Volver al buscador
Últ. actualización: 9/04/2024

Tarzia, Domingo Alberto

El contenido de este perfil es responsabilidad exclusiva del docente investigador.

Reportes TécnicosTechnical Reports

TRABAJOS, PUBLICADOS EN REVISTAS, APARECIDOS PREVIAMENTE, EN FORMA TOTAL O PARCIAL, COMO PREPRINT O REPORTES TÉCNICOS: 

1) E. COMPARINI – R. RICCI – D.A. TARZIA, «Remarks on a one dimensional Stefan problem related to the diffusion-consumption model», Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 64 (1984), 543-550.

  • See: Istituto di Matematica «Ulisse Dini», Univ. degli Studi di Firenze, Firenze, No. 1981-82/18.

2) E. COMPARINI – D.A. TARZIA, «A Stefan problem for the heat equation subject to an integral condition», Rendiconti Seminario Matematico dell’Università di Padova, 73 (1985), 119-136.

  • See: Istituto di Matematica «Ulisse Dini», Univ. degli Studi di Firenze, Firenze, No. 1983-84/3.

3) A. PETROVA – D.A. TARZIA – C.V. TURNER, «The one-phase supercooled Stefan problem with temperature boundary condition», Advances in Mathematical Sciences and Applications, 4 (1994), 35-50.

  • See: FAMAF (UNC), Córdoba (1992), Trabajos de Matemática, Serie «A», No. 20/92.

4) D.A. TARZIA, «Numerical analysis for the heat flux in a mixed elliptic problem to obtain a discrete steady-state two-phase Stefan problem», SIAM Journal on Numerical Analysis, 33 (1996), 1257-1265.

  • See: Rapport de Recherche INRIA, Rocquencourt, No. 1593 (1992).

5) D.A. TARZIA – C.V. TURNER, «The one-phase supercooled Stefan problem with a convective boundary condition», Quarterly of Applied Mathematics, 55 (1997), 41-50.

  • See: FAMAF (UNC), Córdoba (1993), Trabajos de Matemática, Serie «A», No. 27/93.

6) D.A. TARZIA – C.V. TURNER, «The asymptotic behavior in the one-phase Stefan problem with a convective boundary condition», Applied Mathematics Letters, 9 No. 3 (1996), 21-24.

  • See: FAMAF (UNC), Córdoba (1993), Trabajos de Matemática, Serie «A», No. 36/95.

7) D.A. TARZIA, «Numerical analysis of a mixed elliptic problem with flux and convective boundary conditions to obtain a discrete solution of non-constant sign», Numerical Methods for Partial Differential Equations, 15 (1999), 355-369.

  • See: Rapport de Recherche INRIA, Rocquencourt, No. 2455 (1995).

8) D.A. TARZIA – C.V. TURNER, «Estimation of the occurance of the phase-change process in spherical coordinates», International Communications in Heat and Mass Transfer, 26 (1999), 559-568.

  • See: «Heat conduction problems in spherical coordinates with mixed boundary conditions», FAMAF (UNC), Córdoba (1996), Trabajos de Matemática, Serie «A», No. 43/96.

9) D.A. TARZIA, «Sufficient conditions for mixed boundary data to have a steady-state two-phase Stefan-Signorini problem through variational inequalities».

10) H. GHIDOUCHE – P. SOUPLET – D.A. TARZIA, “Decay of global solution, stability and blowup for a reaction-diffusion problem with free boundary”, Proceedings of the American Mathematical Society, 129 (2001), 781-792.

  • See: Rapport de Recherche # 27, Département de Mathématiques, Univ. de Versailles-Saint Quentin, Versailles (1999).

11) D.A. TARZIA – C.V. TURNER, «The asymptotic behavior for the two-phase Stefan problem with convective boundary condition», Communications in Applied Analysis, 7 No.3 (2003), 313-334.

  • See: FAMAF (UNC), Córdoba (2000), Trabajos de Matemática, Serie «A», No. 56/2000.

12) M. BOUKROUCHE – D.A. TARZIA, “Existence, Uniqueness, and Convergence of optimal control problems associated with Parabolic variational inequalities of the second kind”, Nonlinear Analysis, Real World and Applications, 12 (2011), 2211-2224.

  • See: arXiv: 1309.4869

13) M. BOUKROUCHE – D.A. TARZIA, “Convergence of distributed optimal control problems governed by elliptic variational inequalities”, Computational Optimization and Applications, 53 (2012), 113-132.

  • See: arXiv: 1309.4876

14) M. BOUKROUCHE – D.A. TARZIA, “Convergence of optimal control problems governed by second order parabolic variational inequalities”, Journal of Control Theory and Applications, 11 No. 3 (2013), 422-427.

  • See: arXiv: 1309.4874

15) A.N. CERETANI – D.A. TARZIA, “Similarity solutions for thawing processes with a convective boundary condition”, Rendiconti del Istituto di Matematica dell’Università di Trieste, 46 (2014), 137-155.

  • See: arXiv: 1405.5489

16) D.A. TARZIA, “A comnutative diagram among discrete and continuous Neumann boundary optimal control problems», Advances in Differential Equations and Control Processes, 14 (2014), 23-54.

  • See: arXiv: 1412.6491

17) S.D. ROSCANI – D.A. TARZIA, “A generalized Neumann solution for the two-phase fractional Lamé-Clapeyron-Stefan problem”, Advances of Mathematical Sciences and Applications, 24 No. 2 (2014), 237-249.

  • See: arXiv: 1405.5928

18) J. L. BLENGINO ALBRIEU – J.C. REGINATO – D.A. TARZIA, «Modeling water uptake by a root system growing in a fixed soil volume”, Applied Mathematical Modelling, 39 (2015), 3434-3447.

  • See: arXiv:1503.03331 [physics.bio-ph].

19) C. GARIBOLDI – D.A. TARZIA, “Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems”, Control and Cybernetics, 44 (2015), 1-13.

  • See: arXiv:1253053 [math.AP] 12 May 2015.

20) A.M. GONZALEZ – J.C. REGINATO – D.A. TARZIA, “A free boundary problem for oxygen diffusion in a sphere”, Journal of Biological Systems, 23 Supp 01 (2015), S67-S76.

  • See: arXiv:1503.02049  [math.AP].

21) A.N. CERETANI – D.A. TARZIA, «Determination of the one unknown thermal coefficient through a mushy zone model with a convective overspecified boundary condition», Mathematical Problems in Engineering, Vol. 2015 Art ID 637852 (2015), 1-8.

22) A.N. CERETANI – D.A. TARZIA – L.T. VILLA, “Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source”, Boundary Value Problems, 2015 No. 156 (2015), pp1-26.

23) D.A. TARZIA, “Explicit solutions for the Solomon-Wilson-Alexiades’s mushy zone model with convective or heat flux boundary conditions”, Journal of Applied Mathematics, 2015 Art ID 375930 (2015), pp1-9.

24) D.A. TARZIA, «Determination of the one unknown thermal coefficient through the one-phase fractional Lamé-Clapeyron-Stefan problem», Applied Mathematics, 6 (2015), 2182-2191.

http://arxiv.org/ftp/arxiv/papers/1509/1509.03663.pdf

25) M.C. OLGUIN – D.A. TARZIA, “Numerical analysis of distributed optimal control problems governed by elliptic variational inequalities”, International Journal of Differential Equations, 2015 Art ID 407930 (2015), pp1-7.

26) A.N. CERETANI – D.A. TARZIA, «Determination of the one unknown thermal coefficient through a mushy zone model with a convective overspecified boundary condition», Mathematical Problems in Engineering, Vol. 2015 Art ID 637852 (20159, 1-8.

http://arxiv.org/pdf/1507.08706v1.pdf

27) A.N. CERETANI – D.A. TARZIA, «Simultaneous determination of the two unknown thermal coefficients through a mushy zone model with an over-specified convective boundary condition», JP Journal of Heat and Mass Transfer, 13 No. 2 (2016), 277-301.

28) D.A. TARZIA, “Properties of the financial break-even point in a simple investment project as a function of the discount rate”, Journal of Economics and Financial Studies, 4 No. 6 (2016), 31-45. See http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2801369 and

29) M.C. OLGUIN – D.A. TARZIA, “Numerical analysis of a family of optimal distributed control problems governed by an elliptic variational inequalities”, Advances in Differential Equations and Control Processes, 17 No. 2 (2016), 159-176.

30)  D.A. TARZIA, “Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions”, Thermal Science, 21 No. 1 Part A (2017), 1-11.

31)  A.N. CERETANI – N.N. SALVA – D.A. TARZIA, “Existence and uniqueness of the modified error function”, Applied Mathematics Letters, 70 (2017), 14-17.

32) A.N. CERETANI – D.A. TARZIA, «Determination of two unknown thermal coefficients through an inverse one-phase fractional Stefan problem», Fractional Calculus and Applied Analysis, 20 No. 2 (2017), 399-421.

33) M. BOUKROUCHE – D.A. TARZIA, “Non-classical heat conduction problem with a non local source”, Boundary Value Problems, 2017 No. 51 (2017), 1-14.

33) D.A. TARZIA, “Double convergence of a family of discrete distributed mixed elliptic optimal control problems with a parameter”, in Proceedings of the 27th IFIP TC 7 Conference on System Modeling and Optimization, CSMO 2015, IFIP AICT 494, L. Bociu and J.-A. Desideri and A. Habbal (Eds.), Springer, Berlin (2016), 493-504.

34) A.N. CERETANI – N.N. SALVA – D.A. TARZIA, “An exact solution to a Stefan problem with variable thermal conductivity and a Robin boundary condition”, Nonlinear Analysis: Real World and Applications, 40 (2018), 243-259.

35) J. BOLLATI – D.A. TARZIA, “One-phase Stefan problem with a latent heat depending on the position of the free boundary and its rate of change”, Electronic Journal of Differential Equations, 2018 No. 10 (2018), 1-12.

36) J. BOLLATI – D.A. TARZIA, “Explicit solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face”, Communications in Applied Analysis, 22 No.2 (2018), 309-332.

37) M. BOUKROUCHE – D.A. TARZIA, “A family of singular third order ordinary differential equations with an integral boundary condition”, Boundary Value Problems, 218 No. 32 (2018), 1-11.

38) A.N. CERETANI – D.A. TARZIA, “Similarity solution for a two-phase one-dimensional Stefan problem with a convective boundary condition and a mushy zone model”, Computational and Applied Mathematics, 37 No. 2 (2018), 2201-2217.

39) J. BOLLATI – J.A. SEMITIEL – D.A. TARZIA, “Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face”, Applied Mathematics and Computation, 331 (2018), 1-19.

40) A.N. CERETANI – N.N. SALVA – D.A. TARZIA, “Approximation of the modified error function”, Applied Mathematics and Computation, 337 (2018), 607-617.

41) S.D. ROSCANI – D.A. TARZIA, “Explicit solution for a two-phase fractional Stefan problem with a heat flux boundary condition at the fixed face”, Computational and Applied Mathematics, 37 No. 4 (2018), 4757-4771.

42) J. BOLLATI – D.A. TARZIA, “Exact solutions for a two-phase Stefan problem with variable latent heat and a convective boundary conditions at the fixed face”, Zeitschrift fûr Angewandte Mathematik und Physik – ZAMP, 69 No. 38 (2018), 1-15.

43) S.D. ROSCANI – J. BOLLATI – D.A. TARZIA, “A new mathematical formulation for a phase change problem with a memory flux”, Chaos, Solitons and Fractals, 116 (2018), 340-347.

44) S.D. ROSCANI – D.A. TARZIA, “An integral relationship for a fractional one-phase Stefan problem”, Fractional Calculus and Applied Analysis, 21 No4 (2018), 901-918.

45) S.D. ROSCANI – D.A. TARZIA, “Two different fractional Stefan problems which are convergent to the same classical Stefan problem”, Mathematical Methods in the Applied Sciences, 41 No. 6 (2018), 6842-6850.

46) S.D. ROSCANI – L. VENTURATO – D.A. TARZIA, “Global solution to a nonlinear fractional differential equation for the Caputo-Fabrizio Derivative”, Progress in Fractional Differentiation and Applications, 5 No. 4 (2019), 1-13.

47) J. BOLLATI – M.F. NATALE – J.A. SEMITIEL – D.A. TARZIA, “Existence and uniqueness of solution for two one-phase Stefan problems with variable thermal coefficients”, Nonlinear Analysis, Real World and Applications, 51 No. 103001 (2020), 1-11.

48) M. BOUKROUCHE – D.A. TARZIA, “A heat conduction problem with sources depending on the average of the heat flux on the boundary”, Revista de la Unión Matemática Argentina, 61 No. 1 (2020), 87-101.

49) J. BOLLATI – M.F. NATALE – J.A. SEMITIEL – D.A. TARZIA, “Integral balance methods applied to non-classical Stefan problems”, Thermal Science, 24 No. 2B (2020), 1229-1241.

50) A.N. CERETANI – N.N. SALVA – D.A. TARZIA, “Auxiliary functions in the study of Stefan-like problems with variable thermal properties”, Applied Mathematics Letters, 104 No. 106204 (2020), 1-6.

51)  J. BOLLATI – J.A. SEMITIEL– M.F. NATALE – D.A. TARZIA, “Existence and uniqueness of the p-generalized modified error function”, Electronic Journal of Differential Equations, 2020 No 35 (2020, 1-11.

52) J.C. REGINATO – J. L. BLENGINO ALBRIEU – D.A. TARZIA, «Analysis of the nutrient uptake by roots in fixed volume of soils as predicted by fixed boundary, moving boundary and architectural models” (2015).