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a b s t r a c t

We consider a one-dimensional solidification of a pure substancewhich is initially in liquid
state in a bounded interval [0, l]. Initially, the liquid is above the freezing temperature, and
cooling is applied at x = 0 while the other end x = l is kept adiabatic. At the time t = 0,
the temperature of the liquid at x = 0 comes down to the freezing point and solidification
begins, where x = s(t) is the position of the solid–liquid interface. As the liquid solidifies, it
shrinks (0 < r < 1) or expands (r < 0) and appears a region between x = 0 and x = rs(t),
with r < 1. Temperature distributions of the solid and liquid phases and the position of the
two free boundaries (x = rs(t) and x = s(t)) in the solidification process are studied. For
three different cases, changing the condition on the free boundary x = rs(t) (temperature
boundary condition, heat flux boundary condition and convective boundary condition) an
explicit solution is obtained. Moreover, the solution of each problem is given as a function
of a parameter which is the unique solution of a transcendental equation and for two of
the three cases a condition on the parameter must be verified by data of the problem in
order to have an instantaneous phase-change process. In all the cases, the explicit solution
is given by a representation of the similarity type.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transfer problems involving a change of phase due tomelting or freezing processes are very important in science and
technology [1–5]. These kinds of problem are generally referred to as moving-free boundary problems which have been the
subject of numerous theoretical, numerical and experimental investigations. A lot of work have been done to investigate the
phase-change phenomenon in almost all its aspects. We can see a large bibliography on the subject given in [6]. Particularly,
the density difference between phases hasmore andmore experimental and analytical research interest [7–9]. For example,
the difference in densities is of importance in static casting processes for an overall design of the size and shape of the mold,
because phase-change materials with a few exceptions normally shrink during solidification and hence the detachment of
the liquid from the mold wall results in a concave shrinkage surface due to gravity.
In the following we take into consideration a similar model as the one presented in [10,11] in order to obtain explicit

solutions for a free boundary problem inwhich shrinkage or expansion occurs.We consider a one-dimensional solidification
of a pure substance which is initially in liquid state in a bounded interval [0, l]. Initially, the liquid is above the freezing
temperature, and cooling is applied at x = 0 while the other end x = l is kept adiabatic. At the time t = 0, the temperature
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of the liquid at x = 0 comes down to the freezing point and solidification begins, where x = s(t) is the position of the
solid–liquid interface. As the liquid solidifies, it shrinks or expands and appears a region between x = 0 and x = rs(t),
where r = ρ1−ρ2

ρ1
= 1 − ρ2

ρ1
is a parameter, and ρi is the density of the region i (i = 1: solid; i = 2: liquid). Observe that

r < 1 and it could be possible for this parameter to take negative values (if r ∈ (0, 1) the substance shrinks; if r < 0 it
expands). Eventually all the liquid solidifies, which is in accordance with some experiments. We consider the temperature
distribution of the liquid and solid, and the position of the two free boundaries in the solidification process. Furthermore,
we suppose that the pre-existing phase is at rest and the forming phase moves.
The governing equations are

α1
∂2u1
∂x2

(x, t) =
∂u1
∂t

(x, t)+ r ṡ(t)
∂u1
∂x

(x, t) , rs(t) < x < s (t) , t > 0. (1.1)

α2
∂2u2
∂x2

(x, t) =
∂u2
∂t

(x, t) , s (t) < x, t > 0. (1.2)

where ui(x, t) is the temperature, αi is thermal diffusivity, ki is thermal conductivity, ρi is the density in region i, ( i = 1, 2),
and r is the parameter presented above.
The boundary and initial conditions are

u2(+∞, t) = u2(x, 0) = B > u∗, (1.3)

u1(s(t), t) = u2(s(t), t) = u∗, (1.4)
k1u1x(s(t), t)− k2u2x(s(t), t) = ρ1Lṡ(t) (1.5)

where u∗ is the freezing temperature, L is the latent heat of fusion by unit of mass.
In Section 2, we consider the problem (1.1)–(1.5) plus the following temperature condition on the left boundary given

by:
u1(rs(t), t) = A, t > 0 (1.6)

where A is a constant such that A < u∗ < B.
In Section 3, we take the problem (1.1)–(1.5) plus a heat-flux condition on the left boundary given by

k1
∂u1
∂x
(rs(t), t) =

q0
√
t
. (1.7)

Here q0√
t
denotes the prescribed heat flux on the boundary x = rs(t)which is a condition of the type imposed in [12], where

it was proven that the heat flux condition (1.7) on the fixed face x = 0 is equivalent to the constant temperature boundary
condition (1.6) for the two-phase Stefan problem for a semi-infinite material with constant thermal coefficients in both
phases. This kind of heat flux at the fixed boundary x = 0 was also considered in several applied problems, e.g. [13–15]. We
will prove in Section 4 that the free boundary problems (1.1)–(1.5), (1.6) and (1.1)–(1.5), (1.7) are also equivalent.
In Section 5, we study the problem (1.1)–(1.5) plus a convective cooling condition on the left boundary given by

k1
∂u1
∂x
(rs(t), t) =

h0
√
t
(u1 (rs (t) , t)− u0) , (1.8)

where h0 is the coefficient which characterizes the dependent-time heat transfer coefficient given by
h0√
t
and u0 is the

external temperature (u0 < u∗). The boundary condition (1.8) was considered in [16,9,17] for the classical Stefan problem.
In [10] a similarity solution was obtained by assuming the void thermal resistance proportional to its size. In [18], the

solution of the two-phase problem was obtained by using the method of matched asymptotics not including the effect of
shrinkage or expansion. In [19] the numerical solution of a similar problem was obtained, with a convective condition by
applying the method of perturbation analysis. In [20] it was studied a one-phase free boundary problem for a PDE system
in a domain which shrinkage occurs.
Finally, in Section 6we find the equivalence betweenproblems (1.1)–(1.5), (1.6) and (1.1)–(1.5), (1.8), and the equivalence

between problems (1.1)–(1.5), (1.7) and (1.1)–(1.5), (1.8).
In the text we will use the error function erf defined by

erf (x) =
2
√
π

∫ x

0
exp

(
−z2

)
dz, x > 0 (1.9)

and the complementary error function erfc which is defined by erfc(x) = 1− erf (x).
The goal of this paper is to determine the temperature distribution of the solid and liquid regions and the position of the

two free boundaries in the solidification process with either shrinkage or expansion, in rs(t) < x < s(t), t > 0, 0 < r < 1
or r < 0 respectively, in three different cases, changing the condition on the boundary x = rs(t). Moreover, the solution
of each problem is given as a function of a certain parameter which is given as the unique solution of a transcendental
equation. Furthermore, we study which conditions must be satisfied on the parameters of each problem in order to have
an instantaneous phase-change process. In all the cases, the explicit solution is given by a parametric representation of the
similarity type. Other problems in this subject are also given in [21–25].
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2. Solidification of a pure substance with a temperature condition at x = rs(t)

We consider the problem (1.1)–(1.5) plus the temperature boundary condition (1.6). The partial differential equations,
Eqs. (1.1) and (1.2), can easily be transformed into ordinary differential equations [26], since a non-dimensional similarity
coordinate y can be found:

y =
x

2λ
√
α2t

, (2.1)

where α2 is the thermal diffusivity of liquid region and λ is a dimensionless unknown coefficient to be determined.
The solutions are sought of the type:

u1 (x, t) = Θ1 (y) , r < y < 1 (2.2)
u2 (x, t) = Θ2 (y) , y > 1 (2.3)

then the free boundary s(t) of the problem (1.1)–(1.6) must be of the type

s (t) = 2λ
√
α2t; t > 0 (2.4)

and the problem (1.1)–(1.6) yields

α1

2α2λ2
Θ ′′1 + (y− r)Θ

′

1 = 0, r < y < 1 (2.5)

Θ ′′2 + 2λ
2yΘ ′2 = 0, y > 1 (2.6)

Θ2(+∞) = B (2.7)
Θ1(r) = A (2.8)

Θ1(1) = Θ2(1) = u∗ (2.9)

k1Θ ′1(1)− k2Θ
′

2(1) = 2λ
2α2ρ1L. (2.10)

It is easy to see that from (2.5)–(2.9) we can obtain

Θ1(y) = A+
(
u∗ − A

) erf (√ α2
α1
λ(y− r)

)
erf
(√

α2
α1
λ(1− r)

) , r < y < 1 (2.11)

Θ2(y) = B−
(
B− u∗

) erfc (λy)
erfc (λ)

, y > 1. (2.12)

Now, we have to consider here the condition (2.10) which implies that λmust be the solution of the following equation:

Ψ1(x) = Φ(x), x > 0 (2.13)

where

Ψ1(x) =
k1 (u∗ − A)

ρ1L

√
1

πα1α2
F2

(√
α2

α1
(1− r)x

)
, x > 0 (2.14)

Φ(x) = x+
k2 (B− u∗)
α2ρ1L

√
π
F1(x), x > 0 (2.15)

F1(x) =
exp(−x2)
erfc(x)

, F2(x) =
exp(−x2)
erf (x)

, x > 0. (2.16)

In [27] it has been proved that

F1(0+) = 1, F1(+∞) = +∞, F ′1(x) > 0, x > 0
F2(0+) = +∞, F2(+∞) = 0, F ′2(x) < 0, x > 0

so we have that Ψ1 is a strictly decreasing function for x > 0, with the properties Ψ1(0+) = +∞, Ψ1(+∞) = 0; and Φ is
a strictly increasing function for x > 0, with the propertiesΦ(0+) = k2(B−u∗)

α2ρ1L
√
π
,Φ(+∞) = +∞. Then, there exists a unique

solution λ of the Eq. (2.13) and then we have the following theorem:

Theorem 2.1. Eq. (2.13) has a unique solution λ > 0. Moreover, the free boundary problem (1.1)–(1.6) has an explicit solution
given by
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u1(x, t) = A+
(
u∗ − A

) erf (√ α2
α1
λ
(

x
2λ
√
α2t
− r

))
erf
(√

α2
α1
λ(1− r)

) , rs(t) < x < s(t), t > 0 (2.17)

u2(x, t) = B−
(
B− u∗

) erfc ( x
2
√
α2t

)
erfc (λ)

, x > s(t), t > 0 (2.18)

and the free boundary s(t) is given by (2.4) where the coefficient λ is the unique solution of Eq. (2.13).

Remark 2.1. In the particular case r = 0 we have the classical Neumann solution [2] for the two-phase Stefan problem.

3. Solidification of a pure substance with a heat-flux condition at x = rs(t)

In this section we consider problem (1.1)–(1.5) with the heat-flux boundary condition (1.7) [24,25,12]. We can work as
before, transforming this free boundary problem into a system of ordinary differential equations through a non-dimensional
similarity coordinate y = x

2µ
√
α2t
. It is easy to see that the free boundary must be of the type

s(t) = 2µ
√
α2t (3.1)

where µ is a dimensionless constant to be determined. We obtain:
α1

2α2µ2
Θ ′′1 + (y− r)Θ

′

1 = 0, r < y < 1 (3.2)

Θ ′′2 + 2µ
2yΘ ′2 = 0, y > 1 (3.3)

Θ2(+∞) = B (3.4)

Θ ′1(r) = 2
q0
√
α2

k1
µ. (3.5)

Θ1(1) = Θ2(1) = u∗ (3.6)

k1Θ ′1(1)− k2Θ
′

2(1) = 2µ
2α2ρ1L. (3.7)

From these equations we get

Θ1(y) = u∗ −
q0
√
πα1

k1

(
erf
(√

α2

α1
µ(1− r)

)
− erf

(√
α2

α1
µ(y− r)

))
, r < y < 1 (3.8)

Θ2(y) = B−
(
B− u∗

) erfc (µy)
erfc (µ)

, y > 1, (3.9)

where µmust be the solution of the following equation:

Ψ2(x) = Φ(x), x > 0, (3.10)

withΦ(x) is given by (2.15), and

Ψ2(x) =
q0

ρ1L
√
α2
exp

(
−
α2

α1
(1− r)2x2

)
, x > 0. (3.11)

Taking into account that Ψ2 is a strictly decreasing function for x > 0, with the properties Ψ2(0+) =
q0

ρ1L
√
α2
, Ψ2(+∞)

= 0; then Eq. (3.10) has a unique solution µ if and only if q0
ρ1L
√
α2
>
k2(B−u∗)
α2ρ1L

√
π
, which can be summarized in:

Theorem 3.1. If

q0 >
k2 (B− u∗)
√
πα2

(3.12)

holds, then Eq. (3.10) has a unique solutionµ > 0. Moreover, the free boundary problem (1.1)–(1.5), (1.7) has an explicit solution
given by

u1(x, t) = u∗ −
q0
√
πα1

k1

(
erf
(√

α2

α1
µ(1− r)

))
− erf

(√
α2

α1
µ

(
x

2µ
√
α2t
− r

))
,

rs(t) < x < s(t), t > 0
(3.13)
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u2(x, t) = B−
(
B− u∗

) erfc ( x
2
√
α2t

)
erfc (µ)

, x > s(t), t > 0 (3.14)

and the free boundary s(t) is given by (3.1) where the coefficient µ is the unique solution of Eq. (3.10).

Remark 3.1. It is important to remark that the inequality (3.12) does not depends on r < 1(0 < r < 1 or r < 0).
Furthermore, in the particular case r = 0 we have the results obtained in [12].

4. Relationship between heat transfer problems with temperature and heat flux at x = rs(t)

Now, we consider the solution u1(x, t) of the problem (1.1)–(1.5), (1.7) given by (3.13). Computing u1(rs(t), t) and we
have:

u1(rs(t), t) = u∗ −
q0
√
πα1

k1
erf
(√

α2

α1
µ(1− r)

)
= A0(µ) < u∗ (4.1)

which is constant in time.
If we replace A by A0(µ) in condition (1.6) and we solve the free boundary problem (1.1)–(1.6) we obtain the following

similarity solutions:

ũ1(x, t) = A0(µ)+
(
u∗ − A0(µ)

) erf (√ α2
α1
λ
(

x
2λ
√
α2t
− r

))
erf
(√

α2
α1
λ(1− r)

) , rs(t) < x < s(t), t > 0 (4.2)

ũ2(x, t) = B−
(
B− u∗

) erfc ( x
2
√
α2t

)
erfc (µ)

, x > s(t), t > 0 (4.3)

and s(t) = 2λ
√
α2t is the free boundary. The unknown coefficient λmust be the solution of the following equation:√

α2

α1π
k1
(
u∗ − A0(µ)

)
F2

(√
α2

α1
(1− r)λ

)
= α2ρ1Lλ+

k2 (B− u∗)
√
π

F1(λ). (4.4)

Theorem 4.1. Under the hypotheses (3.12) the solution µ of Eq. (3.10) is also solution of Eq. (4.4), i.e., µ = λ

Proof. We have:
µis a solution of Eq. (4.4))⇔

⇔

√
1

α1α2π

k1
ρ1L

(
u∗ − A0(µ)

)
F2

(√
α2

α1
(1− r)λ

)
= λ+

k2 (B− u∗)
α2ρ1L

√
π
F1(λ)⇔

⇔
q0

ρ1L
√
α2
erf
(√

α2

α1
µ(1− r)

)
F2

(√
α2

α1
(1− r)λ

)
= λ+

k2 (B− u∗)
α2ρ1L

√
π
F1(λ)⇔

⇔Ψ2(µ) = Φ(µ)⇔ µis a solution of Eq. (3.10)

i.e, µ = λ. �

As a consequence of Theorem 4.1, we can translate inequality (3.12) for q0 for the free boundary problem (1.1)–(1.5),
(1.7) to an inequality for λ for the free boundary problem (1.1)–(1.6), that is to say,

q0 =
k1 (u∗ − A)

√
πα1erf

(√
α2
α1
(1− r)λ

) > k2 (B− u∗)√
πα2

(4.5)

that is the inequality

erf
(√

α2

α1
(1− r)λ

)
<
k1 (u∗ − A)
k2 (B− u∗)

√
α2

α1
(4.6)

which is valid for problem (1.1)–(1.6).
This quotation makes sense when the right hand side of the equation is less than one, that is to say:

Corollary 4.1. When data for the free boundary problem (1.1)–(1.6) verifies the inequality

k1 (u∗ − A)
k2 (B− u∗)

√
α2

α1
< 1 (4.7)
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then the coefficient λ of the free boundary (2.4) satisfies the inequality

λ <
1
1− r

√
α1

α2
erf −1

(
k1 (u∗ − A)
k2 (B− u∗)

√
α2

α1

)
. (4.8)

5. Solidification of a pure substance with a convective condition at x = rs(t)

In this sectionwe consider the free boundary problem (1.1)–(1.5) plus a convective cooling condition given by (1.8)where
h0 is the coefficient which characterizes the dependent-time heat transfer coefficient [16,9]. If we define

y =
x

2ξ
√
α2t

(5.1)

where α2 is the thermal diffusivity of liquid region, we obtain

u1(x, t) = u0 +
(
u∗ − u0

) k1 +√πα1 h0 erf ( x
2
√
α1t
− rξ

√
α2
α1

)
k1 +
√
πα1 h0 erf

(√
α2
α1
ξ(1− r)

) , rs(t) < x < s(t), t > 0 (5.2)

u2(x, t) = B−
(
B− u∗

) erfc ( x
2
√
α2t

)
erfc (ξ)

, x > s(t), t > 0 (5.3)

s(t) = 2ξ
√
α2t, t > 0 (5.4)

where the unknown dimensionless coefficient ξ must be the solution of the equation:
Ψ3(x) = Φ(x), x > 0 (5.5)

withΦ(x) is given by (2.15), and

Ψ3(x) =
(u∗ − u0) h0
ρ1L
√
α2

exp
(
−
α2
α1
(1− r)2x2

)
1+
√
πα1

h0
k1
erf
(√

α2
α1
(1− r)x

) , x > 0. (5.6)

So, we can have the following theorem as before:

Theorem 5.1. If

h0 >
k2 (B− u∗)
√
πα2 (u∗ − u0)

(5.7)

holds, then Eq. (5.5) has a unique solution ξ > 0. Moreover, the free boundary problem (1.1)–(1.5), (1.8) has an explicit solution
given by (5.2), (5.3), and the free boundary s(t) is given by (5.4) where the coefficient ξ is the unique solution of Eq. (5.5). Plus,
the temperature on the left free boundary x = rs(t) is constant for all t > 0 and u0 < u1(rs(t), t) = Const. < u∗.

Remark 5.1. It is important to remark that (5.7) does not depend on r < 1 (0 < r < 1 or r < 0). Furthermore, in the
particular case r = 0 we have the results obtained in [16,9].

6. Relationship between heat transfer problems with a convective condition and a temperature condition or a heat
flux condition at x = rs(t)

Summarizing, we have the following results, which may be proved in much the same way as in Section 4:

Theorem 6.1. Under the hypothesis (5.7) the solution ξ of Eq. (5.5) is also solution of Eq. (4.4), i.e., ξ = λ

Corollary 6.1. Suppose that u0 < A < u∗ < B. When data for problem (1.1)–(1.6) verifies the inequality

k1
√
α2 (u∗ − A) (u∗ − u0)

k2
√
α1 (B− u∗) (A− u0)

< 1 (6.1)

then the coefficient λ of the free boundary (2.4) satisfies the inequality

λ <
1
1− r

√
α1

α2
erf −1

(
k1 (u∗ − A) (u∗ − u0)
k2 (A− u0) (B− u∗)

√
α2

α1

)
. (6.2)

Theorem 6.2. Under the hypotheses (3.12) the solution ξ of Eq. (5.5) is also solution of Eq. (3.10), i.e., ξ = µ.
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Corollary 6.2. When data for problem (1.1)–(1.5), (1.8) verifies the inequality

k2 (B− u∗)
k1 (u∗ − u0)

√
α1

α2
< 1 (6.3)

and h0 verifies the inequalities

1 <
h0 (u∗ − u0)

√
πα2

k2 (B− u∗)
<

1

1− k2(B−u∗)
k1(u∗−u0)

√
α1
α2

(6.4)

then the coefficient ξ of the free boundary (5.4) satisfies the inequality

erf
(√

α2

α1
ξ(1− r)

)
<

[
h0 (u∗ − u0)

√
πα2

k2 (B− u∗)
− 1

]
k1

h0
√
πα1

. (6.5)
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