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Abstract

A one-phase Stefan problem for a semi-infinite material with temperature-dependent thermal conduc-
tivity and convective term with a constant temperature or a heat flux condition of the type —qo/v/t (g0 > 0)
at the fixed face x = 0 is studied. For both cases a parametric representation of the solution of the similarity
type is also obtained.
© 2003 Elsevier Science Ltd. All rights reserved.

AMS: 35R35; 80A22; 35C05
Keywords. Stefan problem; Free boundary problem; Moving boundary problem; Phase-change process; Nonlinear
thermal conductivity; Fusion; Solidification; Similarity solution

1. Introduction

We consider a Stefan problem for a semi-infinite region x > 0 with phase-change temperature 0;
[18]. It is required to determine the evolution of the moving phase separation x = s(¢) and the
temperature distribution 0(x,7). The modeling of this kind of systems is a problem with a great
mathematical and industrial significance. Phase-change problems appear frequently in industrial
processes an other problems of technological interest [1,2,9-11,13-16,19,30]. A large bibliography
on the subject was given in [29].
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Here, we consider a one phase-change process (one-phase Stefan problem) for a nonlinear heat
conduction equation with a convective term. Owing to [26] we consider the following free
boundary (fusion process) problem:

pc%z%(k(ﬁ,x)i—i) —v(@)%, 0<x<s(t), t>0 (1)
o0 90
k(@(O,t),O)a(O,t):—ﬁ, qo>0, t>0 (2)
o0 .
k(O(s(0), 1), (1)) 5 (s(0),8) = —pls(t), £>0 (3)
0(s(t), 1) =0, >0 (4)
s(0) =0 (5)

where the thermal conductivity k(6,x) and the velocity v(f) are given by

d

k(0,x) = pc% (7)

and ¢, p and [ are the specific heat, the density and the latent heat of fusion of the medium re-
spectively, all of them are assumed to be constant with positive parameters a, b,d and a + b0; > 0.
The last condition guaranteed that v and £ are well defined by maximal principle. This kind of
nonlinear thermal conductivity or diffusion coefficients was considered in numerous papers, €.g.
[4,7,8,17,21,23,27]. The nonlinear transport equation (1) arises in connection with unsaturated
flow in heterogeneous porous media. If we set d = 0 and b = 0 in the free boundary problem (1)—
(7) then we retrieve the classical one-phase Lamé—Clapeyron—Stefan problem. The first explicit
solution for the one-phase Stefan problem was given in [18]. Here —¢qo/+/f denotes the prescribed
flux on the boundary x = 0 which is of the type imposed in [28], where it was proven that the heat
flux condition (2) on the fixed face x = 0 is equivalent to the constant temperature boundary
condition (43) for the two-phase Stefan problem for a semi-infinite material with constant thermal
coefficients in both phases. This kind of heat flux at the fixed boundary x = 0 was also considered
in several applied problems, e.g. [3,12,22].

The goal of this paper is to determine which conditions on the parameters of the problem (in
particular gy) must be satisfied in order to have an instantaneous phase-change process. In Section
2 we follow and improve [26] in the sense that the existence of an explicit solution of the problem
(1)—(5) with nonlinear coefficients (6) and (7) is obtained for all data gy, p,c, [, 6¢,a, b, d with the
restriction a 4+ b6y > 0. Moreover, this solution is given as a function of a parameter y* which is
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given the unique solution of the transcendental equation (35). Although, if we replace the flux
condition (2) for a new temperature boundary condition (43) on the fixed face x = 0 we also
obtain in Section 3 for all data the existence of solution which is given as a function of a parameter
p which we prove it is the unique solution of the transcendental equation (71). This section is new
with respect to [26]. In both cases, the explicit solution is given by a parametric representation of
the similarity type. Other problems with nonlinear thermal coefficients in this subject are also
given in [5,6,20,24,25].

2. Solution of the free boundary problem with heat flux condition on the fixed face

We consider the problem (1)—(5). Taking into account (6) and (7) we can put our problem as

30 o 1+dx 90 d

a:a<(a+b9)2a+2b(a+b0))’ Osrssii =0 o
1 0, g

ma(o,t)_ i t>0 9)
1 + ds(¢) o0 ——s.

a0t o a0 = (0, 120 (10)

0(s(t),0) = Or, >0 (11)

s(0) =0 (12)

where o = //c and ¢ = qo/pc.
We define the following transformations in the same way as in [26]:

y= %{(1 + dx)? - 1}
S() =3[ (1 +ds(0)* ~ 1] (13)
0(y,7) = 0(x,1)
and
¥ = fS (a+b0(c,1))do + (ab + a)S(t)
r=t
H*Za-:bé (14)
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In order to obtain an alternative expression for y* we compute

o _ . > o0 .
i (a+b9(S(t),t))S(t)+/S(t)b5(0', t)do + (ab + a)S(t)
. 70 1 o0
= abS(t) + /Smb% (m $> do
. 1 00 1 00
= oab b p— )
S(1) + (<a+b9( OF & (@t 5050 .0) (S(2) z))
T
" (a+b0(y,1)> 0y
70 b 00 b 00
B /o oo (a + b0(a, 1)) &(G’ 0) dot (a + b0(0,2)) @(OJ) (13)
:b/oy%(a,t)do—i—[ijg (16)

then

y*(y,t):/Ot(/Oy%(a—l—b@(a,t))da—kljg)dr+/0y(a+b§(a,0))do

= /y(a+b9(a,t))da+2bq3\ﬁ (17)

Now, applying (13) and (14) the problem (8)—(12) is transformed in a classical Stefan problem
given by

%:2;—92 gt <yt < SH(tY), >0 (18)
2—;‘:;(213(13 1) = i]/sge*(qug ), >0 (19)
00 (s(), 1) = S (¢), £ >0 (20)
oy*
0 (S (1), t")=0;, >0 (21)
S*(0) =0 (22)
where
y ob . 1

0F =
(ab+a)(a+b0) T a+bb
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Then, if we introduce the similarity variable:

*

oo Y
V 2yt

where y* is a dimensionless positive constant to be determined, and the solution is sought of the
type

{B*(y*at*) = @*(é*) (25)

(24)

S*(t*) = /2yt
then, we get that (18)—(22) yields

d*o* do* 2

— Y E—=0, bgy|=<& <1 26
& y*E RE %\/; ¢ (26)
do* 2 2

@ (b%\/;> V27" q;bO (b%\/;> (27)
do*

dé*( )=y (28)
o (1) = 6; (29)

The solution of the differential equation (26) is given by

O (&) = Aerf(\/yzzé*) +B (30)

where 4 and B are two unknown coefficients. From (27) and (29) we get

_ —0;
A_g<bq(’§,—ﬁ> f—erf( %) (31)
 Oig(bar )
B_g<bq(’§,—\/%> —erf<\/§> (32)
where

g(x,p) =erf(x) + pR(x), x>0, peR

R(x):%_xz), x>0 )
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and

erf (x \/_ / exp(— d (34)

The unknown constant y* is determined by the remaining boundary condition (28) which yields
the following equation:

RVORES \/7 bqo’ _n _erf<\/£> exp(%*), >0 (35)

2

Theorem 1. The free boundary problem (1)—(5) has a unique solution of the similarity type for all
data qo, p,c,!,0,a,b,d. Moreover, the solution is given by

1 1
0&) =1 ~a

b Aerf(ﬁf*)%—l?
s _%[(Hdﬂ%—l (36)
V2 V2t

2
S(I):é <1+§ 2yt> —1]
where

do (37)

iz(ocb%—a)/;bq» Aerf<\/§ ) + B

and A, B and y are given by (31), (32) and (42) respectively.

Proof. First, we have to study the existence and uniqueness of the Eq. (35) If we define 4 = /y*/2,
then p must be the solution of the following equation:

. 1 1 0;
g<bq07_\/—E>:g<x’_\/_EO(—£>, x>0 (38>
It is easy to see that g(0, p) = —o0, g(+00,p) = 1 and (0g/0x)(x,p) > 0, Vx > 0, Vp < 0. Moreover
we have

0 la+bl) | a

% abjab+a)atbl) b (39)
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so the Eq. (38) can be written as

g<bq(§7—%)=g<x,—%<l+;—b>>, x>0 (40)

Therefore, taking into account that g(bqg, -1/ \/E) < 1 then Eq. (40) has a unique solution for all
data. From (25) we obtain the expression of S(¢) given by

S(t) = /2yt (41)
where y is given by

_ 7
" b ta) (42)

From (24), (25) and (30) we can obtain the parametric solution of the problem (1)-(5) given by
(36) and (37). Note that

bt (2,

C e T

We remark that the temperature at the fixed face x = 0 is constant in time which origins the
following section. [J

3. Solution of the free boundary problem with temperature boundary condition on the fixed face

Now, we consider the problem (1)—(5) but the condition (2) will be replaced by the following
temperature boundary condition (6, > 6f):

0(0,1) =0, >0 (43)

We can define the same transformations (13) and (14) as were done for the previous problem but
now we get

* Y a0 i) Y a0 Yl
o :b/ a—e(a,t)da—i—;a—e(o,t):b/ O g tydo+—2 Lo,
0 0

ot ot (a+b§(0,t))2 dy ot (a+b00)2@( ’
Then
* _ [ yia 0(c,t 07[) 6_@ T T ya 0(c o
v ( ,t)—/o (/0 af( + b0(a,1))d +(a+b90)2 ay<0’ ))d +/0 (a+b0(s,0))d
v _ b 190
:/0 (@ 0000 do 4"y [0, (44)
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Our problem becomes (20)—(22) and

00" %" b "0 e e .
o2 (a—l—b90)2/ 5 00t <y <S (), 1 >0 (45)
b " 00
o —° 0,7)de,t* | = 0 46
<(a+b00)2 0 6 0.9 ) 0 (46)

where 0; and «* are given by (23) and

1 1 1
O a4+ b0(0,1) a+b0(0,1)  a+ bl (47)

It easy to see that we have a classical Stefan problem so that the free boundary must be of the type
S (") = /2yt (S(t) = \/2yt> (48)

where y* (i.e. ) is a dimensionless constant to be determined.
If we introduce the similarity variable (24) and we propose the solution of the type (25) then the
problem (20)—(22) and (45) and (46) yields (28), (29) and

e’ do" _

+ & 0, / 0,7)dt< & <1, >0 49
de? d¢ (a+b90 V2 ay d )
o b U R (50)

(a+bOy) 2yt Jo dy

From (50) we must necessarily have that there exist a constant &, such that

t* An 2
[ Somar= gt o (51)

Oy
Therefore (49) and (50) can be written as

dz@* e dor
dé? d¢”

=0, &<&<l (52)

O (&) =0, >0 (53)
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The solution of the problem (28), (29), (52), (53) is given by

O (&) —A’erf<\/y;*€*> +B, <<l

where the unknown coefficients &;,4’, B’ and y* must satisfy the following equations:

A’erf(fg\/%>+3’:93, t>0
2 P o
\/y:*e"p(ﬁ) “aV
/ 7 '
4 erf<\/;> +B' =0;

Firstly, we shall obtain the following preliminary result.

Lemma 1. There exists a constant q; > 0 such that

00 q;
—(0.¢ :__0’
( ’) \/E

t>0
3 vVt >

where

q*:A’eXp<_v*€Z§2>
0 bﬁ933 2

Proof. From (14), (44), (25) and (54) we have

a0 _ —A'(a + bby) (_y_foz>
o " b\/%(A'erf(éé\/%) +B’)2 AT )

then we find that

g = A'(a + bby) eXp(_V_ff?)
b\/E(A’erf(fg\/%) +B’>2 2

1693

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)
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or equivalently

A/ ,})* 532 >
o =——=cexp| — 62

Moreover, from (56) we have that 4" > 0, then ¢; > 0. O

Remark 1. We have that

o2 130
.= —(0,7)d
! 29t Jo Oy v)dr

and then for Lemma 1, we obtain

. ap2 |2
Co = _b%eoz\/y:* (63)

Now we have to solve the system (55)—(57), (62) and (63) where A, B',y* and &;. From (55) and
(57) we have

0, — 0;
() e (1)
. orert (&1/5) = 0pert (1/5) )
() (V)
Now, we have to solve the following system:

exp(—f)

A =

(64)

7= oy (erf (z) — erf(B)) (66)
e"p(z_zz) = wy(erf(z) — erf(B)) (67)
where
V" « ¥
o — o\/m —on/m(a+ bby) <0 (68)

0, — 07 (ab+a)(0o— Or)
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. Opvn _ /m(a+ bb) 0
2T 0 —0; b(6,— 0)

1695

(69)

Then, we have now to solve (66) and

Bexp(B’) = Z—Tzexp(zz)

From (66) we have z = erf ' (W(f)) where function W is defined by

W(x) = oix exp(—x?) + erf(x)

with W(x;) = —1 and f > x;. Then we can write (67) in the following way

Bexp(B’) = B(f), B>x (71)

where function B is defined by

B(x) = z—?erf_l (W (x)) exp((erf " (W (x)))?) for x > xi.

Taking into account that B is a decreasing function, B(x;) = +o00, B(4+00) = —o0, then there exists
a unique solution f# > x; of Eq. (71) and then we have z = erf ' (W (f))

Finally, resuming the previous results we have the following theorem.

Theorem 2. The free boundary problem (1), (43), (3)—(5) has a unique solution of a similarity type for
all data q¢, p,c,!,0,a,b,d. Moreover, the solution is given by

1 ! _
e = b A’erf<\/%€*) + B ‘
o :g[(1+dx)%_1]

(72)
V2t V2t

s(t)cll|:<1+d\/§>21:|
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where
& 7
&= (ab+ a)/ A'erf 50 +B'|do
&m0 (73)
__ T
(b + a)’
and the coefficients A" and B’ are given by
A = (74)

b(0r — 0p)
'7

(@ + bOr)(a + bby) (erf %0 ) - erf(\/@)

. (a + bby) erf( \/;> (a+ bby) erf( > 75)

\/%
(a -+ b0r)(a -+ by) (erf (& O\ﬁ) —erf(\/g))

where v = 2%, & = \/2/y*erf(W(B)) and B is the unique solution of the Eq. (7).

Remark 2. The case without the convective term in (1), that is d = 0, it cannot be obtained from
what we did previously for the case d # 0 and taking d — 0, because the transformation x — y
through (13) is the identity since

o=

2
1112%3[(14—@)—1 =x, Vx>0

Then, the case d = 0 must be solved by using other techniques which will be developed in a
forthcoming paper.

4. Conclusion

For a one-phase Stefan problem for a semi-infinite material with temperature-dependent
thermal conductivity (7) and a convective term (6) with a heat flux (2) or a constant temperature
boundary condition (43) a parametric representation of the similarity type is obtained. For the
heat flux boundary condition we have followed and improved [26] obtaining the existence theorem
in Section 2. Moreover a new temperature boundary condition is also studied obtaining the
corresponding existence theorem in Section 3. For all cases their explicit solutions are given as a
functions of a parameter which is defined as the unique solution of a transcendental equation.
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