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Abstract

In this paper we do the mathematical analysis of the problem which was analysed
in S.M. Zubair - M.A. Chaudhry, Wärme- und Stoffübertragung, 30 (1994), 77-81.
We consider the solidification of a semi-infinite material which is initially at its liquid
phase at a uniform temperature Ti. Suddenly at time t > 0 the fixed face x = 0
is submitted to a convective cooling condition with a time-dependent heat transfer
coefficient of the type h (t) = h0t

−1/2 (h0 > 0) . The bulk temperature of the liquid
at a large distance from the solid-liquid interface is T∞, a constant temperature
such that T∞ < Tf < Ti where Tf is the freezing temperature. The density jump
between the two phases are neglected.
We obtain that the corresponding phase-change process has an explicit solution

of a similarity type for the solid-liquid interface and the temperature of both phases
if an only if the coefficient h0 is large enough, that is h0 >

kl√
παl

Ti−Tf
Ti−T∞ where kl and

αl are the conductivity and diffusion coefficients of the initial liquid phase.
Key words : Stefan problem, free boundary problem, Neumann solution, phase-

change process, solidification process, similarity solution.

2000 AMS Subject Classification: 35R35, 80A22, 35C05

I. Introduction.
Heat transfer problems involving a change of phase due to melting or freezing processes

are very important in science and technology [5], [6], [9], [13], [14]. This kind of problems
are generally refered as moving-free boundary problems which have been the subject of
numerous theoretical, numerical and experimental investigations, e.g. we can see the large
bibliography on the subject given in [18].
We consider the solidification of a semi-infinite material which is initially at its liquid

phase at a uniform temperature Ti. Suddenly at time t > 0 the fixed face x = 0 is submit-
ted to a convective cooling condition due to a sudden drop in the ambient temperature.
The bulk temperature of the liquid at a large distance from the solid- liquid interface is

∗MAT - Serie A, 8 (2004), 21-27.
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T∞, a constant such that T∞ < Tf < Ti where Tf is the freezing temperature. The density
jump between the two phases are neglected.
In order to solve the phase-change process with a convective condition at the fixed

face x = 0, approximate method were used, for example in [2], [8], [10], [12]. In [3], [4] a
convective condition is considered after a transformation in order to solve a free boundary
problem for a nonlinear absorption model of mixed saturated-unsaturated flow with a
nonlinear soil water diffusivity.
In [19] the problem was analyzed and a closed-form expression for the solid-liquid

interface and both temperatures were found when the heat transfer coefficient h is time-
dependent and proportional to t−

1
2 . The solution is obtain graphically.

The goal of this paper is to give the mathematical analysis of this problem, that is
the solidification of a semi-infinite material which is initially at the constant temperature
Ti and a convective cooling condition is impossed at the fixed boundary x = 0 for a
time-dependent heat transfer coefficient of the type

h (t) =
h0√
t
, h0 > 0, t > 0. (1)

We prove that there exists an instantaneous phase-change process if and only if the
coefficient h0 is large enough, that is

h0 >
kl√
παl

Ti − Tf
Ti − T∞

(2)

where kl and αl are the conductivity and diffusion coefficients of the initial liquid phase.
Moreover we can obtain the explicit expression for the solid-liquid interface s (t) and the
temperatures of the solid Ts (x, t) and liquid Tl (x, t) phases respectively.
The plan is the following: in Section II we solve the heat conduction problem for a semi-

infinite material which is initially at a constant temperature Ti and a convective cooling
condition of the type (1) is imposed at x = 0. The solution can be obtained explicitly and
we can conclude that inequality (2) must hold if an instantaneous solidification process
occurs.
In Section III we solve the corresponding phase-change problem; we get that the

explicit solution for the solid-liquid interface and the temperature of both phases can be
obtained if and only if the inequality (2) is verified for the coefficient h0 which characterizes
the dependent-time heat transfer coefficient h (t) given by (1) .

II. Heat conduction problem for a semi-infinite material with a convective
condition at x=0.
We consider the heat conduction problem for the liquid phase which is initially at the

constant temperature Ti and a convective cooling condition at x = 0 is imposed, that is

Tt = αTxx, x > 0, t > 0 (3)

T (x, 0) = T (+∞, t) = Ti, x > 0, t > 0 (4)

kTx (x, 0) =
h0√
t
(T (0, t)− T∞) , t > 0 (5)

where ρ, c, k and α = k
ρc
are the density mass, heat capacity, heat conductivity and

diffusion coefficients of the liquid phase (we must consider the subscript l when it is
necessary).
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Theorem 1 (i) The explicit solution to the problem (3)− (5) is given by

T (x, t) =
T∞ +

kTi
h0
√
πα

1 + k
h0
√
πα

+
Ti − T∞
1 + k

h0
√
πα

erf

µ
x

2
√
αt

¶
, x > 0, t > 0, (6)

where the error function erf is defined by

erf (x) =
2√
π

Z x

0

exp
¡
−z2

¢
dz. (7)

(ii) The temperature at the fixed face x = 0 is constant for all t > 0 and it is given by

T (0, t) =
T∞ +

kTi
h0
√
πα

1 + k
h0
√
πα

, ∀t > 0. (8)

(iii) The material will undergo an instantaneous phase-change process when the coef-
ficient h0 verifies the condition (2).

Proof.
(i) By using the similarity method [1], [7], [11], [17], we get that a solution of the Eq.

(3) is given by

T (x, t) = A+B erf

µ
x

2
√
αt

¶
where coefficients A and B must be determined by impossing the two boundary conditions
(4) and (5). From these conditions we obtain the following system of equations

A+B = Ti (9)

kB = h0 (A− T∞)
√
πα (10)

which solution is given by

A =
T∞ +

kTi
h0
√
πα

1 + k
h0
√
πα

, B =
Ti − T∞
1 + k

h0
√
πα

(11)

that is the expression (6) holds.
(ii) It follows by taking x = 0 in expression (6).
(iii) The material will undergo an instantaneous phase-change process if the constant

temperature at the fixed face T (0, t) is less than the freezing temperature Tf , that is

T∞ +
kTi

h0
√
πα

1 + k
h0
√
πα

< Tf ⇐⇒ T∞ +
kTi

h0
√
πα

< Tf +
Tfk

h0
√
πα

⇐⇒ k

h0
√
πα
(Ti − Tf) < Tf − T∞ ⇐⇒ condition (2) .¥

Remark 1 The method utilized in the previous proof follows [15], [16]; it is useful in
order to give us the necessary condition (2) for the coefficient h0 but it does not give us
the explicit solution for the solid-liquid interface and temperatures for the liquid and solid
phases which will be the goal of the following Section III.
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III. Instantaneous phase-change process and its corresponding explicit so-
lution.
We consider the following free boundary problem: find the solid-liquid interface x =

s (t) and the temperature T (x, t) defined by

T (x, t) =

⎧⎨⎩ Ts (x, t)
Tf
Tl (x, t)

if 0 < x < s (t) ,
if x = s (t) ,
if x > s (t) ,

t > 0
t > 0
t > 0

which satisfy the following equations and boundary conditions

Tst = αsTsxx , 0 < x < s (t) , t > 0 (12)

Tlt = αlTlxx , x > s (t) , t > 0 (13)

Ts (s (t) , t) = Tl (s (t) , t) = Tf , x = s (t) , t > 0 (14)

Tl (x, 0) = Tl (+∞, t) = Ti, x > 0, t > 0 (15)

ksTsx (0, t) =
h0√
t
(Ts (0, t)− T∞) , t > 0 (16)

ksTsx (s (t) , t)− klTlx (s (t) , t) = ρl
.
s (t) , t > 0 (17)

s (0) = 0 (18)

where the subscripts s and l represent the solid and liquid phases respectively, ρ is the
common density of mass and l is the latent heat of fusion, and T∞ < Tf < Ti.
We obtain the following results:

Theorem 2 (i) If the coefficient h0 verifies the inequality (2) then the free boundary
problem (12)–(18) has the explicit solution of a similarity type given by

s (t) = 2λ
√
αlt (19)

Ts (x, t) = T∞ +
(Tf − T∞)

h
1 +

h0
√
παs
ks

erf
³

x
2
√
αst

´i
1 +

h0
√
παs
ks

erf
³
λ
q

αl
αs

´ (20)

Tl (x, t) = Ti − (Ti − Tf)
erf c

³
x

2
√
αlt

´
erf c (λ)

(21)

where erf c is the complementary error function defined by erf c (z) = 1 − erf (z) ,
∀z > 0; and the dimensionless parameter λ > 0 satisfies the following equation

F (x) = x, x > 0 (22)

where function F and the b0s coefficients are given by

F (x) = b1
exp (−bx2)

1 + b2 erf
³
x
√
b
´ − b3 exp (−x2)

erf c (x)
(23)
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b =
αl
αs
> 0; b1 =

h0 (Tf − T∞)
ρl
√
αl

> 0 (24)

b2 =
h0
hs

√
παs > 0; b3 =

cl (Ti − Tf)
l
√
π

> 0. (25)

(ii) The Eq. (22) has a unique solution if and only if the coefficient h0 satisfies the
inequality (2). In this case, there exists an instantaneous solidification process.

Proof.
Following the Neumann’s method [6], [7], [17], the solution of the free boundary prob-

lem (12)-(18) is given by

Ts (x, t) = A+B erf

µ
x

2
√
αst

¶
(26)

Tl (x, t) = C +D erf

µ
x

2
√
αlt

¶
(27)

s (t) = 2λ
√
αlt (28)

where the coefficients A, B, C, D and λ must be determinated by imposing conditions
(14)− (17). We obtain

A =
Tf + T∞

h0
√
παs
ks

erf
³
λ
q

αl
αs

´
1 +

h0
√
παs
ks

erf
³
λ
q

αl
αs

´ (29)

B =
h0
√
παs
ks

Tf − T∞
1 +

h0
√
παs
ks

erf
³
λ
q

αl
αs

´ (30)

C =
Tf − Ti erf (λ)
erf c (λ)

, D =
Ti − Tf
erf c (λ)

(31)

and coefficient λ must satisfy the Eq. (22).
Function F has the following properties:

F
¡
0+
¢
= b1 − b3 =

h0 (Tf − T∞)
ρl
√
αl

− cl (Ti − Tf)
l
√
π

(32)

F (+∞) = −∞, F 0 (x) < 0, ∀x > 0. (33)

Therefore, there exists a unique solution λ > 0 of the Eq. (22) if and only if F (0+) > 0,
that is inequality (2) holds.¥

Remark 2 (i) We note that the temperature at the fixed face x = 0 is given by Ts (0, t) =
A < Tf because

Tf −A = Tf −
Tf + T∞

h0
√
παs
ks

erf
³
λ
q

αl
αs

´
1 +

h0
√
παs
ks

erf
³
λ
q

αl
αs

´
=
(Tf − T∞) h0

√
παs
ks

erf
³
λ
q

αl
αs

´
1 +

h0
√
παs
ks

erf
³
λ
q

αl
αs

´ > 0.
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(ii) We note that the inequality (2) for the coefficient h0 which characterizes the time-
dependent heat transfer is of the type that it was obtained in [16] when a time-dependent
heat flux condition on the fixed face is impossed.
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