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Abstract. A reciprocal transformation is employed to reduce a two-phase Stefan problem in
nonlinear heat conduction into a form which admits a class of exact solutions analogous to the
classical Neumann solution. The problem is considered for materials of Storm type (Rogers 1985
J. Phys. A: Math. Gen. 18 105-9). Two related cases are considered, one of them has a flux
condition of the type —go/+/? (go > 0) and the existence and uniqueness of the solution is proved
when g satisfies a certain inequality which generalizes the work of Tarzia (1981 Q. Appl. Math.
39 491-7), obtained for constant thermal coefficients, the other one has a temperature condition on
the fixed face and the existence and uniqueness is proved for all data.

1. Introduction

We consider a two-phase Stefan problem for a semi-infinite region x > 0 with phase change
temperature Tf. It is required to determine the evolution of the moving phase separation
boundary x = X (¢) and the temperature distribution. The modelling of this type of system
is a problem of great mathematical and industrial significance. Phase-change problems
appear frequently in industrial processes and other problems of technological interest [1, 6—
9,11, 14,25]. An extensive bibliography on the subject was given in [21].

Here, we consider a phase-change process (Stefan problem) for a nonlinear heat conduction
equation which admits a class of exact solutions analogous to the classical Neumann solution
[13]. In this paper we shall use the similarity method in order to find an exact solution to
a free-boundary problem. This methodology has been used successfully in many problems,
for example, [3-5,10,12,17, 18,22-24]. In all of these cases, this methodology has led to
important physical consequences.

In [15] the following free-boundary (fusion process) problem was considered:

aT, 8 aT
pCp, (Tl)—a—t—l 3x< 1(T1)—1) Xt)<x<oo t>0 (1)
T,
kl(Tl)_ - kz(Tz)—— = LpX x = X(t) (2)
T1 T, = Tf X = X(t) (3)
3T, 8 (. .. 9T '
pcpz(TZ)Et— o ( 2(T2)—) O<x<X@® t>0 4)
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Ti(x,0) =Ty < Ty 5)
X0 =0 (6)
ko (T5(0, t)) (0 1) = —% G0>0 >0 %)

In the above, T;(x,t), c,(T;), ki(T;), i = 1,2 represent in turn the temperature
distribution, specific heat and thermal conductivity in the two phases, solid and liquid,
respectively. The density p of the medium is assumed to be constant and L denotes the
latent heat of fusion of the medium. Here —go/+/t denotes the prescribed flux on the boundary
x = 0, while Ty represents the initial temperature of the medium. It is noted that the two-phase
Stefan problem in linear heat conduction with constant thermal coefficients and a heat flux of
the type (7) was investigated in [20]. It was proved that a necessary and sufficient condition
in order to have an instantaneous phase-change process is that an inequality for the coefficient
go should be verified.

Our investigation is henceforth confined to materials for which

Y .
Ki;fz=ki(Ti) i=12 K;>0 (3)
where

T;
®(T)) = fT S©)de  SiT)=pe,(T) i=1,2. ©)

0i

The goal of this paper is to complement [15] and to prove in section 2 the existence and
uniqueness of the solution of the problem (1)—(7) if and only if the positive constant g is large

enough, i.e.
1
@ > VK:G” (v K1 (@1(T))/1(To) — 1)) 4o

where G! : (1, +00) —> (0, +00) is the inverse function of G with

1 exp(—x?)
JT

The function G was defined in [2] and it was proved that

G(x) = erf(x) + x>0 (11)

G(0*) = +o0 G(+00) =1 and G'(x)<0 Vx>0. (12)

The inequality (10) for the coefficient gy generalizes the corresponding inequality which
has been obtained for phase-change materials with constant thermal coefficients [20]

In section 3 we consider the problem (1)—(6) and the flux condition (7) will be replaced
by the following temperature condition:

7,(0,t) = T,, > Ty (13)

on the fixed face. We can remark that there exists a relationship between both condition (7)
and (13) on the fixed face x = 0 which is given by (46).

We prove the existence and uniqueness of the solution of problem (1)-(6) and (13) for all
thermal conditions.
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2. Existence and uniqueness of the solution of the free-boundary problem with a flux
condition on the fixed face

We consider the problem (1)—(7). If we now set

T,
T, = &:(T) =f pcpi(o)do i=1,2 (14)
To:
then (1) and (4) become
3T, 9 [ ki(T)) aT;
—_— = — L— =1,2. (15)
ot ax \ ®;(T;) ox

We remark that if (8) is true then k;(7;) and S;(7;) verify the Storm relation [16]

1 d Si(T; 1 .
—(log —(—)-) = — i=1,2. (16)
Vki(T;) Si(T;) dT ki(T;) vK;
The above condition was originally obtained by Storm [19] in an investigation of heat
conduction in simple monatomic metals. There, the validity of the approximation (16) was

examined for aluminium, silver, sodium, cadmium, zinc, copper and lead.
Using (8) in (15) reduces the heat conduction equations in the two phases to the form

aT; d (1 dT;
— —k—|—=—1)=0 =1,2. 17
ot ax (Tf Bx) : (17)
Now we introduce the similarity variable
X
= — X () =2yt 0 18
§ X0 @) vt v > (18)

and solutions of (17) are sought of the type

Ti(x, 1) = go,-(-_-g;) i=1,2. (19)

Using the reciprocal transformation
d¢ = &} dg}? o = ¢! (20)

and after several calculations we obtain that the required temperature distributions 77 and 7,
are given parametrically by

v\ 2 -1
-1 *
T1=d)1 {Alerf[(z—m) §1:|+B1}
' % 1/2
=1 Arerf| | — B td
imie [ e (5) ofenfor

y 1/2 -1
-1 *
T2 = ¢2 {A2 erfl:(2—K2) §2] + Bz}
£ y \ 2
& =/ {Azerfl:(——) a]+32]da
-V2/v90 2K

(21

and

(22)
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where the unknowns y, A;, B;, A; (i = 1, 2) must satisfy the following system (cf [15]):

[y _ 1
Al erf( 2K1 )\1) +Bl = Cbl(Tf) (23)

1
®(To)

[v _ 1 ‘
A2 erf( 2K2 )\2) + Bz = CDz(Tf) (25)
K —q3 —
‘/?ZAZ exp(-l-(f’;‘l) — qo(A2 erf(——%) + Bz) (26)

Al + B = (24)

)\1 = Lp + Cbl(Tf) — d)z(Tf) + )\2 (27)
A2 % 2
1= / A2 erf( [ —O’) do + Bz ()\2 + —qo) (28)
—V2/Yq 2K 14
2K 2K
— A1 ®((T)) —‘ exp( —=2—22 ) + A,®2(T)) —2 exp—==—22) = Loy (29
2K, 2K,
where
A =§&e=1 and Ay =& le=1 (30)
and
5 . ,
erf(x) = —f exp(—u“) du. 3D
7 Jy )

From (23)—(26) we obtain

1 1 1
A = -
=1 —el'f(«/y/ZK])»])(d)l(TO) cI>1(Tf))

B — 1 ( 1 _erf(Q/y/ZKl)\l)) (32)
. erf (/¥ /2K1 M) \ ©1(Ty) ®,(To)
1
27 0,(T)(G(qo/VEK2) +erf (V¥ 2K, A2)) )

G(q0/VK2)
2(T5)(G(qo/VEK2) +erf (VY 2K2 12))
Taking into account (32) and (33), equation (28) by integration becomes
F(y,22) =0 (34)
where F = F(y, A3) is defined by
Ay Gu(y,22))+m

B, =

Fd) =1+ 50 mredao. gy 770 220 (33)
with
@ [
m= G(x/—K_z) >1 and uly,r) = 2K, —As. (36)

Now, we just have to solve the system (34) and (29) to complete the solution, where A; is
given by (27). First, we study equation (34).
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Lemma 1. Equation (34) defines implicitly an increasing function A, = A,(y) such as
F(y, A2(y)) = 0. Moreover, we have 1,(0%) = 0 and A;(+00) = ®1(Ty).

Proof. It is sufficient to apply Dini’s theorem by proving that % (v, A2) # Oforall y and A,.
We have

oF
—(y, M) = w , A2), 37
o (v, A2) ®,(T}) (u(y, r2), m) (37)
where
2u exp(—u?) 2 exp(—24?)
W [} = 1 - - B 38
(. m) Jr(m+erfw)  m(m +erf(x))? (38)
In order to prove that 3 F /oA, > O for all y and A, we note that
oW 2u exp(—u?) exp(—2u?)
—(u,m) = 4 39
om ™ = e ret@) T wGm v e @) (39)

Then W(u,m) > W(u, 1) forallu > 0.

Therefore, it is sufficient to demonstrate that W(u, 1) > 0.

We obtain W(0*, 1) =1 —-2/m, W(oo, 1) = 1, and after many tedious manipulations we
also obtain (W /ou)(u, 1) #0,Vu > 0. So,wehave 0 <1 —-2/m < W(u,1) < 1,Vu >0
and then W(u, m) > W(u, 1) > O for all # > 0 and finally we have that d F /dA, > O for all
y and A;.

Furthermore, taking into account (35) and (36) we obtain

oF B —u? [2K, (1 exp(—u?)
W(y’ M) = O, (Tr)y(m+erf(w))\ vy (Zu2 v+ Jru(m +erf(u))> <0. (40)

Owing to 3F /dA, > 0 and 0F /3y < 0 by Dini’s theorem, it results that there exists an
implicit function A, = A,(y) such that F(y, A2(y)) = 0 for all y and its derivative is given
by A,(y) = —(3F/0y)/(F /dAz) > O, forall y. O

Now, replacing A, = A,(y) in (29), we have the following theorem:

Theorem 1. The free-boundary problem (23)—«29) has a unique solution if and only if qo
verifies the inequality (10).

Proof. In lemma 1 we found that A, = X,(y) is an increasing function, then for (27)
A1 = A1(y) is an increasing function too, with the properties A1 (0%) = Lp +®1(Tf) — ®2(Ty)
and Ai(+00) = Lp + ®1(Tf). Finally, we have to study the existence and uniqueness of
equation (29). Taking into account (32) and (33), equation (29) becomes

W(y)=Lp.Jy y >0 (41)
where
W(y) = — [2K) ®1(T¢) — @1(Tp) exp(—(y /2K1)A3(y))
®,(Tp) 1 —erf(Vy/2K1 A1(y))

. [2K, exp(—(y /2K2)A5(y)) ' 42)
T m+erf(VY/2K; M ()
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It easy to see that W is a decreasing function such that W (+00) = 00. Now, it is necessary
to know the sign of W(0*) where

o 2K, @uT)\. 2K 1
vo) ==& (1 cI)I(To))+ <3 @3)

From (12) [2] we have

V) >0 = |22 : >m=G(—q—°—)
Ky (@1(Tf)/®1(To) — 1) VK2

- K> 1 -~ 90
— G /= ) G Ym) =
(\/ K @ Ty/ody-n) ¢ ™=U%

_ K> 1
K>G ‘( —= ) 44
= >V | @a e a1 (44

that is inequality (10). To summarize, if the condition (10) is verified, W is a decreasing
function such that ¥(0*) > 0 and W(+00) = —00, so there exists a unique value y which
satisfies the transcendental equation (41). 0

Then we have the following theorem:

Theorem 2. The problem (1)—(7) has a Neumann-type unique solution if and only if the
coefficient qq verifies the inequality (10). In this case the solution is given by (18), (21),
(22), (32) and (33), A, = Ay(y) is given by lemma 1, Ay = A,(y) is given by (27) and y is the
unique solution of equation (41).

Theorem 2 shows us that when the thermal heat flux input coefficient go has a lower bound
of the type (10) we obtain an instantaneous phase-change process.

In contrast, if g does not verify (10) then we only have a heat conduction problem for the
initial solid phase.

In the case where gq verifies the inequality (10), we can compute the temperature on the
fixed face x = 0. This temperature is given by

go/7T P2(Ty) erf (v /2K3 Aa(y)) + G(qo /v Kz)) 45)
VK, exp(—q4/K2)
which satisfies the condition 7,(0, t) > Ty, ¥Vt > 0.

Therefore, we can consider the problem (1)—(6) and (13). In the next section we shall prove
that this new mathematical problem has a similarity solution for all data, including 7,, > T¥.

7,(0,t) = cb;‘(

Remark 1. From condition (7), an imposed heat flux proportional to the —% power of ¢, we
can obtain condition (13), a constant-temperature boundary condition, through the following
relationship:

T cb_1(q0ﬁ<b2(Tf) erf (VY /2K, )»2()’))+G(40/~/76))
=D (46)

VK, exp(—g3/K>)
where y is the unique solution of equation (41).

This was previously observed in [20] for constant thermal coefficients in both phases.

Remark 2. For the solidification process with an imposed heat flux proportional to the —%
power of ¢ we can obtain a similar result to theorem 2 for the fusion process.
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3. Existence and uniqueness of a solution of the free-boundary problem with a
temperature condition on the fixed face

Now, we consider the problem (1)—(6) and the temperature condition (13) on the fixed face
x = 0. Using (8), (14), (18) and

& , 1
& = 1+/ o1 d&; with ¢f = — €YD
&'le =1 1
and
4 * * : * 1
&= f gjdE;  with ¢f = — 48)
0 ©2

the required temperature distributions 77 and 7, of the problem (1)-(6), (13) are given
parametrically by

y 172 -1
Tl = d)l—l{Al erf[(-z—K—l) gr] + Bl}
& % 1/2
= Ayerf| | — Bytdo +1
o= [ el (i) o]en)eon

y 172 -1
T, = ¢2‘1{A2 erf[(m) g—;] + Bz}
£ y 172
52:/0 [Azerfli(ﬁ;) a]+32]da

where the unknowns y, A;, B;, A; (i = 1, 2) must satisfy the following system:

1 [y

T = A, erf ( —-—2K1 A.]) + By &2))
1 _ [ Y

2(Tf) = Ay erf( 2 2).2) + By (52)

(49)

and

(50)

®.(To) = A+ B (583)
Y BE%)
D2(Tm)
A = A2+ Lp + D(Ty) — P2(Ty) (55)
& Y
1= /(; As erf(\/;Kza) do + ByA, (56)
—A191(Ty) Z—NK—I exp(—E;—{—lA%) + Ay ®,(Ty) 2—71:—2 exp(—zLKzA%> =Lp/y 57

where A; and A; are given by (30).
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From (51) and (54) we obtain -

1 1 1
A = -
! l—erf(./—y/2K1)»1)(¢1(To) <I>1(Tf))
1

(58)
27 (1 ®o(Ty) — 1/05(T)) erf (V7 2Kz A2)
1 1 erf(\/y/2K; A1) 1
B, = ( — B, = ] (59)
1 —erf(/y/2K A1) \ ®1(T¥) @1 (To) D2 (T)

Taking into account (58) and (59), equation (56) becomes
H(y,22) =0 (60)

Ay
H(y, 1) = -1+ Ax(y, kz)f erf( / 2; )da + ByAs. (61)
2

Then we just have to solve the system (57) and (60) with unknowns y and A, to complete
the solution. First, in analogous form developed in section 2, we study equation (60).

where

Lemma 2. There exists an increasing function Ay = Ay(y) suchas H(y, A2(y)) = Oforall y.

Proof. It is sufficient to apply Dini’s theorem by proving that (y, A3) # Oforall y and A;.
We have

oH v »
()’,Kz) = Ax(y, 22) erf( 222)~ )+ m()’, Kz)/ erf(‘/ 2K, )dU + B

1 B exp(—u?) exp(—u?) — 1
= 3,(T)) (1 T e ) (" T IR et (w) )) ©2)
where u is given by (36),
2 Ty 1/ 1 1
h= ﬁ(l <1>2(Tm)) >0 ad A= ﬁ(cbz(Tf) <1>2(Tm))' (©3)
Then we obtain
0H
8—)\2()/, M)>0 — %E > M(u) (64)

where the function M is defined by
exp(—x2) exp(—x?) 1
MXx) = —/—Z{ x/ — A4 0. 65
®) = —Fm (x TV Tef@) | e () x> (65)

Owing to B < 2//m, M(0) = %n’, M(+o0) = 0and M'(x) < 0, Vx > 0, we obtain that
(64) is true for all y, A,.
Furthermore, we find

8_);) - —_— P1A2 —Xp—2 i_e______l(uz) + xp—z) 0
8y ( ’ 2) NEL yeIf(u) ((1 © ( . ))(Zu NEL eli(u)) e ( “ ) =%

Then for (64) and (66), we have that A5(y) = =52 (y, 22) / §Z (v, %2) > 0. O
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Theorem 3. The free-boundary problem (51)—57) has a unique solution for all data.

Proof. The coefficients A;, B; (i = 1, 2) are given by (58) and (59), respectively. In lemma 2
we found that A, = A,(y) is an increasing function, then for (55) we obtain that A; = A;(y)
is an increasing function too. Finally, we have to study the existence and uniqueness of
equation (57). Taking into account (58) and (59), equation (57) becomes

Aly) = Loy y>0 (67)

where function A is defined by

A(y) = — [2K, (q’l(Tf) — ¢1(To)> exp(— (v /2K1)A{ ()
m @, (To) (1 —erf (V¥ 2K1 M (¥)))

. [2K: (cbz(rm) - <1>2(Tf>)exp(—(y/2K2>>~%(V>) y>0  (68)
b 4

D2(Tn) erf (VY /2K2 22(y))
and it satisfies that A is a decreasing function with A(+00) = —o0 and A(0*) = +oc. Then
there exists a unique y which is a solution of the transcendental equation (67). il
Conclusion

We have obtained a similarity solution, analogous to the classical Neumann solution,
corresponding to the fusion process with nonlinear thermal coefficients for Storm-type
materials and a constant initial temperature Ty of less than the melting temperature 7.

We have proved that there exists an explicit solution for all data when a temperature
condition (13) is imposed on the fixed face x = 0. If we consider condition (7), an imposed
heat flux proportional to the —% power of ¢, then the explicit solution is obtained if and only
if the thermal flux input coefficient g¢ has a lower bound given by (10).

The two boundary conditions on the fixed face (7), with datum g, and (13), with datum
T,,, are related through the relationship given by (46).

Moreover, all results obtained for the fusion process for the Storm-type materials can also
be found for the solidification process with the corresponding analogous initial and boundary
conditions.
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