(0") = %o exp[-(y90)?}  Fo(+) = —w, Fy(x) <0 Vx > 0. (43)
opruy

Then, taking into account (34), we have that both functions would meet in

2
at least one x > 0 if M%n(bm—c)] > 1. Then, considering (16), we find
0 )

o~

a solution of (41) if (38) holds. As before, it is easy to see that (40) follows
from the definition of x. This analysis can be done for each given kg > 0.

Theorem 6 (Case 6: Determination of the unknown coefficients r and

8). If
Lu
_ (to —ty) [coke Fl(\/%c)

115 =G, —ts) Verky  Fs(100)

<1, (44)

then there exist infinite solutions to problem P which are given by
(11)-(13), the coefficient r is given by

Lu
Y13[72 exp(-(y90)?) - F1( P
m

r= (45)

N————

for each & € R™.

Proof. As before, if problem data verify equation (16), we have that if

we take a given & € R*, (45) follows from (15) after some calculations.
Then we have to prove that r > 0. Considering here again the results of

the previous Lemma, it is easy to see that if we impose that

FI(J%G) < v5 exp(~(190)?) (46)

we have r > 0. Combining (16) and (46) we obtain (44). This analysis can

be done for each given & > 0.
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Theorem 7 (Case 7: Determination of the unknown coefficients p and

ky). There always exists a unique solution to problem P which is given by

(11)-(13), the coefficients k; and p are given by

pc 2‘31

o Fu)

where p is a unique solution to the equation

ky =

Figx) = S0l =8) o

Jngq

with

Fl()(.’)C) = % ———(toq—(;tv) \/; FI(J%O"/;}

N Jmeg Koo 1- a,coPnx

J

Jko kg — amcox |

and

Flo(x) = F3( /10,«;(%)].

Proof. From (15) we obtain

4 p( /&cj
{ T ky
pcaksy

(tO - tv)

{

4

=

a
Co
kg

o

Vv a’m

2

|

_ F{,/pcz c}+ VTprugc 1- a,,coPnp

ko

\/Czkz (to - tU) k2 — apCap Q[

pca

ko

d

47

(48)
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and thus (47). Hence from (16) we have (48). Function Fj, has the

following properties:
Fip(0") =0, Fp(+»)=+wo, Fo(x)>0 Vx>0.
Then, there would exist a p such that Fj(p) = 1, and then 0 < Fjo(x) <1
for all x € (0, p). Therefore, function Fjg has the following properties:
Fig(0*) = +o, Fip(p)=0, Fi5'(x)<0 Vx e (0, p).

It follows easily that (48) would always have a unique solution that
belongs to (0, p) and therefore k; > 0.

Theorem 8 (Case 8: Determination of the unknown coefficients p and
ko). If (27) holds, and

Y17 = Y10 - (t"u—‘ot) ["72 + 8[1 - Q[ JE‘M > 1, (49)

then there exists at least one solution to problem P which is given by
(11)-(13), where the coefficient p is given by (28) and the coefficient kg is

given by
k2 = glz ’ (50)
where & is a solution to the equation
Fll(x) =1, x>0 (51)
with
%)
Fyy(x) = — paycyPra” | _ Cm 2| 1 (52)
116 |1 - pay,cox? Q(Jpcgox) | KoQ(pcgox)
and
Y16 = 1 - —2%_ exp(~(190)?). (53)

porug
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Proof. From (16) and imposing (27), we have (28). Now let x = Fl-
2
and from (15) it follows that
3
[,z
) exp(—(yocs)z) _ pancoPnx 1- am _ 1 )
pariyg 1 - pa,cox® Q(Wpczox) | KoQ(Vpcgox)

According to (52) and (53) we can write the last equation as (51). Function
Fj; has the following properties:

Fy(07) = —w,  Fyy(+) = 71; {79;{1 - Q[%D - TclE}

Therefore, (52) would admit at least one solution if

1 o 1
—3Pnl1-Q —||-—} > 1. 54
Combining (28) and (53) with (54) it follows that (49) must hold.

Theorem 9 (Case 9: Determination of the unknown coefficients p and
r). If (27) holds, and

R X0 e G s T
Y19 C1R2

then there exists a unique solution to problem P which is given by
(11)-(13), where the coefficient p is given by (28) and the coefficient r is

YIS(YIQ exp(-(Fz (v¢))?) - Fy U%Fz_l (ve )D

r= y (56)
(o)
P [1 =)

Y20 — 1 ( [coky 1
L Q(‘/Elg’é@ (YG))

given by
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Yig = fclczkz (o — t,) Yig = , me_ 69p
mky c%uF5(vg) ckiky Fyl(ye)’
0201k2
amcok [F3 ™ (v6)

with

Y20

Proof. As before, from (16) and imposing (27), we have that (28)
holds. In addition, (56) can be drawn from (15). Taking into account the
previous Lemma, we impose

1o exp(=(F5 (1 ))?) - F{,/%Fglm)j o1

or equivalently (55) in order to get r > 0.

Theorem 10 (Case 10: Determination of the unknown coefficients p
and c¢;). If (27) holds, and

w24
-0

then there exists at least one solution to problem P which is given by

<1, (57)

(11)-(13), where the coefficient c; is given by
ke e 5
o =—5[Fa"(ve)] (58)
po
and the coefficient p is given by
p=—2¢% (59)

where & is a solution to the equation

Fp(x) = Fia(x), x>0 (60)
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with

oc 1 - ko(t
Fia(s) = 2200 fexal- (3 )1 - 2220 ).

Proof. From (16) and imposing (27), we obtain (58). Let x = 1’8}:_2
2

Now (15) becomes (60). Function Fj, has the following properties:

Fi2(0%) = +o, Fpp(+w) = _Ez(tTOuo——tL)’ F{y(x) <0 Vx> 0.

Then, taking into account (34) it follows that (60) always has a unique

2 2
solution & if 2 __1<0, butif S _ 150, then it would be a unique

am am

2
solution & when (57) holds. Of course, (57) holds when (—c;— -1<0.

m

Theorem 11 (Case 11: Determination of the unknown coefficients p
and ). If (27) holds, and

1+ s Y18F1(,/ F5(ve ))

Yo3 = <1 (61)
Y10

then there exists a unique solution to problem P which is given by
(11)-(13), where the coefficients p and 8 are given by (28) and

2
1-v10 +—718F1(\f Fyl(y 6))
to-1) |, Q(?/ET)

ug(v20 —1) Q( fglglli_; Fz_l(Ye))

Proof. From (16) and imposing (27) we obtain that (28) holds. From
(15) we have

ociqo expl-(Fy 1(Y(;))Z]_ cicgky  (to —ty) FI[ ’02k1 Fz_l(Ye))
kirdo  (Fy' (ve)) thi rugFyt(yg) \Veika

& =

(62)
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_ 6(tO _tu) 1 Q[—E;—)

u -1 c _
0(y20 - 1) Q( fcf]/:; le(Yg)]

and then (62). Regard the previous Lemma 1, we have § > 0 when

2 f k
1-y50 + %— YIBFI[ z—k;Fz'l(y(;)J > 0, that is to say (61).

Theorem 12 (Case 12: Determination of the unknown coefficients
a,, and k). If

<ﬂ[%§ﬂ]—memPU§anf]

1
Y25 = 5 1+ - € (-, -1)U [0, +)
(63)
with
0'pcl(tu - ts)
Y24 ‘/EQO

then there exists a unique solution to problem P which is given by
(11)-(13), the coefficient ky is given by

pc 2‘31
T P o
and the coefficient a,, is given by
a = éiz (66)
where & ts the unique solution to the equation
Fi3(x) = F4(x), x>0 (67)
with
Fia(x) =1 - —2) (68)
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Fiy(x) = Y25(-:% x? - 1} (69)

Proof. From (16) we have

F. ﬂcj =
3[\/ Ty Y24

and then (65). We can rewrite (15) as

Q( \/;)k_}) R 1)‘

We have (67) letting x =

1 . Functions Fj3 and Fj, have the following
Vv a’m
properties:

, 2k
Fi4(07) = —vg5, Fia(+) = sgn(ygs)- o, Fiy(x) = p2c225' x.

F13(O+) = ]., F13(+00) =1- < 1, F1'3(x) >0 Vx> 0,

So, the behaviour of Fy, depends on the sign of yo5. There always exists
a unique solution & to (67) if yo5 > 0, but if yo5 < O we just can assure
the existence of a unique solution § if y95 < (-1). Then, combining these
inequalities we conclude that if (63) holds, then there exists a unique

solution & to (67).

Theorem 13 (Case 13: Determination of the unknown coefficients &
and a,,). If

Y4 <1 (70)

2
Yo exp[—(erf ‘{%D } - Fl( Bkgz—c]
4 2
Yo6 = e > 1, (71)

and
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then there exist infinite solutions to problem P given by (11)-(13), where
the coefficient & is given by

§ = L= Yo (72)
%)
(tO - tv) 1 \/———

_ A
2 ) [pe
u -1 2
0 ( Pamca Q( k2 °

for each a,, € R*.

Proof. If problem data verifies (16), we can write Yoo = erf _](71—),
4

and therefore y4 > 1. Then a, € R* and from (15) we obtain (72). We

are now in a position to show that & > 0. This follows easily from (71),
considering the previous Lemma 1, and this analysis can be done for each
given a,, > 0.

Theorem 14 (Case 14: Determination of the unknown coefficients r
and k). If

_ Y2 expl-(F5 ™ (v24))°]
Yo7
Lu
Fl( 'a—O'J

then there exists a unique solution to problem P which is given by
(11)-(13), and the thermal coefficients k; and r are given by (65) and

Y13[Y2 exp(~(F5 ' (y24))%) - F{‘/gcﬂ

r= s (74)
(o)
1 {7

1-p|1-—Xm L
oae)

Proof. As in the proof of Theorem 12 we obtain (65). Then, from (15)
we get (74). So, we are now in a position to show that r > 0. This follows

>1, (73)

respectively.

easily from (73) considering the previous Lemma.
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Theorem 15 (Case 15: Determination of the unknown coefficients &

and k). If

vo expl-(F5 ' (v24))%] - Fl( ju GJ
1

Y 28 = = > 1, (7 5)

Y30

then there exists a unique solution to problem P which is given by
(11)-(13), and the thermal coefficients ky and r are given by (65) and

§ = 1- Y28 , (76)
%)
(tO - tu) 1- am

wlz )| o]

Proof. We follow Theorem 14.

respectively.

Theorem 16 (Case 16: Determination of the unknown coefficients &
and ¢;). If (27) holds, and

_ L
12 exp (5 10)] - A £
m
Yoo = >1, 77
29 Y30

then there exists a unique solution to problem P which is given by
(11)-(13), where the coefficients c¢; and 8 are given by (58) and

§ = 1- Y29 (78)

to-t) |, I

respectively.

Proof. As in the proof of Theorem 10 from (16) and imposing (27) we
obtain (58). Then, from (15) we get (76). So, we are now in a position to
show that & > 0. This follows easily from (77) considering the previous

Lemma.
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Theorem 17 (Case 17: Determination of the unknown coefficients r
and cp). If (27) holds, and

yag = 12 exp[- (F3 ' (v5))’]
30 yon
Fl( TG)

m

> 1, (79)

then there exists a unique solution to problem P which is given by
(11)-(13), where the coefficients c; and r are given by (58) and

m(vz expl-(Fy (rg)?) - Fl[\[%c))

, (80)
(e}
) Q(J_m)

e

r =

1——'Y1 1

respectively.
Proof. We follow Theorem 16.

Theorem 18 (Case 18: Determination of the unknown coefficients ¢;

and a,,). If (27) holds, and

L |om (\/%o] vz expl- (3 (1))°]

Y31 = 7 1
Pn \/mm
ko

e (—oo, —l)U [0, +00),

(81)
then there exists a unique solution to problem P which is given by
(11)-(13), where the coefficient c; is given by (58) and the coefficient a,, is
given by

1
€_21

ay, =

(82)

where & s a unique solution to

F13(x) = F15(x), x>0 (83)
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with
ky 2
F5(x) = ya1| —=x" -1|. (84)
pey

Proof. As in the proof of Theorem 10 from (16) and imposing (27) we
obtain (58). Then, from (15) we get

4]

k
Q( p_gGJ m®2

We obtain (83) letting x = Function Fj5; has the following

1
Ve,
properties:
F O+ _ F _ FI _ 2k2Y31
15(07) = —v31,  Fi5(+®) = sgn(y3;) -, Fi5(x) = “oey &

So, the behaviour of Fj5 depends on the sign of y3;. There always exists
a unique solution & to (83) if y3; > 0, but if y5; < 0 we just can assure
the existence of a unique solution & if y3; < (-1). Then, combining these
inequalities we conclude that if (81) holds, then there exists a unique
solution & to (83).

Theorem 19 (Case 19: Determination of the unknown coefficients ¢;
and cg). If (27) holds, and

_ Qo -l W2
Y32 = p— exp(-(F5 " (v¢))") > 1, (85)

then there exists at least one solution to problem P which is given by
(11)-(13), where the coefficient c; is given by (58) and the coefficient cy is

given by (40), where & is a solution to the equation
F;(x) = Flg(x), x>0 (86)
with

kZ(tO - tv)
F = - —=——"2° H(x). 87
16(%) = 132 o2oru, (x) (87)
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Proof. As in the proof of Theorem 10 from (16) and imposing (27) we
obtain (58). Then, from (15) and letting x = J ‘;@ 25 we have
2

Q -2
o 1 27, kalto - t,) __anPnx 2 ( vam J
Opi u e}‘p[ (F2 (y )) ] + ‘/—6 pruo F (x) 02 _ amx2 Q(x) ’

that is to say (86). Function Fjg has the following properties:

Fg(0%) = eXP[—(le(Ye)) } Fg(+o)=-o; Fg(x)<0 Vx>0.

Then, taking into account (34), if (85) holds, then both functions would
meet in at least one & > 0. It is easy to check that (40) follows from the

definition of x.

Theorem 20 (Case 20: Determination of the unknown coefficients &
and cg). If

Y14 > V7, (88)

then there exist infinite solutions to problem P which are given by
(11)-(13), the coefficient 6 is given by

Y1 + coky (o —ty) £l [Pe2g
16 o oryy ! k2
d= 89
%)
PamCa(ty - u) am
ug (kg —pamcz) Q( pCy J
Ry
ky 1 2] .
for each cq € [0, ————2—[H (v33)] ] with
po
oZpvrru, 90)

Y33 = m Y16-

Proof. From (15) we get (89). We have to assure that

coky (b —ty) fpcz
T > T OTuy Fl( ko ]
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to have 6 > 0, or equivalently

H(“%CJ < Y33- (91)

Let x = J%:—z o. If y33 > 0, then there exists such x verifying (91), and
2

consequently
Y16 > 1. (92)

Problem data verify (16), then we have gqg = ‘,pclkl E?T(it_c) and this
0

together with (92) leads to % Y14 > 1, that is to say (88) holds. Therefore

x € (0, H }(y33)), and this clearly yields cy € (0 —[H Liyg )]2]
po?

Theorem 21 (Case 21: Determination of the unknown coefficients r
and cg). There always exists a solution to problem P which is given by

(11)-(13), where the coefficient r is given by

colty — ty)

-6 —— (7 —x ey
qu( Pk';z(f)

%)
1~ papcoPn 1- am
ke - papco Q Pea
V Ry ©
for each cq € (0, ——k% [H _1(Y34F8(70°'))]2J with
po
t, -t
Y34 = kc ((t :) Vpeiky . (94)

Proof. We can now proceed analogously to the proof of Theorem 20.

From (15) we get (93). We have to assure that 1 -y > —M— to
,Pcz
ugQ| .| —=%c
° [ ky )
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nave r > 0, or equivalently

, Jro

H| p626]< o exp(-(y00)?). 95

Let x = % o. The right side of (95) is always positive, so there always
2

exists such x that verifies (95). Problem data verify (16), so we can write

qo = J parky by — s This together with (95) leads to

n  erf(ygo)’
c
H(,f%‘;—c] < 134F3(v90),

and then we have cqg € (0, —I% [H_1 (Y34F8(YOC))]2 )
pc

Theorem 22 (Case 22: Determination of the unknown coefficients
a,, and ko). If

Y14 > 1, (96)

then there exists at least one solution to problem P which is given by
(11)-(13), the coefficient ky is given by

2
c“pc
ky = 252, 7
§
where £ is a solution to (41) for each a,, € R".

Proof. The proof follows by the same method as in Theorem 5.

Theorem 23 (Case 23: Determination of the unknown coefficients cy
and k). If (27) and (85) hold, then there exists a unique solution to
problem P which is given by (11)-(13), where the coefficient k; is given by

90201
=g
[F3~ (ve)]

and the coefficient cqy is given by (40), where & is a solution to (86).

(98)
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Proof. As in the proof of Theorem 10 from (16) and imposing (27) we
obtain (98). Then, from (15) and following by the same method as in
Theorem 19, we have (40).

Theorem 24 (Case 24: Determination of the unknown coefficients &,
and ko). If

90 -1 2 1 c
= exp(—(F: > =1+———Pn1—Q[ ——D, 99
Y35 = Gorug (~(F5(v24))7) > 736 o [ - (99)

then there exists at least a solution to problem P which is given by
(11)-(18), where the coefficient k; is given by (65) and the coefficient ky is

gtven by (97), where & is a solution to
F7(X) = F17(x), x>0 (100)
with
1
Fi7(x) = v35 - KoQ®) (101)

Proof. As in the proof of Theorem 12 we obtain (65). Then let
x = J—‘;—cgc, and (15) leads to
2

90
Gprug

a,, Pnx? Q[QLJ

that is to say (100). Function Fj; has the following properties:
Fi7(0%) = o, Fy7(+) = y35 —%, F{7(x)>0 Vx> 0.

Then, taking into account (34), we have that both functions would meet in
at least one & > 0 if (99) holds. As before, (97) follows from the definition

of x.

Theorem 25 (Case 25: Determination of the unknown coefficients ¢;
and k). If (27) holds, and

Y32 > V36> (102)
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then there exists at least a solution to problem P which is given by
(11)-(13), where the coefficient c; is given by (58) and the coefficient kg is

gtven by (97), where & is a solution to
F7(JC) = FIS(JC), x>0 (103)

with
F18\(x) = ’Y32 - ——1—— . (104)
KoQ(x)
Proof. As in the proof of Theorem 10 from (16) and imposing (27) we

obtain (58). Then, from (15) and letting x = "pkﬁ o, we have
2

Q 9 _
% 3 9 1 B am'an2 (\/a;n— )
opriig exp(-(F3 " (16))") - KoQ(x) 1- o2 - g, x Qlx) ’

that is to say (103). Function Fjg has the following properties:

1 )
F18(0+) = —o, F18(+°°) = Y32 ~ KXo’ Flg(x) >0 Vx >0.

So, taking into account (34), if

Y32 —-Ic-la > 1+'Pn[1 _Q(Jg_))

or equivalently (102), then both functions would meet in at least one
£ > 0. As before, (97) follows from the definition of x.

Theorem 26 (Case 26: Determination of the unknown coefficients r
and ky). If

¢

Y14 > )
Vr

(105)

then there exist infinite solutions to problem P which are given by
(11)-(13), where the coefficient r is given by
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r= (106)

Q J
1- pamcoPrn 1- am
kg = pa,,co Q( [ 0]

po 202

(=]

Proof. From (15) we get (106). Our next goal is to determine that

for each ky € |0,

r > 0. In order to get this, we have to assure that

1
1-1g6 > AT
nICoQ( p—zcs]
V ke
or equivalently
Q Jpcz cl|> opey(to ~ 1) exp(y()c)z. (107)
kg 9
Problem data verify equation (16), so we can say qq = ,’ peify i———ts—
n  erf(yyo)

Substituting this into (107) we have

fch °c_ . 108
Q{ kg cj 7 Jny4Ko 109

Therefore, we have to ask for

o .
———— < 1, or equivalently (105), to have
Jmy14Ko

the existence of such kg that verifies (108). Then, considering (20), we

po’ey

()]

conclude that kg €| 0,
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Theorem 27 (Case 27: Determination of the unknown coefficients 3
and k). If

"4 > ‘/5(1 + (109)

%)
nKo )’
then there exist infinite solutions to problem P which are given by

(11)-(13), where the coefficient & is given by

1
Yie t ——F 17—~
nICoQ( &c]
\ %y

Q= )
pamca(to — t,) 1- ( am
ug (kg — pancs) Q( pey C]

(110)

po 2Cz

[ (el -]

Proof. From (15) we get (110). Our next goal is to determine that

for each ky €| 0,

- -1
8 > 0. In order to get this, we have to assure that y;4 + Ln’GOQ["%cz-GH
2

-< 0 or equivalently

1-1
o eto ) » [ 22 expros -1 aw

Problem data verify (16), so we can say qg = ‘/ p c:tkl ei&'ﬁsc—)' Substituting

this into (111) we have
-1
Q(,/E]g—c) > [ﬂKo(% - 1)] . (112)

-1
Therefore, we have to ask for 0 < [nl()o(%_i - 1)} <1, or equivalently
T
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(109), to have the existence of such ko that verifies (112). Then,

po 202

[ (el )

Theorem 28 (Case 28: Determination of the unknown coefficients cy

considering (20), we conclude that ky € | 0,

and ap,). If (96) holds, then there exist infinite solutions to problem P
which are given by (11)-(13), where the coefficient cy is given by (40),

where & is a solution to
Fi(x) = Fy(x), x>0 (113)
for each a,, € R*.
Proof. Problem data must verify (16). Then fix a,, € R™ and let
x = \[%0. From (15) we obtain (113). Taking into account (34) and (43),

we assure that we have at least one & that verifies (113) if

90 2
- . 14
1< b= expl-(r00)°) (114)

We can say gy = ‘/ pc71tk1 etva(_%tsg)-. Substituting this into (114) we deduce

that it would be at least one § that verifies (113) if (96) holds. As before,
(40) follows from the definition of x. This analysis can be done for each

given a,, > 0.

4. Conclusions

We considered an analytical model of freezing (desublimation) of
moisture in a porous medium with an overspecified condition at the fixed
face in order to determine simultaneously two unknown thermal
coefficients of a semi-infinite phase-change material. This model has
Luikov type equations with eight heat parameters, and it can be
considered as a moving boundary problem with coupled heat and
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moisture flows. If the phase-change interface is given by s(t) = 20+,

where o is a positive constant experimentally determined. We obtain the
explicit expression of the temperature of the two phases 7} and Ty, the

mass-transfer potential in the humid region u, and we also determine
formulae for the two unknown thermal coefficients chosen among p (mass
density), a,, (moisture diffusivity), ¢; (specific heat of the frozen region),

¢y (specific heat of the humid region), k; (thermal conductivity of the
frozen region), ky (thermal conductivity of the humid region), § (thermal

gradient coefficient), r (latent heat), together with the necessary and
sufficient condition for the existence of such a solution for 28 different
cases.
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Appendix A: Summary of the formulae of the simultaneous

two unknown thermal coefficients

Case Restrictions Solution
Vg [T1
Q= F3
00" )
(1) 1, kl Y5 < 1 5
\/—qO l 1
T fof 1)
5
p= ——'[Fz (e
Y6 < —== o’e
Jn 2
@ Am> P a,, = S
g < (1) mT e
Or Y8 2 0

where £ is the unique solution to
F4(x) = Fy(x), x>0

p = —[Fy'(ve)
o? a

Y6 < =
® ap | ok 8
110 > 1 ki [Fy(ve))
where £ is a solution to
Fg(x) = Fp(x), x>0

Y13[72 exp(~(190)?) - Fl{\/‘;Tz D

r=

@ ap,r|1n2<l 1- \/a)
-1 pCe
Pamc2 [@ J
and any
a, € R*
cy = k2 —2 g2,
o®p

‘where £ is a solution to
Fi(x) = Fy(x), x>0
and any
ky € R*

(5) Co, k2 Y14 > 1
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2 ’Lu
713(Y2 exp(-(ygo)") - Fl( D
%)
©) r, 8 Y15 <1 1- 8(tO -t ) am
uO ____1 Q( ’Lu J
a”l
and any
5 eR*
Ry = _pcﬁl_
3 )
log(——
L FIO(P))
@ ke where p is a solution to
Fg(x) = ooyl — ¢ )x x>0
nqo
_ ko1 2
p=——[Fs (ve)l
2 oG
Y6 < — =
® kyp | Vm by =L,
2
Y17 > 1 é
where £ is a solution to
Fix)=1 x>0
k -
p = ——[F5 ()
G
k
Y6 < —= 718(719 exp(- (F3 (v6))) - Fl[‘} 02k1 Fyl(y )D
@ ne Ju r=
Y21 <1 J
__Pn |;_ ‘/a_n:
-1
" Q(‘/Czkl F-‘(ve))
k -
= L [F3 ()
2 Lo
10) ¢, p e s Y p= k_2§2'
Yoz <1 c0”
where € is a solution to
F7(x) = Flg(x), x>0
= —?*[Fz— o)
g
2 , coky
Yo < —== -1+ G—r‘hsFl[ F2 I(YG)J
an s p Vu 5=
Ye3 <1 Q(_"_J
(t(O _ tv) ) 1- \/f;
Yoo — 1
Holirzo Q("czkl le(Ye))
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kl - pO'ZCI
1) [F5 (r24)P
Yo <= 1
(12) &, ap, or 195 2 0 ay = é—z
where £ is the unique solution to
Fig(x) = Fu(x), x>0
6= 1-7v9
(to —t ) Q(w/a_m_ ]
a3) 3, ap T4 <l Ll
126 > 1 o panlCZ k2
and any
a, € R*
ky = po’ey
[F5 (r20)
500" {52
A ok | a1 . 713[72 exp(- (F3 " (v24))") - A P
1)
1-7f1- _\/..9;___
YVorr)
(o)
a"l
k= poey
[F3(r2a)F
5= 1-7v98
15) 8,k | vo3>1 = Q[ J
(to ~ 1) Vo
uo —_ 1 Q( ’ J
o = '%[Fz_l(“ls)]z
cp
~ _ 1-1v99
W sq | Vx °= 0']
Y29 > 1 (tO - tv) \/a—m
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k .
a =—=[F5(ve)
o%
2 1 2 Lu
-~ —(Fy K
lan e Y6 < - - Y13( 2 exp(~ (F3 " (vg))") - 1“ o GD
Y30 > 1 o J
)
a"l
, o = AL 75 )P
Te < Ir .
(18) am, Y31 < (_ 1) an = ?‘,
or yg; 20 where & is the unique solution to
F3(x) = Rs(x), x>0
k _
a = ——[F3 ()
Y6 < — °P
6 < —
19) ¢, ¢ Vr o=t
Y32 > 1 a’p
where £ is a solution to
Fp(x) = Fig(x), x>0
coky (8o — ) ’Pcz
5 Y16 * np orug l( EG
s, 4]
Pamcz(to - tv)
@0) e, 8 | yy >V ug(kg — Pamcz) Q( ’pcz J
kg
and any
k -
e (O- —=<[H 1(733)]2J
po
=16 - calto ;ctv)
Pr2
uOQ[J ™ 0']
r=
%)
@) ¢y r |-—- 1- pa,coPn 1- \/;z:

ko ~ pay,co Q[ pcg. 0_]
V

and any

¢ € [0, ka22—[H _1(Y34FB(YOG))]2J
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2
k2 - [ 262
3
(22) ap, ko | 114 >1 where £ is a solution to
" Fy(x) = Fy(x), x>0
and any

)

a, € R*

ky = p?%l 2

ve <2 [Fz " (ve)]

23) 9, Ry S ey = &8
Y32 >1 o2

where £ is the unique solution to
Fy(x) = Fyg(x), x>0

By = 02901
[F5(ra0)P
2
(24 Ry, ky | v35 > 136 ky = . ;;cz !
€

where & is a solution to
F7(x) = F17(x), x>0

k; -
o = ——[F5 ' (rg)f
o?p

Y6 < = 2
@) o, ky Jx by = S22
2
Y32 > Y36 3
where £ is a solution to

Fp(x) = Fig(x), x>0

1
1-716 - AT
nKoQ{J%GJ
2

o
1- PamcoPn 1- Q(\}am]

ko — papcy pe
26) 1k — J—-Z-c
S R rox ky

and any

2
kye|lo,— P72

2
-1 o
? (‘/;’COYM ]]
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Y16 + —
n)CoQ[ ’pc2 ]
2

| PanlCZ(LO - ty) 1 am
k -
@7) ke, 8 | M4 > w/n(1+ o j ug (ke — pancs) Q( 3522 )

and any

2
k2 € 0, PO Ca

(& (el -]

k
—2-82,
o?p
28) ap,ca| 114 >1 where £ is a solution to
Fp(x) = Fy(x), x>0

Co =

and any a,, € R*.

Appendix B

The complementary constants used in the text are the following ones:

v = [Pl 4y o BPameallo =) Pn o Vrgp
Ry ko — paco 1 Jegkop(to — 1)

Lu

Yg = mp T Y4 = s qo .
3 " Veghky (to —t,) V Y " Vperky (- ts)
1 Lu Q( : J

a
Y5 = Flu—ﬁ) +y30|1-1|1 - ——==%
Y2 am Q( Lu

_G)
am
Y = kl(tv — ts) . yq = clk2 1

Jrogqy Vesk Fy (Ye)

_ 1], sado exp(—(Fgl(yG))z)+ 1 Fy7)|
Pn kyrug F5l(vg) Jnko Y7 |
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1. Yo = %0 exp(=(Fz ' (v4))®) . U cikolto —t) .
J kyrug F5l(ye) Jrkyrug(Fy ™ (v6))

F( [pca J
_ (to —ty) |coke ky _ (o —ty) [coky .

(t —t) Verky  Fs(rgo) =~ '3 oug mp

Fl( ﬂC)
¢y —ts) M g (ro0) Yis = (to —t) [cokp "\Van, ,

ol p (t, —ts) Verky  Fs(vo0)

gz 2
ex c -—— P2 +§1-Q ;
P( (Yo ) ) Y17 = Y10 o - «/Zt;

Yis = ,C1czk2 (o —ty) . Yio = f ne,_ 09 .

’ k1 o2ugFy(vg) c2kike Fyl(yg)

2

ok 1 coky .- -

Y20 2 12— vy = —Fl(\/—zkl le(Ye))eXP[(le(Ye))Z];
ameoki [F5 (v6)] 119 €17

2
Pn(l - Q(\/S—]J 1+ GT YISFI("%Fil(YG)J

Y14 =

Y16 =1-

pcru,

Il

Yo2 = ;o Yo3 = ;
0‘_2_1 1+ Cz(to v)) Y10
an, Ik
F| P2 Fs
17|72 expl-(F5(v24))’]
You = ope; (ty _ts). Yo5 = — {1+ 2 .
\/;qo ’ 'Pn Y30 ’
2
1 1 o[
exp| —| erf 1(—)) - K| .,5*=0
T2 p{ ( Y4 NV ks
Y26 = ,
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v2 expl-(F3 ' (v24))°] :

Y271 = Fl(‘/;&;c)
vo expl-(F5 (v24))?] - Fl[\/;ﬁ—;z‘c] |

Y28 = Y0 ;
-1 2 Lu
vo exp[-(Fz (v6))"] - F1(1’a—c)
Yog = m /.
Y30

vo exp[-(Fz ' (v6))*] .

Y30 = ’
A 2o
| Fl(\/%c) 1 expl-(F5 (7)1
) |

Y31 = 5. )
Pn
\/np02 Koo
ko

Ya2 = =20 exp(-(F5(v6))%);

oprug
_ O p\/_ruo
Y83 = oolio —%,) 16T V34 T k (t \/pclkb
Qo
Y85 = Gorug exp(~(F5 (v24)));

wo=1e koo f2)
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Appendix C

The real functions used in the text, defined for x > 0, are the

following ones:

erf(x) = 72_— j: exp(-u?)du;

2
Q) = Vrrexple?) 1 - enf)y - Fye) - ),

HE) = (@) Fa) = 0, Fy(e) = wert()

Fy(x) = vg(y3x® -1);  Fs(x) = 1 - 79Q(x);

2
F6(x) =Y10 — 'YllH(JC); F7(x) =1- am’an 1- Vam ) |.

o? - amx2 Qx) |

_ex (—x2). . q _ ko(to —t,) )
Fg(x) = ﬁ(xT, Fy(x) = pcrouo exp(~(1¢0)%) _——-—Gipi)/;ruo H(x);

Fm(x) = "% -(E)—(-I:Oiz\/; Fl(‘/gc\/.’;)

c
Q ]
+ yJ7eg Koo 1- a,,coPnx 1- Jan,

\/E; k2 — QpCaX Q( ,2_20_ x] ’
2

o _o
Fiy(x) = 1 PQyyCo PR’ 1- (\/am ) B 1 )
H Y16 |1 - paycox? QWpcgox) | KoQ(Wpecgox)|’
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) = GCoq¢ _1__ exol— -1 21 kz(to —tv) .
Fia(e) = F2200 L fesal- (3 ) ) - 2200 )

Fiz(x) =1~ o) Fiy(x) = Yz5(p£62; il 1)»
k k
F5(x) = Y31(5c2_2 x? - 1); Fig(x) = v32 - ng:)/_m”) H(x);
0

Fi7(x) = 35 - E.%@; Fig(x) = v32 ——ICBET(E;

Fig(x) = F3( log(E;—GC;)J, defined for x such that 0 < Fyo(x) < 1.



