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ABSTRACT
We determinate unknown thermal coefficients of a semi-infinite
material with an overspecified condition on the fixed face following
the ideas developed in C. Rogers (ZAMP, 39, 122-128 (1988))
and in D. A. Tarzia (Adv. Appl. Math, 3, 74-82 (1982)).
We also obtain formulae for the unknown coefficients and, the nece-
ssary and sufficient condition for the existence of solution.
© 1997 Elsevier Science Ltd

Introduction

The modeling of solidification systems is a problem of a great mathematical and indus-
trial significance. Phase-change problems appear frequently in industrial processes an other
problems of technological interest [1,3,4,5,6,9,14]. A large bibliography on the subject was
given in [13]. Here, we consider a phase-change process (one-phase Stefan problem) for a
non-linear heat conduction equation with a convective term [10] which admits a class of

exact solutions analogous to the classical Lamé Clapeyron solution [8].

In this paper we consider an overspecified condition on the fixed face of the type [11] to the
phase-change material following the model developed in [10]. This allows us to consider some
thermal coefficients as unknowns and to calculate them, under certain specified restrictions

upon data. We also obtain formulae for the unknown coefficients and, necessary and
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sufficient conditions for the existence of solution.

We shall consider the following free boundary problem for a semi-infinite region = > 0:
(1) pc%:;—z(k(a,z)%)—v(e)dm,0<:v<s(t) t>0

(2) 6(0,t)=-0,<0,t>0

(3) k(6(0,1),008(0,) =% . t>0 (g9>0)

@) kOs(t),),s(t) Fe(s(t),t) =pl s (t), >0

(5)  8(s(t),t)=0,t>0

(6) s(0)=0,

where (2) and (3) are the boundary and overspecified condition on the fixed face = 0, and

(P)

the coefficients k and v in the differential equation (1) are given by

k(O.x)=petlss . v@) =preglimp (a,b,d > 0)
where

8(x,t) :distribution of temperature in the semi-infinite material,

6o : oppositive of the temperature on the fixed face,

x : spacial variable,

t : temporal variable,

s(t) : free boundary (location of the phase-change interface),

¢ : specified heat per unit of mass (constant pressure),

p : density of mass,

k : thermal conductivity,

l : heat latent of fusion by unit of mass,

v : velocity,

qo : coefficient which characterized the heat flux on the fixed face,

a,b,d : positive constants (parameters).

The cases with constant thermal coefficients were considered in [12]. Exact solutions for

nonlinear diffusion equation are given in [7].

The goal of this paper is to determinate the temperature & = #(x, t), the free boundary
z = 3(t) and an unknown thermal coefficient chosen among p, ¢, !, a , b and 4, as a function

of data gg and 8y which must be determined by an experimental phase-change process [2].
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In order to improve the lecture of the paper we have written an appendix which contains
the definition of the functions used in the text with their corresponding properties. The
restrictions upon data which are useful to describe the necessary and sufficient conditions

for the existence of a solution are described in the text.

Free boundary problem and the similarity solution

Problem (P;) is given by the free boundary problem for the heat equation with initial
and free boundaries conditions given by (2), (5), (6) and the following equations:

a0

(7) a=%(@%%+m%m)aﬂ<x<s(t)vt>0,
1 o0 _ % *

(8) W&(O;t)_%a t>01 (‘Io—%% ’

) M0 ) =as(t),t>0 (a=1>0).

where 6(, ), 5(t) and a thermal coefficient, chosen among p, ¢, 1, a, b and d, are unknown.

Following [10] we can reduce the problem (2), (5)-(9) by using the transformations (T;)

and (T3), given respectively by

M)  y=2a+di-1] . SO =3[1+dst)

S0

_1] ;

and
v

¥y =y (y,t) =f (a+b6(0,t))do + (ab+a)S(t), t* =1,
(T2) $(t)

=t S =y s = (ab+a)S(t), (0#-3)-

Then we get the following free boundary problem for the heat equation with an over-

specified condition :

(10) 2 =25 V() -V(0) <y <S(E), >0,

(1) 6 (V) - V(0),t) =65 > 6}, t* >0,

12)  Z =y =V(E)-V(0), >0,
(Pﬂ) ( ) 2‘ f;/Si‘_ ?i *( *) * ( )

(13) By.za*_a_t_"yzs(t),t>0,

(14) O (S°(E),¢) =07, £ >0,

(15)  5*(0) =

where
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(16) 0":% ) 06=jg; > (a——b90740)
(17 o' =g . (18) v =t%

and we have employed an alternative expression for y*, that is
¥

y*(y,t) =/ (a+ bb(o,t))do + V{t) — V(0) .

Taking into account that problem (P) is a classic Stefan-like problem with an overspec-
ified condition, the two free boundary conditions imply that necessarily the free boundary

S*(t*) (that is S(t)) is given by

(19) Sty = vIr,  (S(t) = voit)
where ¥ > 0 is an unknown parameter to be found. Therefore, if we propose a similarity
solution of type
(20) r=0) &=
the problem () reduces to:
(21) L8 44t =0, bg /<& <abta,
(22)  © (bgs\/Z) =65,
(Ps) | (23) 920 =—q5bv2y6;, for & =bgj, /2,
(24) O;. =2y, for&* =ab+a,
(25) © =6, for¢* =ab+a .

The solution of (21) is given by
(26) 0" = Aerf [,/3¢*] + B,
where the constants A, B, v, and the unknown coefficient (chosen among I, ¢, p, a, b and d)

are determined by the conditions (22)-(25) which yields
(27)  Aexp(-b’gs) = —ggb/m [Aerf (bgp) + B
(28)  Aerf (\/g (ab+ a)} +B=6;
(29)  Aexp [*% (ab + a)ﬁ] = -%"ﬁ
(30)  Aerf (bg3) + B = 6.

Finally, we invert the relations (20), (T1) and (T3), and we use conditions (27) and (28)

to obtain the solution :
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2{(1+dmyt 1
(31) 9(€)=%[m—al v €= A= T

where £* and £ are related by the following expression

-
(32) €= / [Aert (\/30) + Bl do
bqo\/g

where the constants A and B are given by
(33) A= "8 [exp[—(g3b)?] + giby/Tert(gi) — gibyert ({/F(a+ab))]
(34) B=1iy
+20T [exp[— (g5b)?) + g5bV/T exf(g3b) — b/ exf (/3 (a + ab))] et (Vi(a+ab))

Then, the coeflicient v and the unknown coeflicient (chosen among [, ¢, p, a, b and d)

must satisfy the following system of equations.

(35) g(ﬁ(‘—f+a),71,-r(1+%))=g(%,71;)’

o0 o(om. ) = e [3 (2 40)]

The solution of the original problem (P;) is given by:

(37) 0= o (00E=)

together with the free boundary

(38) x=s(t) = Vot + 4L

Unknown thermal coefficients through a free boundary problem

We shall give conditions to obtain solution to above system (35)-(36) and we also give
formulae for the coefficient v and the unknown thermal coefficient, and the necessary and

sufficient condition for the existence of a solution in the following six cases:

Case 1: Determination of the unknown coefficients -y, p (c. f. Theorem 1);
Case 2: Determination of the unknown coefficients v, ¢ (c. {. Theorem 2);
Case 3: Determination of the unknown coefficients v, [ (c. f. Theorem 3);
Case 4: Determination of the unknown coefficients v, a (c. f. Theorem 4);

Case 5: Determination of the unknown coefficients v, b {(c. f. Theorem 5);
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Case 6: Determination of the unknown coefficients , d (c. f. Theorem 6).

Now, we shall prove the results for the cases 1, 3, 5 and 6.
Theorem 1.- If data b,6p and a verify condition

(By) PLIE
then there exists a unique solution to problem (P;) which is given by (31)-(34) and the
unknown coefficients vy and p are given by

@ =20 (08, -

where

() m = et g (i, )]

and v, is the solution of the equation
b9y

(41)  R(F(v)) = (L:L) R(v) with v > vo = Q™ (#2).
Proof.- The system (35)-(36) in the unknowns v and p is equivalent to

42  gnp)=g(vk) , @3) ef(n)=g(v )
in the new unknowns # and v which are defined by

@) n=01+%ef5 , v=t2 |
where

45)  p=3(1+%),
is a positive parameter. Let be 8 = ;b%. From (43) we deduce n = erf ' [g (v, 3)] if and
only if (Ry) is satisfied. Taking into account (42) we obtain the following equation in the
unknown v

(46)  exf~' (g(1, 8)) = R (ji—“?R(u)), V> e,

with 6§ = 7“- Equation (46) is equivalent to
(47) F(v) = H,(v) , v>

The properties of functions F' and Hi{See Appendix) assure the existence of a unique
solution vy to equation (47). Thus, there exists a unique solution vy, to (42)-(43). Then

from (44) we obtain the expressions for v and p given by (39).

Theorem 2.- If data a,b and 6 verify condition (R;), then there exists a unique solution
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to problem (P;) which is given by (31)-(34) and the unknown coefficients <y and ¢ are given
by

(48) =2(m) (142 =t
where
(49) 1 = erf ™! (g (1, B)]

and 13 is the solution of the equation
(50) F(v) = Hy(v) withv > iy
and (3 is given as in Case 1.
Theorem 3.- If data a,b, ¢, p, 0 and g satisfy (R;) and
(Rs) Mosyp=Qt (%) , o<1,

then there exists a unique solution to problem (Pl) which is given by (31)-(34) and the

unknown coefficients -y and ! are given by
) 2 -2

() =g v=2(2) (1+2)
where

(52) m=erf[g(",8)] and (53)  ps=U(ns).
Proof.- The system (35)-(36), in the unknowns ~y and [, is equivalent to

(54)  gmp)=g(®, %) snd (35) erf(n) =g(%,5).
in the new unknowns 7 and p which are defined by (44) and (45). The equation (55) admits a

unique solution 73, given by (52), if and only if (R;) and (R,) are satisfied. Then, p satisfies

the following equation

(56)  erf(ne) +pR() =g (%2, %) ., p>0
which has a unique solution given by (53). So, if (R1) and (Rj) are satisfied, then there
exists a unique solution { and ~y to the system (35)-(36) given by (51).

Theorem 4.- There exists a unique solution to problem (P;) which is given by (31)-(34)

and the unknown coeflicients -y and a are given by

(57) 7= (%;Tj) ’ a= {g (ﬁpd - 1) ’

with py = ¥ (1) where 7 is the unique solution of the equation
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b P _ .
(58) g (f’ﬂﬁm) =erf(n} , with n > -llqu.

Theorem 5.- If data a,c,!, p, go and 6y verify conditions
(Rs3) 0< <1 and (Ry4) 0< & <z, ,

aqo s ago

where z, is the unique solution of the equation

(39) z=R(ef (%)) , O<z<if
then there exists a unique solution to problem (P;) which is given by (31)-(34) and the
unknown coefficients 7y and b are given by

. o1\ 2 -2

(60) b=, y=2(M) (14 2)
where 7(v) is defined implicitly by ®(n,») = 0 and v is the unique solution of the equation

(61) G(v) = etf (n(v)) ,  withO<v<v*,
where 1* > 0 is the unique solution of the equation

(62) Qz) =28z . >0
Proof.- The system (35)-{36) in the unknowns v and b is equivalent to

6 ol (+8)=o(nk) amd 60 i) =(nh),
in the unknowns 1 and v which are defined by (44). The equation (63) is equivalent to
®(n,v) = 0 which defines implicitly = 7(v),¥v > 0. Then, we replace 1 in (64) and we
obtain, for the unknown v, the following equation

(65) GW) = gl m) =ef (1(v)) , v>o.

The equation (62) has a unique solution v* € (0, oo ) because restriction (R3) . Moreover,
we have G(v*) = 1. The equation (65) has an unique solution 0 < v5 < v* if (R;) and (R,)
are satisfied. Therefore, there exists a unique solution v, 75 = 7(s) to (63)-(64), then we
obtain the coefficients v and b given by (60).
Theorem 6.- If data a,b,c, [, p, go and Gy verify the condition (R,) and

ac

(Rs) L= -

R_m

-t ey

then there exists infinite solutions to problem (P;) which is given by (31)-(34) and the

unknown coefficient 7 is given by
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66) v=2(2)"(1+2)", foranyd>0

a

where
67 o=t [g(%2,5)].
Proof.- The system (35)-(36) in the unknown 7~ is equivalent to
) g(nE(+%)=9(®2F) and (69 efln)=g(’2,5).
in the unknown 7 which is defined by (44). As in case 1, from (69), the condition (R;)

assures that ng = erf™! [g (gpqcﬂ, ,3)] Then, 7 satisfies (68) if and only if

_. e : _ [y _ eeg] R(22)
(70) l - b(M _ 1) Wlth M - [1 —EQ] R(ne) °

that is (R5) .

Moreover,! >0 M > 1 & erf (%) > 7 (%?f) & 7y (%) > 0.

The right hand side inequality is always verifies for properties of function Z; (see ap-
pendix). Then, if (Ry) and (R5) are satisfied there exists a unique solution 7 to the system
(68)-(69) and then we obtain the coefficient v by (66). Moreover, the parameter d may

assume any positive value.

Conclusion

We have solved six free booundary problems for the heat conduction equation with a
convective term and an overspecified condition on the fixed face with an unknown thermal
coefficient. Moreover, for each case, we give the necessary and sufficient conditions for the

existence of solution and the corresponding formula for the unknown coefficient.
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Appendix

We define the following parameters

14a¢

ﬁ 8= r=1-4 u=P, p= qosaW’

and the following functions

R(z) = 4;—’) ) Q(z) = /7 exp(x?) erfe(x) , z>0,
dzp) =ef(@) +pRE) . p>0 ,  z>0,
Flz)=edf™(g(z,8) , forz>Q7'(8v/7), if B/r<I,

Hy(z) = R I(I—- R(:c)  Hyx) = B (5= R@) , =50,

¥(r) = {g (%’f, 7’;) - erf(:r)} rexp(z?), G(z) = g(x, px) = erf(x) + pexp(—2z2),z > 0,

b
V(x)"g(pcvﬂfm) , T#R ;

Q(zy—g( V-s)-i-\—/;rq‘f,-R(x (y,#), z>0 , y>0,

Zi(z) = erf (R7Y[(1 — By/7) R(2)]) — BR(z) , Za(z) = exf(z) — Zy(2),B < 71; , x> 0.

The above functions have the following properties:

R(0Y) =400, R(+00) =0, R(z) <0, ¥z >0,
Q0)=0, Q(+o0) =1, Q(x) >0, Yz >0,
1t forp> \—};,

g(400,p) = , g(0*,p)=+4oc0,V¥p>0,
i~ forO(p(ﬁ,

<0 , vz >0 , forPZVl;,
<0 , , for0<p<ﬁ,
dg
&P = <o | , for 0 <p < =,
>0 ,

, for0<p<71;,

9(zo,p) = 1 with 2o = Q" (py/7) for 0 < p < —j; ,
F@1(Bym)=+40c ,  F(+o0)=

<0 fQYHBYF) <z < ;(f_?,

— Y . B
Fi)=¢ =0 ifx= /T‘i’(w—ﬁ)’
>0 ifz> 2,

v

8)

867
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F(z) = ,[log (%) , Hy(z) = [log (6%;3’:%—22) , T — 400,

HI(O) =0 ) 111(+°°) = +00 s Hi(d)) >0,
Hy(0) = R (L) , Ha(4+00) = +00 , Hy(z) >0,

2 2
o) = s (FE ) oo,

¥(0) =0, Y(+00) = +o0, ¥(2) >0 V>0, ¥ (®)=J,

O =t () - ien (- (2)) . Vi =ar(fE)
v(()) v v ((8) )= v <o v oarie,
G0)=p , G(+x) =1 ,

G(v*) = 1 with v* is the solution of Q(z) = puz/7, £ >0, for p < 1.
; 1
<0 if x > v

Gzy={ =0 ifx:v}ﬁ ,

>0 if0<z< A
O (z,y) <0 z>0 , y>0 ; ®,(z,y) >0 z>0 , y>0 ,
®(z,y) =0 define implicitely x = z(y) which verifies :
2(0) = R (& . z(+o0)=40c , Z@E >0 ,  Vy>0,
Z1(0%) = —00, Z1{+00) =1, Z2(0%) = 400, Zo(+x) =0,
Zi(z) >0, Zi(z) <0, Ve >0.
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