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A Survey of the Spectral Gradient Method!

A.B. VERDIELL, M.C. MACIEL, L.S. OROFINO? and T.I. GIBELLI?

Departamento de Matemdtica, Universidad Nacional del Sur
Av. Alem 1258, 8000 Bahia Blanca, Argentina.

Abstract

Finite dimensional unconstrained minimization problems are generally solved by iterative
methods like Newton, quasi-Newton, steepest descent, conjugate gradient methods and its
variations. All of them share the same property: they are descent methods.

In 1988 Barzilai and Borwein introduce the spectral gradient method which have been an-
alyzed by Raydédn in 1991. Initially it has been developed for the quadratic case and later
has been extended to the general unconstrained minimization problem by using a globaliza-
tion strategy. Its main characteristic is the non-descent property. Furthermore the method
requires few storage locations and very inexpensive computations.

The purpose of this work is to trace the development of the spectral gradient method, in
particular when the problem is defined in a Hilbert space. The algorithms are treated in
details but in dealing with them we have presented only the most general results available
and we have given these a broad brush treatment.

Key words: Projected gradients, non-monotone line search, large scale problems, spectral
gradient method.
AMS Subject Classification: 49M07, 49M10, 65K, 90C06, 90C20.

1 Introduction

Unconstrained minimization problems in finite dimension are generally solved by iterative meth-
ods like Newton, quasi-Newton, steepest descent and conjugate gradient methods. There are
several variations of these methods and all of them share the same property: they are descent
methods.

In 1991, Raydan [39, 40] introduces the spectral gradient method which is an extension to
the Barzilai and Borwain method [3]. This method has been developed for the quadratic case
and its main characteristic is the non-descent property. The method has also been extended to
the general unconstrained minimization problem and it results to be globally convergent when
a non-monotone line search is incorporated [41].

For the unconstrained problem defined in function space, methods like Newton and like
conjugate gradients have been developed and well studied [2, 15, 16, 22, 23, 24, 26, 27, 28, 29,
30, 38, 44].

At the beginning of this decade some attempts to analyze the non-descent spectral gradient
method for the infinite dimensional case have been done [1, 33].

The purpose of this work is to trace the development of the spectral gradient method, in par-
ticular when the problem is defined in a Hilbert space. The algorithms are treated in details
but in dealing with them we have presented only the most general results available and we have

IThis work was supported by Fundacién Antorchas, Project # 13900/4 and Universidad Nacional del Sur,
Project 24/L057
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given these a broad brush treatment.

This work is organized into sections, each dealing with a specific problem and the based-on-
spectral gradient algorithm developed for them. Section 2 is devoted to the finite case. The third
section to the infinite case and in the fourth the unconstrained control problem is described.
The final remarks are established in section 5.

2 Finite dimensional case

Let be f : IR® — R a differentiable function. It is well known that any solution of the uncon-
strained minimization problem,

i 1
min f(z) (1)

solves the nonlinear equations problem:
find z, € R" such that V f(z,) = 0. (2)

The methods proposed to solve it are usually iterative procedures: if x; denotes the current
iterate, and if it is not a good estimator of z,, a better one, z;,1 = ) + si is required. Here s,
means the step and it can be obtained by different methods.

In many algorithms, each iteration involves the calculation of a quasi-Newton step: sgN =
—A,;1Vf(3:k), where A, € R™™ is an approximation of the Hessian matrix of f at zj. After
each iteration, the current Ay is updated to Ay, 1, and usually it is chosen satisfying the secant
equation:

Ag118k = Yk (3)

where yr = V f(zp11) — V f(zp).

If n > 1, this equation does not completely specify the matrix Agy1, so in addition to
obeying (3) there are some desirable properties for Ag,1. In the spectral gradient method the
update is restricted to be A1 = api1l where a1 € R solves the linear system y, = agi1/sg
in the least square sense: that is, if sp # 0

T
St Yk

g1 = 5= (4)
S1. Sk

Taking these ideas into account, the Spectral Gradient algorithm (SG) is established as:

Algorithm 2.1 Given 29 € R", o € R.
For k=0,1,..., repeat until convergence:

1
Step 1. s = —a—ka(:Ek)

Step 2. xp11 = xp + Sk
Step 3. yx = Vf(2s1) — Vf(2k)

T
Sk Yk
T

Step 4. apy1 = .
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It is important to point out that in this method, the new iterate is chosen in the same
direction as the Cauchy method, but another step length is used and in numerical experiments
the SG algorithm is significantly faster than the classic gradient method at the same cost per
iteration.

The most important features of Algorithm 2.1 are:

e Every iteration requires two inner products, one scalar-vector multiplication, two vector
additions and only one gradient evaluation.

e [t is a gradient method which uses information of the two previous iterates. It makes a
difference with the Cauchy method, which uses only information of the previous iterate.

e It satisfies the weak secant equation: s;ijkHsk = Sfyk.

e The scalar ay41 is a Rayleigh quotient of the matrix

1
/ V2 f(xy, + tsy)dt.
0
If the objective function is quadratic,
1
f(z) = §xTAx — bzt c (5)

where A is a symmetric positive definite (SPD) matrix, (4) becomes in:

T
s3 Asp.

Ot = kT . (6)
51, Sk

In this case, Steps 3-4 of the algorithm can be changed by (6) and because of a4 is the
Rayleigh quotient of A at s, there is not danger of dividing by zero in Step 1.
There is a relationship between this method and the shifted power method to approximate
eigenvalues and eigenvectors which is extensively used to establish local and global convergence
results [39]. This relation holds for the infinite dimensional case and more details are shown in
Section 2.

Barzilai and Borwein [3] have established r-superlinear rate of convergence if n = 2 and A has
two distinct eigenvalues. The convergence of the method when applied to the minimization of a
strictly convex quadratic function was established by Raydén [39, 40] in the following theorem:

Theorem 2.1 Let f(x) be a strictly conver quadratic function. Let {xj} be the sequence gen-
erated by the Algorithm 2.1 and x, the unique minimizer of f. Then, either x; = x, for some
index j, or the sequence {xy}converges to x,.

Related to the convergence rate, Raydan [39] proved the following results:

Theorem 2.2 Let f(x) = %a;TAx — bl 4 c where A is a SPD matriz that has only two distinct
etgenvalues, A1 < Xo. Assume that for same k, ay is sufficiently close to \y or Ao. Then the
sequence {xy} from Algorithm 2.1 converges to x4 g-quadratically. Furthermore, if oy is equal
to either A1 or Ao then, Xi13 = Xy.

Corollary 2.1 Under the assumptions of Theorem 2.2, Algorithm 2.1 has the exact r-rate of
convergence of /4.
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In numerical experiments as well as in the convergence analysis, it can be seen one of the

most important features of this proposal: it is a non-monotone method, in some cases the error’s
norm and the objective function value increase.
If n > 2, numerical experiments show that the performance of the algorithm depends on the
eigenvalues of A and its condition number x(A). So, in order to improve convergence, this
matrix is preconditioned in such a way that either x(A) is reduced or the eigenvalues of A are
clustered.

In the quadratic case, the basic idea is to transform the objective function (5) in

f(z) = %JETAJJ Y
where A = E~1AET, b= E~'b, & = c for some nonsingular matrix F.
Therefore, if Algorithm 2.1 is applied to f(z) setting C = EET, hy, = C~'V f(xy,), the precon-
ditioned version is stated as follows:

Algorithm 2.2 Given zg € R", a9 € R and C' a symmetric and positive definite matrix, set
go = AJE(] —b.
For k£ =0,1,..., repeat until convergence:

Step 1. Solve Chy = gi for hy

Step 2. Set pr, = Ahyg

1
Step 3. Set xy11 =xr — —hy

f
1
Step 4. Set gx+1 = 9 — — Dk
Qf;
hT
Step 5. Set api1 = éﬁ—pk
i Ry,

The matrix C' is called the preconditioning matrixz and A the preconditioned matriz. Numer-
ical results and comparison with the preconditioned conjugate gradient method can be found in
[39].

For the general case, the method needs to be incorporated in a globalization scheme; Raydan
proposes an algorithm based on the non-monotone line search strategy, introduced by Grippo,
Lampariello y Lucidi [25] and proves global convergence [41] when the iterates are generated by
the following algorithm.

Algorithm 2.3 Given zg € R",ap € R,6 > 0,0 < 01 <03 < 1,7 € (0,1),0 < e <1 and
M >0, an integer. Set k = 0,99 = V f(x0).

Step 1. If || gx ||= 0, stop.

—

Step 2. If ap < eor ap > —, set ap =9

[0

1
Step 3. Set A = —
Qg
Step 4. (non-monotone line search)

If f(zr — Agr) < 0ci X f(e—j) =7 AgEgr  set Ap = A, xpy1 = 2 — Apg and go to
Step 6.
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Step 5. Choose o € [01,02], set A =0 and go to Step 4.

Gk
NeGE Gk

Step 6. Set agy1 = , k=k+1 and go to Step 1.
Dai and Liao [14] have also established r-linear convergence of the method for any dimensional
strictly convex quadratics and as a consequence of this result the method is also locally r-linear
convergent for general objective functions, and therefore the stepsize in the SG method will
always be accepted by the non-monotone line search when the iterate is close to the solution.
These results were extended for the minimization on convex sets [10]. Also, for the large
scale non-linear optimization problem solved by a trust region strategy, at each iteration the
quadratic subproblem is solved via an algorithm based on the algorithm designed for convex
sets [32, 34].

3 The infinite case

In this section we analyze the behavior of the spectral gradient method when it is extended to
the unconstrained quadratic problem defined in an infinite dimensional real Hilbert space H.
Let A be a bounded operator defined on H and (,) the inner product on H. Given the quadratic

functional ¢(z) (x, Ax) — (x,b), let us consider the unconstrained minimization problem

)

géi;} q(x). (7)

Our objective is to analyze the convergence of the algorithm for a self-adjoint and strictly
positive operator, which has a numerable amount of eigenvalues {\;} , its spectrum o (A) satisfies
o(A) C [m, M] and the system of associate eigenvectors forms an orthonormal basis. Under these
assumptions the Algorithm 1 can be sated on H as follows:

Algorithm 3.1 Given zg € H, a9 € R,
For k = 0,1, ..., repeat until convergence:

1
Step 1. s = ——Vq(xy)
893

Step 2. xp11 = xp + Sk
Step 3. yr = Vq(zi+1) — Vq(x)
(k> Uk)
(Sk, 5k)

Let us denote g, = Vq(xy) the first Gateaux derivative.
Using the relations among yi, s and g results

Step 4. apy1 =

(9K, Agr)
(Gks k)

the Rayleigh quotient of A evaluated at gi. Then

Opy1 =

0<m<ag <M. (8)

Since the search direction is the negative gradient, the method belongs to the class of gradient
methods. The next lemma shows the relationship with the power method what is essential to
prove local and global convergence.
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1
Lemma 3.1 Let q(z) = =(z, Az) — (x,b), where A is self-adjoint and strictly positive. Let x,

be the unique minimizer of q, {xy} the sequence generated by the algorithm and e = x, — xk,
for all k. Then:

1) Aep = oS = — gk
1

2) Ck+1 — a_k(akl — A)ek

1
3) Sk+1 = (akI — A)Sk
Ok+1
1
4) g1 = —(arl — A)gy.
€93

The relations established in Lemma 3.1 allow us to conclude that ||eg|| goes to zero if and only
if ||sk|| goes to zero, and it is equivalent to prove that ||gk|| goes to zero.
For any initial error e there are constants dj such that

o
ep = E d?vi.
i=1

Again, the lemma 3.1 allows us to obtain the following expression for the error
o0
erir =y di M,
i=1

where

k
i+t = <ak - )\i> ik — H (aj - >\i> &,
Qe Qi

J=0

The convergence properties of the sequence {ex} will depend on the behavior of each of
the sequences {d¥}. If the spectrum of A satisfies the condition M < 2m we can establish the
following result:

1
Lemma 3.2 Let q(x) = 5(:17, Az) —(x,b), where A is strictly positive such that M < 2m. Let x4

the unique minimizer of q. Then, the sequence {x} generated by the spectral gradient method
—m

converges q-linearly to x, and the factor of convergence ¢ <1 is ¢ = ——.
m

If the restrictive condition M < 2m does not hold, the sequence {d*} show a non-monotone
behavior, according to the relative position of the scalars aj and the eigenvalues A; in the
spectrum, however this situation does not perturb the convergence of the algorithm. Assuming
that the sequence of eigenvalues ); is increasing

O<m=MX <Ay <A3.eeeoo.. (9)

and A; — M, the next lemmas help us to prove the main theorem:.

Lemma 3.3 The sequence {d’f} converges to zero gq-linearly and the factor of convergence is
é=1— (m/M).
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Lemma 3.4 If for a fived integer I, 1 <1, the sequences {d’f},...,{df} converge to zero then

lim inf || = 0.

1
Theorem 3.1 Let q(z) = §<x, Azx)—(x,b), where A is self-adjoint and strictly positive operator

and the sequence of eigenvalues satisfies (9). Let {xy} be the sequence generated by the spectral
gradient method and x, the unique minimizer of q. Then, either x; = x,, for some j, or the
whole sequence {xy} converges to x.

The proofs of these results can be found in [33].

4 An application to control problems

The spectral gradient method has successfully been used in different areas such as Geophysics
[4, 6, 12, 13], Physics [7, 37], Chemistry [18, 19, 21, 20, 45], etc. Also have been developed
algorithms to solve algebraic nonlinear systems [11, 31], partial differential equations [35, 42]
and other nonlinear programming problems [5, 8, 9, 17, 36].

In this section we present an application of the spectral gradient method to an infinite dimen-
sion control problem. Optimal control problems belong to a more ample class: the differential
equations-constrained optimization problem. A nice review of some aspects of PDE-constrained
optimization can be found in [43]. Control problems and their discretized form, viewed as min-
imization problems have already been solved by quasi-Newton methods. Kelley and Sachs [29]
analyze the behavior of the BFGS-secant method when it is applied to the control problem.

Let us consider the general nonlinear control problem to minimize

T
Plu) = /0 L(a(t), u(t), t)dt (10)
subject to

i o= f(xt),u)t) (11)
z(0) = o,

where L : R"™*! - R and f: R"™*! - R.
Recall, the gradient of F' is given by

VF(u) =p()" ful(),ul),.) + Lu(z(), u(.), ), (12)

and p(t) solves the adjoint equation
—p = p)" felx()u(t),t) + Lo(x(t), u(t), ) (13)

p(T) = 0.

The second derivative of F'(u) is given by

<w7 V2F(u)v> = <€(w)7 Hyy (‘Tﬂ u, )S(U» + <w7 Hux(xy u, )f(v»
+ (€(w), Hyy(x,u, )v),

where H(z,u,t) = p(t) f(z,u,t)+ L(z,u,t), £(w) solves an initial value problem and (., .) denotes
the inner product defined by (u,v) = fOT u(t)v(t)dt for all u,v € L%[0,T]. It is clear that each
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gradient evaluation involves the solution of a system of differential equations and it is necessary
to compute V2F (u) if we want to apply Newton’s method. These two facts suggest us to choose
appropriate methods not only to solve the ordinary differential systems but also to approximate
the Hessian matrix.

Let us consider the unconstrained problem

min F(u), we€H. (14)

Recall that any solution of (14) is also solution of the nonlinear algebraic system G(u) =
VF(u) =0.

The Hilbert space H is approximated by a finite dimensional space HY and let us replace
the functional F by the functional FV defined on HY and finally we consider the minimization
problem

min FY (W), o« e HV, (15)

Any solution of (15) is also solution of GV (u") = VFN (u/V) = 0.
The algorithm will be analyzed under the following assumptions.
Let {P"} denote a sequence of linear prolongation operators

PN . HN - Z,

being Z a normed subspace of H, with the property that ||.||z > .||z, where ||.||g and .||z
denote the norms in the Hilbert space H and the subspace Z respectively.

Let (,)n denote the inner product on H™ and |.||x the induced norm by such inner product.
Let GV : HY — HY be a Fréchet-differentiable operator.

A sequence vV € HV is said to be Z-convergent to u, and we denote u'v 7Y e Z,if

lim ||PYu® —ulz = 0.
N—o0

Assuming,

A1) IfuN?ueZ, vN?veZthen ]\}im W, oMYy = (u,v).

A2) If u? - U then GV (u?) - G(u)
A3) If vV 7 U then ]\}im FNu) = F(u).

The assumptions Al) and A2) are the same as the established by Kelley and Sachs [29]. In
order to analyze the spectral gradient algorithm we need the assumption A3).

The discretized function FV : HY — IR from the control problem is not strictly convex.
However, it is interesting to analyze the behavior of the algorithm when FV is strictly convex
because of the properties of the finite dimensional algorithm.

We state the following results, whose proof can be found in [1].

Theorem 4.1 Let G : H — H and GV : HYN — H" be under the assumptions (A1) and (A2).
If for all N, the sequence {ud }ren satisfies:

i) For all N €N, lim IGN (ul)|| 5y = 0.
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it) For all k € N, uij?ukGZ,

then klim |G (ug)||zr = 0.

Lemma 4.1 Let G : H — H and GN : HN — HN be under assumptions (A1) and (A2). If
up € H and g € R, let the sequence {ud } yen satisfies ul) — U0 and o) = aqg for all N. If

{u{zv ten is the sequence generated by algorithm 2.1, starting with uév and aév for each N € IN,
then for all k € IN,

u]kv — U, ozév — Qg
Z —00
Corollary 4.1 Let G : H — H and GV : HY — HY be under the conditions (A1) and (A2)
and assume that FN satisfies the conditions required by the convergence theorem of the spectral

gradient method applied to the finite case. Let N € IN, {ué\f}keN C HV be the sequence generated
by algorithm 2.1. Then

a) For all N € N, klim IGN (ul)|| 5 = 0.
b) For all k € N, uij?ukGZ.

From the corollary it is possible to conclude that the sequence {u]kv } generated by the Algorithm
2.1 satisfies the assumptions of Theorem 4.1. It means that the sequence generated by the al-
gorithm for the finite dimensional case approximates to the solution of the infinite dimensional
problem for a discretization with N large enough.

If the functional F¥ : HY — R is a non-linear function not necessarily strictly convex, a
globalization strategy is incorporated to the algorithm [41]. Even though global convergence
results are known for this case, it is not possible to extend the proof to the infinite dimensional
case. When the BFGS method is applied, Kelley and Sachs [29] use the rate of convergence of
the algorithm in Hilbert space.

If the globalized spectral gradient method is applied, the difficulty appears when the conver-
gence of {a]kv } to ay has to be proved. In this case the value akN varies when the line search is
used. The number of inner iterations requires by the line search can change with the dimension
of the problem. This argument is illustrated in the tables.

Since in the optimal control problem the Hilbert space is H = L%[0,T], let N € N be the
discretization parameter, the time interval [0, 7] is divided into N subinterval of equal length
h= % The approximate finite space is HY = RN, with the inner product (,)n defined by the
composite Simpson’s rule.

At each iteration the state and the adjoint equations must be solved to evaluate the functions
FY and GV. The solutions z(t) and p(t) of the differential equations (11) y (13) are approxi-
mated by the fourth order Runge Kutta and Hermite interpolation. The evaluation of FN (u'V)
is made by the composite Simpson’s rule. The function GV = p/v T N 4+ LY approximates the
gradient G in the equation (12) is not, in general, the gradient of the scalar valued function F*V.
The following lemma shows that, in spite of this, the directions chosen are descent directions.

Lemma 4.2 Assuming the assumptions (A2) and (A3), let GN = pNTféV + LY be a discretiza-
tion of G, the gradient of F(u). Let {u’} yen be a sequence such that u™™ - v IfF||GN (u™M)]| £ 0

then —GN (uN) is a descent direction of FY from u™, for all N > Ny, for some Ny > 0.
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With these choices of the inner product, the functions F¥ and G¥, the assumptions (A1)-(A3)
are verified.

Different problems have been tested with different discretizations [1]. The low cost of the
spectral gradient method allowed us to use high discretizations obtaining very good approxima-
tions to the solutions. The following example represents a simple production inventory model.
It has beeen solved by Kelley and Sachs [29] by using the BFGS secant method.

The description is the following:

T e~ t
Flu) = /0 Tp (d(x — a(t))® + c(u — b(£))?) dt (16)

subject to
= wu(t)—s(t)
z(0) = xo.
The parameters were chosen as follows:
T=03p=1,d=c=1,a=15b=30, s(t) =t?, zg = 10.

Using Pontryagin maximum principle, it is possible to compute the optimal control u, for
the infinite dimensional problem. It is of the form

Ue(t) = g Ay et + aphoe?t 412 — 2t + 4

where Ao = (1 + v/5)/2 and «; are other constants. More details about them can be found in
[29].

Following the framework proposed by Kelly and Sachs, we use different discretization to
solve the problems. The following table report the number of iterates necessary to achieve the
tolerance in the norm of the gradient, for different values of N.

Number of iterations
N ug = Uy + 100 | ug = v/uy + 100
400 14 13
800 14 13
1600 15 13
3200 15 14
6400 16 16
12800 18 18
25600 26 23

We have already said that the inductive proof of the convergence of the algorithm does not
hold when the non monotone line search is added. It occurs because the number of line searches
per iteration is independent of the discretization. This fact can be observed in the following
table where each iteration of problem is detailed by using a discretization with N = 12800 and
starting point ug = u, + 100.
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Tter F 1GY] LS
1 1309.91610867154 102.660152979672 3
2 1005.86083986541 87.9911473130837 3
3 772.951943556889 75.4104396549632 2
4 438.939972885863 53.7843562176199 1
5 114.728359380689 27.6994895434872 0
6 2.05149541312622 4.75685850055365 0
7 0.951154993329865 0.745660189477803 0
8 0.934393423093945 0.110252930849182 0
9 0.934121964482021 | 2.149098455769760E-002 0
10 | 0.934115833756604 | 2.579978101994840E-003 0
11 0.934115741378638 | 4.558961104628168E-004 0
12 0.934115739509478 | 8.442761702198709E-005 0
13 | 0.934115739453236 | 4.945139366441254E-006 0
14 0.934115739453054 | 1.620860793138945E-006 0
15 0.934115739453047 | 1.300917098490117E-007 0
16 | 0.934115739453041 | 4.037641332388375E-009 0
17 0.934115739453054 | 1.043105157805257E-009 0

18 0.934115739453049 | 9.858780458671390E-012

The following table shows the number of line search at each iteration para first iterations of
problem, starting with uy = exp(uys + 100), and using 11 different discretizations.

Number of points in the discretization

Iterate n® | 1600 [ 3200 | 6400 | 12800 | 16000 | 19200 | 22400 | 24200 [ 25000 | 25600 | 26000
1 99 100 102 103 103 104 104 104 104 104 104
2 0 0 1 3 3 4 4 4 4 5 5
3 0 0 0 3 3 4 4 4 4 4 4
4 0 0 0 2 2 4 4 4 4 4 4
5 0 0 0 1 1 3 4 4 4 4 4
6 0 0 0 0 0 3 3 3 4 4 4
7 0 0 0 0 0 2 3 3 3 4 4
8 0 0 0 0 0 1 2 3 3 3 3
9 0 0 0 0 0 0 2 2 2 3 3
10 0 0 0 0 0 0 0 1 2 2 2
11 0 0 0 0 0 0 0 0 1 2 2
12 0 0 0 0 0 0 0 0 0 1 1
13 0 0 0 0 0 0 0 0 0 0 0

Total iter. 64 64 67 68 68 72 72 72 74 75 75

5 Conclusions

We have presented a survey of the spectral gradient method for the unconstrained case. It is
a relatively novel non-descent method, appropriate to large scale optimization problems and
competitive with the traditional conjugate gradient method.

The extension of the method to an infinite Hilbert space has been analyzed for the quadratic
case when the Hessian operator is self-adjoint. In this case the extension is straightforward. The
compact operator case is currently being analyzed.

It is important to remark that for the infinite dimensional nonlinear case was not possible to
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prove the convergence of the method because the global convergence results for the finite case
can not be extended. In spite of this fact, the algorithm has been applied to a well known control
problem and the numerical results are much better that the obtained by a secant method. These
facts encourage us to continue analyzing the spectral gradient method for the infinite dimensional
optimization problems.
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