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Abstract

In this paper we do the mathematical analysis of the problem which was analysed
in S.M. Zubair - M.A. Chaudhry, Wéarme- und Stoffiibertragung, 30 (1994), 77-81.
We consider the solidification of a semi-infinite material which is initially at its liquid
phase at a uniform temperature 7;. Suddenly at time ¢ > 0 the fixed face x = 0
is submitted to a convective cooling condition with a time-dependent heat transfer
coefficient of the type h (t) = hot~'/? (hg > 0). The bulk temperature of the liquid
at a large distance from the solid-liquid interface is T, a constant temperature
such that T, < Ty < T; where T} is the freezing temperature. The density jump
between the two phases are neglected.

We obtain that the corresponding phase-change process has an explicit solution
of a similarity type for the solid-liquid interface and the temperature of both phases

if an only if the coefficient hg is large enough, that is hg > %Clj‘}:ﬁ; where k; and

«y are the conductivity and diffusion coefficients of the initial liquid phase.
Key words : Stefan problem, free boundary problem, Neumann solution, phase-
change process, solidification process, similarity solution.

2000 AMS Subject Classification: 35R35, 80A22, 35C05

I. Introduction.

Heat transfer problems involving a change of phase due to melting or freezing processes
are very important in science and technology [5], [6], [9], [13], [14]. This kind of problems
are generally refered as moving-free boundary problems which have been the subject of
numerous theoretical, numerical and experimental investigations, e.g. we can see the large
bibliography on the subject given in [18].

We consider the solidification of a semi-infinite material which is initially at its liquid
phase at a uniform temperature 7;. Suddenly at time ¢ > 0 the fixed face x = 0 is submit-
ted to a convective cooling condition due to a sudden drop in the ambient temperature.
The bulk temperature of the liquid at a large distance from the solid- liquid interface is

*MAT - Serie A, 8 (2004), 21-27.



22 D.A. Tarzia, Stefan problem with convective condition, MAT-Serie A, 8(2004)21-27

T, a constant such that 7o, < Ty < T; where T} is the freezing temperature. The density
jump between the two phases are neglected.

In order to solve the phase-change process with a convective condition at the fixed
face x = 0, approximate method were used, for example in [2], [8], [10], [12]. In [3], [4] a
convective condition is considered after a transformation in order to solve a free boundary
problem for a nonlinear absorption model of mixed saturated-unsaturated flow with a
nonlinear soil water diffusivity.

In [19] the problem was analyzed and a closed-form expression for the solid-liquid
interface and both temperatures were found when the heat transfer coefficient A is time-
dependent and proportional to ¢~2. The solution is obtain graphically.

The goal of this paper is to give the mathematical analysis of this problem, that is
the solidification of a semi-infinite material which is initially at the constant temperature
T; and a convective cooling condition is impossed at the fixed boundary x = 0 for a
time-dependent heat transfer coefficient of the type

ho
h(t)=——=, hop >0, t>0. 1
(t) i ho (1)
We prove that there exists an instantaneous phase-change process if and only if the
coefficient hy is large enough, that is

kT, — Ty
\/Walﬂ _Too

where k; and o are the conductivity and diffusion coefficients of the initial liquid phase.
Moreover we can obtain the explicit expression for the solid-liquid interface s (¢) and the
temperatures of the solid T (z,t) and liquid 7} (z,t) phases respectively.

The plan is the following: in Section II we solve the heat conduction problem for a semi-
infinite material which is initially at a constant temperature 7T; and a convective cooling
condition of the type (1) is imposed at = = 0. The solution can be obtained explicitly and
we can conclude that inequality (2) must hold if an instantaneous solidification process
occurs.

In Section IIT we solve the corresponding phase-change problem; we get that the
explicit solution for the solid-liquid interface and the temperature of both phases can be
obtained if and only if the inequality (2) is verified for the coefficient hg which characterizes
the dependent-time heat transfer coefficient & (¢) given by (1).

ho >

(2)

I1. Heat conduction problem for a semi-infinite material with a convective
condition at x=0.

We consider the heat conduction problem for the liquid phase which is initially at the
constant temperature 7; and a convective cooling condition at x = 0 is imposed, that is

T, =aTly,, v>0,t>0 (3)
T (z,0) =T (+o00,t) =T;, x>0, t >0 (4)
ho
kT, (x,0) = —= (T (0,t) = Ty), t >0 5
(z,0) \/Z( (0,2) ) (5)
where p, ¢, k and o = £ are the density mass, heat capacity, heat conductivity and

pc
diffusion coefficients of the liquid phase (we must consider the subscript [ when it is
necessary).
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Theorem 1 (i) The explicit solution to the problem (3) — (5) is given by

hoy/me | 1 T oo erf( * ),x>0,t>0, (6)
1+h0\/ﬁ 1+m 2V at

where the error function erf is defined by

erf (z) = % /Ox exp (—2z%) dz. (7)

(i1) The temperature at the fized face x = 0 is constant for all t > 0 and it is given by

T (z,t) =

T hovra gy s, (8)
1 k
* ovma

T(0,t) =

(i1i) The material will undergo an instantaneous phase-change process when the coef-
ficient ho verifies the condition (2).

Proof.
(i) By using the similarity method [1], [7], [11], [17], we get that a solution of the Eq.
(3) is given by

x
T (x,t) = A+ Berf
(1) (2\/ ozt)
where coefficients A and B must be determined by impossing the two boundary conditions
(4) and (5). From these conditions we obtain the following system of equations

A+B=T, 9)
kB = hy(A—Ty) VTa (10)
which solution is given by
T + 2L T. —T
A== hovma B— fif (11)

k - k
L N L+ 5ma

that is the expression (6) holds.

(ii) It follows by taking x = 0 in expression (6).

(iii) The material will undergo an instantaneous phase-change process if the constant
temperature at the fixed face 7' (0,¢) is less than the freezing temperature T}, that is

Too + 7bie kT, Tk
oV T 1 f
— < T =T+ ——<Tr+
1+ hojﬁ d hoyv/Ta ! hov/Ta

k
= ———(T; — Ty) < Ty — T, <= condition (2).1

hO\/T('Oé

Remark 1 The method utilized in the previous proof follows [15], [16]; it is useful in
order to give us the necessary condition (2) for the coefficient hy but it does not give us
the explicit solution for the solid-liquid interface and temperatures for the liquid and solid
phases which will be the goal of the following Section III.



24 D.A. Tarzia, Stefan problem with convective condition, MAT-Serie A, 8(2004)21-27

III. Instantaneous phase-change process and its corresponding explicit so-
lution.

We consider the following free boundary problem: find the solid-liquid interface x =
s (t) and the temperature T (z,t) defined by

Ts(z,t) f0O<z<s(t), t>0
T (z,t) =< Ty if z=s(t), t>0
T (x,t) ifx>s(t), t>0

which satisfy the following equations and boundary conditions

Ty, = asTs,,, 0<z<s(t), t>0 (12)

T, =aT,,, x>s(t), t>0 (13)

T (s(t),t) =T (s(t),t) =T, x=s5(t), t >0 (14)
T, (z,0) =T, (+00,t) =T;, x>0, t >0 (15)
m&@ﬁzs%ﬂ@ﬂ—ﬂmt>o (16)
kT, (s(t),t) — kT, (s (t),t) = pl 5 (t), £ >0 (17)
s(0)=0 (18)

where the subscripts s and [ represent the solid and liquid phases respectively, p is the
common density of mass and [ is the latent heat of fusion, and T, < Tt < T;.
We obtain the following results:

Theorem 2 (i) If the coefficient hy verifies the inequality (2) then the free boundary
problem (12)—(18) has the explicit solution of a similarity type given by

s(t) =22/t (19)

(Ty = Too) |1+ 2 exf (525 )|
T, (2,) = Too + . b 2ot (20)
1+ =07 erf <)\1 /2‘—i>
erfc (2 \/xa—lt)
T (x,t) =T, — (T; —Tf) ————=~ 21
1(1'7 ) ( f) erfc()\) ( )
where erf ¢ is the complementary error function defined by erfc(z) = 1 — erf (2),
Vz > 0; and the dimensionless parameter X > 0 satisfies the following equation
F(x)=z, >0 (22)
where function F' and the b's coefficients are given by
- 2 _ 2

3
1+ byerf <x\/l;) erf ¢ (z)
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b:ﬁ>0; b1:M>Q (24)
Qg Pl\/al
ho ] (Ti—Tf)
= — s = " . 2
b2 hss/ﬂ'Oés > O, bg l\/7_T >0 ( 5)

(i1) The Eq. (22) has a unique solution if and only if the coefficient hy satisfies the
inequality (2). In this case, there exists an instantaneous solidification process.

Proof.
Following the Neumann’s method [6], [7], [17], the solution of the free boundary prob-
lem (12)-(18) is given by

x
T (x,t) = A+ Berf | —— 26
(0.0) = A+ Bt (=) (26)
x
Ty (x,t) = C + Derf 27
l (l‘, ) + er (2\/Oé_lt) ( )
s(t) =2\ oyt (28)
where the coefficients A, B, C, D and A must be determinated by imposing conditions
(14) — (17). We obtain
T + TM%STS erf (z\, /z—i)
A= - (29)
1+—4%g@£erf<A1/§%)
hoy/mas T, —
p = v ’ / (30)
ks 14 Omerf ()\,/ )
Tf—ﬂel‘f()\) T%—Tf
o= A D= 31
erfc(A) 7 erf ¢ (X) (81)
and coefficient A\ must satisfy the Eq. (22).
Function F' has the following properties:
ho (Ty — Ty T,—T
F(0+):b1—b3: O(f )_Cl( f) (32>
pra N
F (+00) = —o0, F'(z) <0, Vz > 0. (33)

Therefore, there exists a unique solution A > 0 of the Eq. (22) if and only if £ (07) > 0,
that is inequality (2) holds.H

Remark 2 (i) We note that the temperature at the fived face x = 0 is given by Ty (0,t) =
A < Ty because

Ty + TOO%:TS erf ()\ %)
1+ %:T erf <)\\/z:i>
(T — Two) ho‘/m erf <)\\/Zzi>

- 1+—@%g@£erf<k\/g€)

Ty —A=T; -

> 0.
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(i) We note that the inequality (2) for the coefficient hy which characterizes the time-
dependent heat transfer is of the type that it was obtained in [16] when a time-dependent
heat fluxz condition on the fixed face is impossed.
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