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Abstract. Continuum mechanics is largely used to approach physics-mathematical problems. In this
paper we concentrate our attention on a multi-component system in a non-uniform thermal field and we
discuss from a general point of view the conservation equations. A special care is devoted to the possible
change of phase of some components of the medium and to the conditions at the material surfaces
(possibly free boundaries) which are very often encountered in such problems.

As an application, we also present two different physical situations (ground freezing, non-standard fil-
tration in a porous medium) which are modelled from the mathematical point of view according to the
general equations we found out.

Resumen. La mecéanica del continuo es muy usada en la resolucién de problemas de la fisica-matemaética.
En este trabajo la atencién se concentra sobre un sistema multi-componente en un campo térmico no
uniforme y se discuten las ecuaciones de conservacién desde un punto de vista general. Una atencién par-
ticular est dedicada a los posibles cambios de fases de algunas componentes del medio y a las condiciones
sobre las superficies materiales (fronteras libres) que se encuentran muy a menudo en tales problemas.
Como una aplicacién, se presentan dos diferentes situaciones fisicas (congelamiento de suelos porosos,
filtacién no standard con remocién de substancia de la matriz porosa) cuyos modelos matematicos se
escriben siguiendo el esquema general introducido.

Riassunto. La meccanica dei continui rappresenta un approccio molto diffuso nei problemi di fisica
matematica. In questo lavoro si focalizza ’attenzione su un sistema composito in un campo termico non
uniforme e si discute da un punto di vista generale le equazioni di conservazione. Particolare attenzione
viene riposta ai possibili cambiamenti di fase di alcuni componenti del mezzo e alle superfici materiali
(frontiere libere) che spesso sono presenti in problemi di questo tipo.

Come applicazione, si presentano due differenti problemi fisici (congelamento dei suoli porosi, filtrazione
non standard con rimozione di sostanze dalla matrice porosa), i cui corrispondenti modelli matematici
sono scritti seguendo lo schema generale introdotto.

Keywords: Continuum Mechanics, Conservation Equations, Free Boundaries, Ground Freezing, Filtra-
tion in a Porous Medium.

Palabras claves: Mecénica del Continuo, Ecuaciones de Conservacion, Fronteras Libres, Congelamento
de Suelos, Filtracioén en un Medio Poroso.
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Some problems concerning with mass and heat transfer in a
multi-component system

F. Talamucci *

Introduction

The aim of the paper is to give som examples of mathematical models which arise from different physical
situations, having however in common several formal aspects. Roughly speaking, we will consider heat
and mass transport phenomena in a multi-component medium. The first part (Section 1) is devoted to
introduce the conservation equations, which will be discussed from a general point of view. Secondly, we
will consider two special problems which can be framed into this formalism. The first one (Section 2) refers
to ground freezing: a porous medium saturated with water is subjected to a freezing process and a volume
expansion of the medium is observed (frost heave). The second example (Section 3) is a mathematical
model for a filtration process under high pressures with removal of small particles away from the porous
matrix. The starting point of the formulation of the latter problem has been the understanding of the
complex phenomena taking place during the preparation of the expresso coffee.

1 The continuum approach

We consider a medium consisting of several components, say IV species. We adopt the continuum approach
in order to describe the properties of the medium. The actual multi-components medium is replaced by
a fictious continuum: we assign kinematic and dynamic variables and parameters that are continuous
functions with respect to the spatial coordinates. Arguing as in [1], we take a volume AV centred in some
point P of the medium. The species k, k = 1,..., N occupies the volume AV}. The typical behaviour of
the ratio AV, /AV is the following:

AV /AV
1__

AVp AV

Below a certain value AV, the fluctuations in the ratio are large. From the mathematical point of view
the ratio tends to 0 or to 1, as AV approaches 0. The fluctuations tend to decay in a interval starting from
AVy and for large values of AV the ratio may undergo gradual changes. We call AV, the representative
elementary volume (REV) which corresponds to the physical (or material) point of the porous medium
at the mathematical point P.

*Dipartimento di Matematica “U. Dini”, Universita di Firenze, Viale Morgagni, 67/a, 50134 Firenze, Italy.
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1.1 Volumetric fractions, densities and velocities
We define the volumetric content of the species k as

. AV
(1.1) B = avBav AV

N
Obviously Y AV, =1.
k=1
If Amy, is the mass of the k-species contained in AV}, we define

AVm
(1.2) ok = £

im bulk density
AVSAV,

AmG

43 %= 0y, AT

speci fic density

In other words, the bulk density is the mass of the k-species in a unit volume of the mixture, the specific
density is the mass of the k-species with respect to a unit volume occupied by the same species. The
following relation can be easily obtained from (1.1), (1.2) and (1.3):

or =dgur, k=1,...,N.

If a species is moving, we call v the corresponding molecular velocity, averaged in a REV. The volumetric
flux or volumetric velocity is defined as

(1.4) Ak = [k VE

The physical meaning is the following: q-n is the volume of the k-species passing through a unit surface
with normal n in the unit time.

1.2 The general conservation equation

Let us consider any quantity defined in a volume D with concentration (i. e. amount for unit volume)
g(x,t) and current j (i. e. j - n is the amount passing through a unit surface with normal n in the unit
time). The general conservation principle writes

(1.5) %/g(x,t)dx: —/j-nda+/](x,t)dx

14 ov 14

where V' is an arbitrary subset of D and I is the production (or loss) of the quantity g per unit volume
and unit time. Equation (1.5) entails

g L.
(1.6) o +divj =1

1.2.1 Mass conservation

If one takes g = gi, the corresponding current is j = gxvy. Hence, applying (1.6) we have:

0 . 0 .
(1.7) 5% + div(ogvy) = I, or a(dkuk) +div(dryqr) =I, k=1,...,N

where I}, is the rate at which the k-mass is produced. By summing up equations (1.7) we find

0
(1.8) ag-kdiv(gv) =0
N N
where ¢ = Y o and pv = ) 0V (composite mass velocity).
k=1 k=1

Remark 1.1 If it is known that I, + I, = 0 for some index r, s, then it may be convenient to write (1.6)
in the form

0
(19) a(gr + Qs) + div(@rvr + sts) =0
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1.2.2 Heat conservation

We define the heat energy per unit volume as

N T
(1.10) Qv=> ok /Ck(y)dy + E(T)
k=1 >
where ¢, k = 1,..., N, are the specific heats per unit mass of each species and the quantities E} are

related to the possible presence of latent energy at some temperature.
In order to explain (1.10), we consider the case of one single material of density ¢ and mass Am contained
in a volume AV. If the temperature increases from T to T + dT', we have

AV(T)  oT +dT)

(1.11) AV(T +dT) — o(T)

If Q is the heat amount per unit mass, we have by definition

T
(1.12) Q=M. ()= [cwiy

The heat contained in Am passes from AQ,, = QAm to AQ, + dAQ,, with
(1.13) dAQy, = Amc(T)dT.

Computing now the variation of heat in the volume AV, we have from (1.11)-(1.13):
(1.14) dAQv = AV (o(T + dT)c* (T +dT)(T + dT) — o(T)c*(T)T)

Recalling (1.12) and considering the total amount of heat at a some temperature T in a unit volume
where several species are present, we finally get (1.10).
At this point, we use the conservation equation (1.6) with

(1.15) g=Qv and j=-kVT + Q.

where k is the thermal conductivity (depending on the properties of the medium and possibly on T') and
Q. is the energy flux due to convection:

T
(1.16) Q. =) o /Ck(y)dy+Ek V.
0

Equation (1.6) applied to energy conservation, i. e.

% +div(-kVT + Q) =0

can be written in the following form, by making use of mass balances (1.7):

N 9E,
k
(1.17) ( +Z o 6T> 5 T div(=kVT) +
N T
+Z<ck+ > OLVE * VT-{—ZIk /ck(y)dy+Ek =0
k=1 k=1 0

N
n (1.17) we defined C(T) = > 0k (T)c(T) (equivalent heat capacity).
k=1
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1.3 Conditions at the interfaces

The presence of material surfaces at which some quantities involved may have a discontinuity corresponds
to a very frequent situation in such problems. We model an interface as a moving surface S described by
the equation S(x,t) = 0.

We consider again the balance (1.7), with I = 0. Assuming that the balance holds on both sides of an
open set in R* cut by S, we get the Rankine-Hugoniot condition (see, e. g. , [2])

as .
(1.18) [[gll 57 + [6]]- VxS =0
where [[ ]] denotes the jump across the interface at any point xo € S:

[f]] = lim " f(x)— lim f(x)

X—X0 X—Xo

The symbols T and ~ denote the two regions separated by the interface. Equation (1.18) can be written
in the following form:

(1.19) (gl V o =[] ' n

where V is the velocity of a point on the interface and n = £V4S/|VxS| is the unit normal.

1.3.1 Mass balance at any interface

Applying (1.19) to equation (1.8) we have

(1.20) [e] V- n = [[ov]] - m.

Equation (1.20) also holds for any species r such that I,. = 0.
In the same case of remark 1.1, we can write

(1.21) [lox + on]] V-1 = [[0k v + onvh]] -1
1.3.2 Heat balance at any interface

The energy jump condition comes from equations (1.19) and (1.15):

+

N /T
(1.22) S| [atay+ | (e Von- o) -m) = (9T -x]) +
k=1 \}
N T
+3 0 en-vow” || [awdy + B
k=1 o
Assuming, as it is natural, that [[T']] = 0 across the interface, we can reduce (1.22) to
N /T
(1.23) Z /Ck(y)dy + Ei | ([ex]] V-n —[[okvi]] - n) = [[-kVT - n]]
k=1 0

2 Freezing in a porous medium

The first example we are going to consider deals with a very well known example of coupled heat-mass
transfer process. When a moist soil saturated with water is subjected to a freezing process, a volume
expansion is generally observed. The volume increase is not only due to the different specific volumes
of water and ice (in situ water freezing), but mainly to freezing of transported water from the unfrozen
part of the soil towards a freezing front. The phenomenon, known as frost heave, is the effect of strongly
coupled heat and mass transfer processes occurring in the porous soil. Frost heave damages produced
on road pavements, pipelines, building foundations in regions with periodical or permanent freezing are
well known. On the other hand, the artificial freezing technique for consolidating soils during tunnelling
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and underground constructions has become more and more used in recent years: predicting the swelling
of the soil under specified thermal and mechanics conditions is of crucial importance in such practises.
The two aspects of the problem we mentioned are sufficient to explain the attention that industrial and
technological research has been dedicating to ground freezing in recent years and the relevant amount of
models that have been proposed.

2.1 The physical process

We consider a sample of fine grained soil saturated with water and subjected to a freezing process. The
most evident phenomenon occuring during the process is the volume expansion of the medium (frost
heave). The heave amount of a frozen specimen can be very considerable: in the tests of ([17]), for
istance, the final height of a specimen of Kanto Loam is more than three times the initial one.

The most relevant factors controlling the process of frost heave are the freezing rate, the property of the
soil (grain size, dry density, permeability, ...), the overburden pressure.

The physical problem can be outlined as in the following picture:

cqolipng temperatyre
y Cq0lpa Jemperaty top of soil

heave of soil

frozen soil

soil grains and ice

ﬁ%%?{?ﬁ/fﬁ@m@gi@&- change of phase

unfrozen soil

soil grains and water

T T T water migration

base of soil

fig. 2.1: the physical situation.

The freezing process is induced by a cooling temperature acting on the top of the moist soil. The base
of the soil is permeable to transfer of liquid from the underground. Both the advancement of the frozen
soil on the unfrozen part (heat transfer effects) and the migration of water from the base towards the
intermediate region where the change os phase takes place (mass transfer effects) determine the volume
expansion.

As a first approximation, we may believe that frozen and unfrozen soils are separated by a sharp interface:
in this case, the change of phase occurs only at that surface. However, a more careful observation shows
the existence of a thin transitional zone, called frozen fringe (region F.F in figure 2.2), where water and
ice coexist in the porous space and where change of phase takes place. It is comprised between the 0 °C'
isotherm (freezing front) and the lower boundary of the totally frozen soil.

As the frozen part advances, if particular thermal and mechanicical conditions are verified, the formation
of successive pure ice layers (denoted by L in figure 2.2) may occur. The phenomenon is known as
ice segregation or ice lensing. The final configuration of the sample of soil consists, in this case, in a
sequence of pure ice layers alternating with regions of completely frozen soil. We may distinguish two
different phases in the process: whenever a segregated pure ice layer (region N'£ in figure 2.2a) is growing
immediately over the frozen fringe, we refer to a lens formation process. On the other hand, in case of
rapid freezing or remarkable overburden pressure acting on the soil, the lens stops growing and water in
the porous space freezes and ice is kept within the porous matrix, even though the porosity of the soil
may be affected by the passage of the freezing front. We refer to such a process as frost penetration. The
region F'1 immediately over the frozen fringe (figure 2.2b) consists in this case of completely frozen soil.
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2.2a Lens formation 2.2b Frost penetration
F  grains + ice

F  grains + ice L ice

L ice F grains + ice

F rains + ice L ice

7 J F  grains + ice

ice :

F  grains + ice L ice

L ice F  grains + ice

F  grains + ice ice

N forming ice lens 71 grawns + ice

FF  grains + water + ice FF  grains + water + ice

Uu grains + water U  grains + water

fig. 2.2: the two different phases of the freezing process

2.2 The mathematical model: conservation equations

We will consider only one dimensional models, according to the fact that the quantities involved in the
process vary appreciabily only along the vertical direction z. The porous medium is formed by three
species: water, ice and soil grains: recalling the notations introduced in section 1, we refer to index 1,2,3
respectively to those three components and we will use the index w, 7, s. For the sake of convenience, we
introduce the quantities v and € such that (cfr. (1.1))

(2.1) wm=e(l—-v), pp=cv, puz=1-—c.

The quantities v € [0,1] and € € [0, 1] correspond to the volume fraction of ice (w. r. t. the porous space)
and to the porosity of the soil, respectively. Moreover, we call p,, = di, p; = da, ps = ds (see (1.3)),
Guw = P1V1, g; = v, ¢s = us3vs (see (1.4)). We assume that no chemical reaction are present within the
soil. Hence, we have simply:

(2.2) L+I,=0, I;=0.

Mass conservation, following (1.7) and (1.9), is obtained by taking into account of (2.2):

0 0
(2.3) e (L =v)epw +evp;) + 9 (Ppww + piqi) = 0 (water + ice)

(2.4) % (1 —e)ps) + % (psqs) = 0 (soil grains)

Energy conservation comes from (1.17), by taking Ey(T) — E2(T) = L, with L latent heat of water per
unit mass, E3 = 0:

or o or
(2.5) Cw. )G + 57 (kG ) + (utun + pitcit
oT [
4pa.e) o+ | [(uly) =ty + 1) =0
0

where C(v,T) (equivalent heat capacity) is given by
(2.6) Cw,T) = (1—v)epu(T)ew(T) + evpi(T)ei(T) + (1 — €)ps(T)es(T)
and 0 0 0 0

h== (g o)+ 5 ) ) = (5 €0 =) + 37 (pua))

We remark in (2.5) the dependence on the quantities E,, and E; by only their difference L.
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2.2.1 Conditions at the interfaces

At any interface z = Z mass balance is (see (1.20) and (1.21)):

(2.7) [[pw(l —v)e +_in6]] Z = [[puwdw + pigil]
[[(1 —€)psqs]] Z = [[psas]]

Energy balance at z = 2 is (1.23), which reduces, by virtue of (2.2):

29) / cult) = o)y + L | ([epult = 21} = [puaal]) = | [-45]|

or, equivalently:

(2.10) /Tcw(y) —ci(y)dy — L ([[—Pi’/f]] 7 [[piqi]]) = Hk?}_:g”

2.3 The equations in each region of the soil

We are going now to write the equations in the different parts of the soil, namely the unfrozen soil (v = 0),
the frozen fringe (0 < v < 1) and the totally frozen soil (v = 1), which may include layers of pure ice
(e = 1). The base of the soil corresponds to z = 0, the top is denoted by zr. Moreover:

zrp = sup {z:v(zt) =0}, zs= inf {z:v(zt) =1}
0<z<zr 0<z<zr

The two boundaries contain the frozen fringe. If only ice is present immediately over zg, then a lens

formation process is occurring, otherwise frost penetration is taking place.
Let us examine the two different cases of lens formation and frost penetration separately.

2.3.1 Lens formation

In the region Y = {2 |0 < z < zp} (unfrozen soil, v = 0) it is generally assumed that the porous matrix
is undeformable, hence the porosity depends only on z (by eq. (2.4)) and we may assume that ¢ = o,
constant. In that case, the water flux ¢, = ¢% depends only on ¢, owing to (2.3). Energy conservation
(2.5) reduces to

(2.11) C(O,T)%Jr% (_ku(T)aTa(z,t)> +pwcwqg)(t)8T6(z,t) .,

If even the porous matrix in the frozen fringe FF is rigid, then we conclude, by using (1.20) with 2 = zp
that € = g¢ in the frozen fringe.
Equations (2.3) and (2.5) evaluated in FF take the form

(212) oo pu) vz, 1)+ o (pudulz,0) + (2, 1) = 0
213 DTt 2 (g ZED) 4 a6 + () T +

+p; (80%V(2,t) + %qz> ((ci—cw)T—L)=0
Let us consider now the completely frozen region v = 1, which is made by layers of porous soil saturated
with ice (regions F in figure 2.a) alternating with layers of pure ice (regions £). It can be assumed that
in the regions F there is not relative motion of ice with respect to the soil grains (i. e. v; = vs). Hence,
(2.5) in £ reduces to

or o < or oT

2.14 iCimr t oo | —kigs iCiET A =
(2.14) i T a2 az>+p”Taz 0
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while in F mass and heat conservation are respectively

Os ., O
(2.15) PR
or 0 oT . oT
(216) C(].,T)E + & (-k‘fa) + C(].,T)ZTE =0

An useful boundary condition can be obtained by expressing ¢;” in (2.7) (evaluated for 2 = zg) in terms
of the heave rate Zp. This can be done by integrating (w. r. t. z) (2.3) and (2.4) in the regions £ and F
and taking account of the boundary balances (2.7) and (2.8). We get the following formula

(2.17) pitT — pigi(2s,t)” — pwuw(zs,t)” —o(l — v(2zs,t)7)(pi — puw)is =0

which allows us to evaluate the heave rate independently of the quantities concerning with z;f, in particular
no matter is the porosity £(zs,t)™. Boundary conditions (2.7)-(2.9) write, in case of lens formation,

(2.18)  pulau(zr, )" — (1) + pidi(zr, )" — co(pi — pu)v(zF,t) " 2F = 0
T(ZF,t)

(2.19)  pi / (ci(y) — cw(y))dy — L | (eov(zp, t)* 2p — qi(zr,0)") = H—k(ZF,t)Z—Z(ZF,t)
0

+

(2.20) 25 =0, pizr = piqi(zs,t)” + pwGuw(zs,t)”
T(Zs,t)

- or *

220 pu| [ @) - cowly+ | auest) = | [-hes0 G Gs0)
0

Moreover, passing from F' to L and vice versa we have

T +
(2.22) H—k(T(E, t))a—(E, t)” =0

0z _

and at any interface the temperature is continuous:
(2.23) Nt =o

We incidentally remark that (2.18) implies that the water flux g,, is continuous w. r. t. z at zp only if
v(zp,t)T = 0. We also stress the fact that during the formation of a lens the base of the lens is at rest
(condition (2.20).

2.3.2 Frost penetration

Equations (2.11) in region U, (2.12) and (2.13) in FF, (2.14) in £, (2.15) and (2.16) in F are still the same
also in the case of frost penetration. In region F1, which lies immediately over FF, some modeler assumes
that there is a relative motion of ice with respect to the porous matrix, due to regelation (v; # vs). In
that case, mass and heat conservation in F1 are:

Os  0Oq;  Os  Ogs
o ez ot ez

or o oT oT
C T)— — | —kr—= 1 Cidi sss_zo

W T)5, +8z< f82>+(ch + psCsls) 5

=0

Boundary conditions (2.18), (2.19), (2.22) and (2.23) are still the same, while (2.20), (2.21) are replaced
by

(2.24) pizr — piqi(2s,t) — pwquw(zs,t)” —eo(l — v(zs,t) " )(pi — pw)is =0
T(Zs,t)

229) pu | [ (@) = cwdy+ L | (s 70 = wles, 0 2086) = | [hles,0 G o1t

0

+
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Remark 2.1 If one assumes that v; = vs also in F1, then in that region heat conservation is obviously
(2.13). In this case the porosity € has a jump at z = zg, namely (see (2.17))
2T — €02
e(zs, )T = T—2

ZT — Z8§

On the contrary, if one assumes that vs(zs,t)t = 0, then (zs,t)™ = eo, which means that the porous
matriz is not deformed by the passage of the front. In that case ice has to move through the porous space
at a speed v;(z5,t)T = 7 /eo.

2.4 Physical assumptions

In order to close the system of equations we discussed above it is necessary to add constitutive equations
which specify the behaviour of each species. In other words, we have to add equations involving the
velocities v (or the fluxes ¢) and the volumetric content v.

The most relevant physical and chemical processes occur within the frozen fringe. Mass and heat transfer
processes are strictly related to the interfacial effects between the tree constituents (water, ice and soil
grains). More than one hypotheses have been formulated. The lack of a common understanding, due
to the experimental difficulties of measuring the quantities involved in the process, motivates the large
number of different models in the literature. For a detailed review of models in literaure, we refer to [18].
It is generally accepted that water pressure in the porous space is not uniform and it is related to the
movement of water by means of

Opw(2,t)
0z

_ Ko (py, 1) 2L

(226) quw = _Kl(pwaT) Oz

where K; and K> are empirical functions. In the literature, two different position are stated: (i) K2 =0
which means essentially a generalized Darcy’s law ([14], (i1) K> > 0 ([15], [12]).

A second question concerns with the possible dependence of p,, on the temperature T' (equilibrium models,
[14]). On the contrary, in the model we will discuss T and p,, are independent and the Clausius-Clapeyron
equation, which relates temperature with pressure, holds only at the phase equilibrium (non-equilibrium
models, [10], [5]).

A third point consists in discussing the interfacial effects among the three components. Essentially, if
water-ice effects are assumed to be dominant, one gets the empirical law p; —p,, = ¢(v), (capillary models,
[7], [9]), if on the contrary water-soil effects prevail, one gets the constitutive equation v = v(T) ([22],
[11]). The latter one is the point of view we will follow.

A further very delicate point is to formulate the mechanism of ice segregation. Main theories are Terzaghi’s
stress partition idea ([21]) (it is assumed that P = o, + 0., where P is the overburden pressure P, o,
is the effective stress and o, = xpw + (1 — x)P; is the neutral stress, the break of the soil is ascribed to
the vanishing of 0., [21]), the existence of a segregation temperature T (the permeability K is so small
at T = T, that water tends to accumulate somewhere, [8]). In other models ([13]), the stress balance on
the top of the frozen fringe is simply p,, = P and lens starts to form simply when the speed of the upper
boundary of the frozen fringe vanishes.

The last question to be faced in formulating a frost heave model concerns with the movement of ice. We
already discussed some aspects in the previous section (regelation phenomena). In the model we will
discuss ice is at rest with respect to the porous matrix.

2.5 A non-equilibrium model: the constitutive equations

The model we investigated from the mathematical point of view is based on the experimental observations
and data performed in ([10], [11]). The statements of the model, according to the questions we introduced
in paragraph 2.5, are the following:

e T and p, are independent in the frozen fringe. The value of p,, at the top of the frozen fringe is a
given positive constant o which is essentially the overburden pressure.

e The empirical functions K; and K, appearing in the water flux law depend only on T, they are

strictly positive, increasing functions and vanishing for very low temperatures. Moreover, K;(T') =
Ky positive constant if 7' > 0.
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o Interfacial effects are described by the function v = v(T), 0 < v < 1, 9v(T) /0T < 0, v(0) = 0. No
capillarity effects are present.

e Pore ice in the frozen fringe is at rest with respect to the porous matrix (no regelation) and the
frozen soil is simply shifted up during thre growth of the lens, without any appreciable deformation.

e The quantities ky, k¢, k; (thermal conductivities), pu, ps, ps (specific densities) and L (latent heat
per unit volume) are constant. On the other hand, the thermal conductivity in the frozen fringe
ks depends on the temperature 7. Empirically, ks is determined as a function of v (hence of T').
Moreover, k77 (0) = ky.

2.6 The mathematical problem

The conservation and constitutive equations of the model are summarized below (we omit details, see
also the statements of the model in section 3.1.):

OT(2,1) —ky 9 <%> +prwqw(t)8T(§z,t) =0 0<z<zp, t>0

(2:27) C(0,7)— 5

Opw

P (z,t), 0<z<zp,t>0

(2.28) qu(t) = —Ko——

0 0
(prUJ(Z t)) 0, 2rP<2<2s5,t>0

(2.29) s — pu) (T +

0T (z,t) 6 z,t) OT (z,t)
230) 0 1) 22 4 2 (<0 T2+ pucuau (e P20

+pi (zSgal/(T)) ((c; —cw)T —L)=0, zp<z<zs,t>0

_ Opw oT

(231) qu(2,1) = K\ (T) P2 (2,1) ~ Ko (1) 5 _(2,1)
or o (0T oT )

(2.32) picia — kza <62> + piCitr— 5 — 0, 2s<z<zr,e=1 (icelens),t>0
(2.33) C(1, T)%{; (‘? —k <ZT> + C(1, T)zTgT 0, z2s<z<zr,e<l (grains + ice),t >0
(2.34) — 0c +2T66 =0, zg<z<zr,t>0

ot 0z

together with the initial and boundary conditions

(2.35) T0,t)=h>0

o [Zere]] -

(2.37) [[qw(zr, )] = 0

(2.38) PiET = pulu(zs,t) +eo(1 — V(T (2s,1)))(pi — puw)is
oT

(2.39) Pw (T(Zs,t)(ci — Cw) + L) qw(Zs,t) = |:|:—k$(25,t):|:|

(240) pw(ZS(t))t) =0

(2.41) T(2r,t) = g <0

Moreover, (2.23) must hold at any interface and (2.22) at any internal interface in the frozen part of the
soil. The boundary conditions (2.35) and (2.41) can also be replaced by the assignment of the thermal
flux:

(2.4 ar ar

9z~ " Bz
with a; and ay non-negative. For the sake of simplicity, in the energy conservation equations we neglect
the convective contribution. The unknown quantities of problem (2.27)-(2.41) are the temperature 7', the
water flux q,, the water pressure p,,, the free boundaries zr, zs and z7. As a matter of facts, also the
interfaces between the regions £ and F are unknown. However, a simpler but reasonable way to treat
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the problem is to consider just the forming (or just formed lens), that is the lowest one. The base of
that lens is fixed (owing to (2.20)) and we call z = zz, the upper boundary of the lens. The rest of the
frozen soil can be considered as homogeneous from the thermal point of view and equation (2.33) can be
assumed to hold in the region zg < z < zp. Such a simplification yields to consider only three regions
(unfrozen soil, frozen fringe, frozen soil), as indicated in next picture.

> ___z=zr top of soil

unfrozen soil

z=1zg freezing front

e _z=2zr 0°C- isotherm
frozen soil

z=0 base of soil
fig. 3: the different parts of the soil in the one-dimensional case

Even in this case, however, problem (2.27)-(2.41) exhibits non trivial difficulties, mainly for the fact that
there is a switch from one process to the other whenever Z; vanishes. In next paragraphs we will focus
on two simplified situations, namely the case of lens formation and the quasi-stady approach.

2.7 A free boundary problem for the process of lens formation

We are going to discuss system (2.27)-(2.41) in the case Zg = 0. In a easier but realistic situation, we may
assume that the temperature in the unfrozen soil 0 < z < zp and in completely frozen soil zg < z < z7
is linear. This fact is consistent with experimental data ([10]) and allows us to concentrate the problem
in the frozen fringe zp < z < zg, where the most relevant physical and chemical processes occur.

Under such an assumption, the problem of lens formation in zp < z < b = 25(0) reduces to

(243) (CAD) = L/ (1) G est) = 5 (e (D G0
(2.44) 00 20(2,1) + (0~ 0=/ (1) O (1) =
(2.45) aulz:) = ~F (1) 22 (2,) ~ Ko(T) 5 (5,1)

together with the initial and boudary conditions (we consider case (2.42))

(2.46) T(z,0) = T() wp(0) =a<z<b

(2.47) ( (), ) =0 t>0

(2.48) ( #(),1) = —ap £>0

(249) QM(ZF( )> )ZF( ) = _Kﬂpw(ZF(t)vt) t>0
(2.50) pw(bt) =0 t>0

(2.51)

0
0wlquw(b,t) = kpaq + kyp(T(b, ) o=

P T(b,t) t>0

Problem (2.43)-(2.51) is a strictly parabolic problem for the temperature T in a free domain. We indeed
remark that ®(T) = C(v(T')) — Lev'(T) is strictly positive, owing to the assumptions we made above.
The well posedness of the problem is shown in [6]. We summarize here the main steps of the mathematical
analysis.
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First of all, we solve the problem isolating the equations for T'. Eliminating v by comparing (2.43) and

(2.44) we get
Jq _0i— 0w O oT
a(z’t) "~ Lojon 02 (kff(T) 0z (Z’t)>

Then, by integrating in (z,b), using (2.51) we find

b

q(z,t) = q(b,t)(1+1/1(T(b,t))QwL)—/W(T(ﬁ,t))kff( &), T2(§ t)dg —

(T, 1)kgon — BTk (1) Tz, 1)

where ¢¥(T) = (0; — 0w)eV' (T)/ 0, ®(T) At this point, we integrate (2.45) in zp < z < b:

T(b,t)K -
Zp,t 2
U+q /K1 df— J K1(Z)dn
and we sobstitute the expression for ¢(z,t) achieved above:
Ty
(2.52) q(bt) = 1 b (_/ K(n) ;{Zﬁ(%)kff(n) ot
(1+¥(T)ewL) (FF ¥ Ki%)

Tk (_ /w ) /cfm ) 2 s

where T, = T'(b,t). Hence, we find out that the temperature T must verify the following problem 7 in
the frozen fringe zp < z < b:

#(1) 5 20 = 3 (ke 5L 1)

ot 0z
T(z,0) = To(2)
zr(0) =a
T(zp(t),t) =0
or

N
0
(2.53) 0uLa(b, 1) = kyan + kg (T, 1)) 5T (b, 1)
In (2.53) q(b,t) is the functional F (T, zp) defined in (2.52).

The mathematical problem is easier if we assume that o; ~ g,,. Actually, in this case the water flux
depends only on ¢ and the functional (2.52) reduces to

Ty
[ Ka(m)
) Ki(n)

dn—o
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T(b—wx,t)
By means of the Kirchoff transformation u(z,t) = [ kgs(n)dn. one finds that problem 7 is trans-
0
formed into the following problem /:
gu(m t) = A(u)a—Qu(m t) 0<z<s(t),t>0
ot ox?2 ’
T()(b*I)

u(z,0) = up(z) = / kep(mdn 0<az<b—a

o

u(s(t),t) = kyag t>0

%U(O,t) =kron — owLq(t) t>0

where we set A(u) = kyr(T(u))/ (T (u)).
Problem U/ is a non-standard free boundary problem, with Cauchy data on the unknown boundary s and
a functional-type dependence of the data on the fixed boundary x = 0.
Local existence for problem I/ can be proved in the following way. First of all, we write the problem in
the rectangular domain @, = (0,1) x (0, 7), with 7 fixed positive value, via the transformation y = z/s(t)
and call v(y,t) = u(s(t)y, t).
The problem is now

o _Aw) & d

5000 = “P ) + Syt () € Qr

v(y,0) =vo(y) =uolay) 0<y<1

v(l,t)=0 t>0

5500, = s@)(kran = 0uLa(t) >0

0
8—yv(1,t) = kyaps(t) t> 0.

Then, consider the set of functions
S ={(v,s) [v(y, 1) € CH'/2([0,1]) x [0, 7],
s € CH([0,7]),v(y,0) = vo(y) for y€[0,1],5(0) = b~ a}.

For a pair (v, s) € S we solve the following linear parabolic problem £ of Neumann type for the unknown
function v:

o _Aw) 8% _ § 0
50t =~ a—yzv(y,tH;ya—yv(y,t) 0<y<Lt>0

0(y,0) =wo(y) 0<y<1

a—yv(l ,t) = kyaps(t) t>0

9,0 (0:1) = s(t)(krar — ewla(t)) ¢ >0.

D
&

[S))

(o))

The function ¢(t) depends on v and s in the following way:

h(v(0.9) I, (1)
~ Em "
1
q(t) = L

b—s+s/ dz
K ) R ww)



F. Talamucci, Some problems concerning with mass and heat..., MAT - Serie A, 6 (2002) 16

where h(w) is the inverse function of the Kirkhoff transformation (i. e. h(v(y,t)) = T'(b — s(t)y,)) and
K, (v) = K1(h(v)). Finally, we define a new guess (¥, §) such that ¢ is the solution of problem £ and

. A(0) 8%
t) = ——=-—(1,t
5(t) kyags?(t) 8y2( 1)
In [6] we proved that the map (v,s) — (9, §) is a contraction. In the same paper the general case p,, # p;
is discussed.

2.7.1 Frost penetration

The case Zg < 0 presents a nontrivial complication: actually, one further condition must be added in
the model. The physical understanding of the problem has not been solved yet. The following two
possibilities can be considered:

(1) the thickness of the frozen fringe remains constant, that is z; = Zp. This assumption, giving
travelling waves solutions,

(2) the temperature T'(zs(t),t) corresponds to a known critical value T, at which all water freezes:
v=1forT <T¢.

2.8 A quasi-steady approach

We are going now to simplify the mathematical problem in order to obtain more qualitative information
of the freezing process. Actually, in practical situations it is important to predict which process will take
place (lens formation or frost penetration) and which is the heave rate.

We add the hypothesis that the variation with respect to time of the involved quantities is negligible in
comparison to the variation with respect to the spatial coordinate. In that case the water flux ¢,, depends
only on time, as we see from (2.29). The set of equations corresponding to the model when the boundary
temperatures h(t) = T(0,t), g(t) = T'(27r(t),t), h(t) > 0, g(t) < 0 are assigned, is

Ts(t)
(2.54) / Ky (m)dn = %‘(kauhm
(2.55) 0i21(t) = wquw(t) + (1 — vs)(0i — ow)zs(t)

_ . g(t) —Ts(t)  kuh(t)
(2-56) LQwa(t) = (1 - VS)gQwLZS(t) - kf ZT(t) — Zg(t) - ZF(t)

0 1y () — 22O )
(2.57) o+ I?f (f;()t) dn = — q‘;((;) zr (1)
- Opu(25(1), ) kuh()

(2.59) z5(0)=0b, 2zr(0)=H>b
(2.60) Wég(t) =0
(2.61) 25(t) <0
(2.62) % >0
(2.63) 0 <zp(t) < zg(t) < zp(t)
(2.64) quw(t) >0

The unknown quantities of (2.54)-(2.64) are the water flux q,, (), the boundaries zp(t), z5(t) and zr(t),
the freezing temperature T's(t) = T'(zs(t),t) and the water pressure gradient Op,(zs(t),t)/0z. Equation
(2.54) comes from integrating the energy balance (2.30) in the frozen fringe under the assumption of
quasi-steady process. Equations (2.55) and (2.56) (where we defined vg = v(Ts)) are respectively (2.38)
and (2.39) (with ¢, ~ ¢;), while (2.57) and (2.58) come from rearranging (2.30), (2.31), (2.37), (2.40).
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Equations (2.60)-(2.62) are the most peculiar of the model. In particular, (2.60) is a consequence of the
quasi-steady assumption and of (2.40), (2.62) means that no ice lens is forming within the frozen fringe
(see [18] for details). Whenever 2g(t) vanishes, a lens is growing at the height z = zg, whenever 25(t) <0,
the freezing front is advancing (frost penetration); in the latter case, the water pressure gradient at the
freezing front must vanish. Condition (2.64) guarantees that the water is sucked up towards the region
where the change of phase occurs.

We refer to [18], [19] and [20] for the mathematical analysis of the problem. We only summarize the
mathematical results, which allow us to predict the kind of freezing process, according to the given initial
data. We first define the following functions, which are known once the properties of the soil and the
boundary temperatures are given:

ib Ki(n)
(265) ®1 (Sat) = ¢ s
P80 huh(t) = [ ks
_[Kam,
(2.66) wa(s) = J ) dn +
(267 oa(,t) = 17 | [ ksl = kan
0

In [] it is shown that if p3(s) > 0 for any s < 0, then system (2.54)-(2.64) has no solutions. On the other
hand, if p2(T,) = 0 for some T, < 0, then there exists a unique temperature T,(h(t)) satisfying

K5 (Tp(h(t)))
kpr(Tp(h(t)))

Thus, admitting that the equilibrium temperature 7T, exists, we have the following cases:

@2(Tp(h(1)) = eul @1(Tp(h(t)), t)ps (T (h(t)), t)-

(¢) if krg(0) > ksT, + (H — b)Lpips(T,,0), then a melting process will occur (g, < 0),
(ii) if

KT, (1(0)
Ay <k <

T 00 + (= D Lpipa T (1(0).0) (14 puL
S kaO' + (H - b)Lpl(103(T0>0)
then a lens formation process will take place,

K2 (Tp)
kpp(Tp)

() i kya(0) < ks Ty + (H =0)Lpiga(T,,0) (14 puL
take place.

> , then a process of frost penetration will

In [19] several qualitative properties of the solution are investigated. In particular, the attention is
focussed on the possibility of switching from un process to the other. We end this section with the
foolowing remark. A more sofisticated (and realistic) way to switch from one process to the other consists
in the possibility that the water pressure attains the critical value ¢ in some point of the frozen fringe.
Actually, the new lens will start growing within the transition region. In the quasi-steady assumption the
water pressure profile is non decreasing in the frozen fringe and attains its maximum value at z = zg (see
picture ). Therefore, in order to encompass such a possibility the evolutive model presented in section is
appropriate. This aspect of the problem is the subject of present mathematical investigations by us.

3 A non-standard problem of filtration in a porous medium

We are going now to present a second application of the general conservation equations we discussed in
section . The problem consists in a filtration of a multi-species fluid through a composite porous medium.
The main feature of the process is the strong interaction between the liquid and the components of the
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porous medium, caused by mechanical and chemical effects of the flow on the porous matrix and vice versa.
The context of such a research program, promoted by illicaffe of Trieste, Italy, was the understanding of
the complex phenomena which take place during the filtration of water through a layer of ground coffee
when the rxpresso machine is operating.

3.1 The physical problem

The physical situation can be outlined in the following way. The water filters through the medium made
of a compact coffee bed by applying a pressure on the top of the layer (typically: 9 bars). The temperature
of water is quite high in a standard coffee machine (about 90 °C'). At the opposite surface, the liquid
outflows from the medium. The process is sketched in figure 3.1.

incoming water flow
+  (given pressure) |

| ¢ ectio ;liquid l¢ removal process

____________________ compact layer

Y  outcoming flow v
(atmospheric pressure)

oo @oc«——— particles bound to the porous matrix

0 O .
..o @ porous matrix

o O
®

oo

removed particles transported by the flow
compact layer

fig. 3.1: a simplified scheme of the ground coffee layer: the cylinder is the coffee cake, and the lower rectangle is a transversal
section of it.

The physical processes developing during the experiment are both of mechanical type (filtration) and of
chemical type (extraction of substances). The two processes are strongly coupled: the extraction changes
the properties of the liquid (density, viscosity) and of the solid (porosity, hydraulic permeability); on
the other hand, the filtration velocity affects the extraction kinetics. If we let down the temperature to
few degrees (4° C), (as in the experiments performed in [16])the extraction process is drastically reduced
and the mechanical effects are in evidence. However, even in this case the process is complex the same.
Actually, two experimental observations point out some non standard aspects, which cannot be explained
just modifying Darcy’s law of filtration in a porus medium in one of the ways suggested by the literature

([1):

(1) flow is not constant for constant injection pressure, but displays an initial transient in which a
sharp maximum is reached and then decreases in time towards an apparently asymptotic value
(dependent on temperature and pressure),

(7i) even the asymptotic value is not proportional to the injection pressure (as we would expect from
Darcy’s law), but it increases until a certain value, and then remains constant or even decreases for
larger values of pressure, thus exhibiting a non-monotone behaviour.

Figure 3.2 shows this non standard behaviour of the liquid discharge.
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discharge (ml/s)

25
20

3 bar
15

5 bar
10 7 bar
5 -

=% time (s)

fig. 3.2: pressure dependence on flow during percolation.

A second series of tests puts in evidence further surprising effects. Such tests are performed by percolating
water through an over-turnable extraction chamber. The direct flow has the described behaviour and once
the asymptotic discharge has been reached the cake seems to behave like an ordinary porous medium.
However, as the percolation chamber is rotated, the flow surprisingly goes through the exponential decay
once more (see fig. 3.3).

discharge (ml/s)

- [l

2 4 6 8 10 12 14 16 18 20 22 24 time (s)

fig. 3.3: direct/inverse discharge curve.

This effect suggests that the ground coffee particles may exhibit a progressive rearrangement under the
action of the flow. Actually, electronic microscopy shows that ground coffee contains a component of
fine particles, which can be removed and transported by the flow: after the flow inversion the particles
which accumulated first in a lower section of the cake (causing an increase of the hydraulic resistance)
now counter migrate, with an initial increase of the hydraulic conductivity in the opposite direction and
subsequently leading the system to the previous steady state.

In such a setting, the fines are expected to migrate and eventually to accumulate in some part of the bed,
typically at the outflow surface.

3.2 The mathematical model

We refer to [3] and [4] for the detailed description of the model. Our conceptual model consists in
considering a rigid porous skeleton, where n families of substances are bounded on it. Indexes k =
1,...,n1 < n correspond to fine particles species, while & = n; + 1,...,n correspond to dissolvable
species. The percolation of water gives rise both to removal of fine particles and to the dissolution of
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other substances (typically as solutes). Referring to the notations of section 1, we find it convenient to
consider N = 2n + 2 species forming the medium, namely

(i) k=1,...,n; are n; families of fined solid particles, bound to the porous matrix, with concentrations

br, kK =1,...,n; (corresponding to g of section 1),

(¢i) k=n1+1,...,n are n — n, families of substances bound to the porous matrix which may dissolve
in the liquid, with concentrations by, k =n{ +1,...,n,

(ti1) k=n+1,...,n+ ny are the fine particles of point (i) when transported by the flow, with conce-
trations my, k=1,...,nq,

(tv) k=n+mn1+1,...,2n are the substances of point (i4) when dissolved in the multi=species flow as
solutes or droplets, with concetrations my, k=n; +1,...,n,

(v) k=2n+1is water, with concentration .,

(vi) k= 2n + 2 corresponds to the rigid porous skeleton, which is made by large particles and which is
expected to be undeformable.

According to the notations of Section 1, we will denote the volumetric fractions of the species as follows
(see (1.1)):

:u’k:ﬁka 7k:17"'7nun+k:nk7 7k:17"'7n/j’2n+1:77uh H2n+2:190-

We assume that the medium is saturated and we define the porosity € as the volume fraction occupied
by water and by the moving dissolved substances:

(3.1) e=n") 41, where n™) = Z M-
k=ni+1

The complementary volume 1 — ¢ is made by the fine particles at rest and in motion, the porous skeleton
and the dissolvable substances still bound to the porous matrix:

(3.2) 1— e =g +00+00) +6.,,),

k k n
where () = 3 M, Ony) = 30 Ok, 0" = 30 Oy
k=1 k=1 k=k+1

We will consider a one dimensional model. In a space-time plan, we expect a situation like the one drawn
in figure 3.4: Dy = {(z,t) : 0 < z < s(t), 0 < t < T'} is the region where the removal-dissolution process
(species k = 1,...,n1) takes place. The complementary region Ry = {(z,t) : s(t) <z < 1,0 <t < T} is
the compact layer where fine particles accumulate giving rise to a region with high hydraulic resistance.
The lines z = 0 and = = 1 are respectively the inflow and outflow surfaces; the line s(¢) separating Dy
from Ry is a free boundary. The dissolving process (species k = n; + 1,...,n) may take place also in
Rr.

S

inflow surface outflow surface

—_— —_—

Dt

active” regio

1 x

figure 3.4: the regions Dr and Rr
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Since we will focus our attention on the mechanical processes, we will neglect the thermal aspect of the
problem, so that we assume that the temperature is nearly constant during the filtration process.

Ounly the species my, £k = 1,...n are moving. We call V,,,, their molecular velocities. We introduce the
volumetric compound velocity ¢ (volume of fluid crossing a unit surface of the medium in a unit time)
and the average velocity V:

n
g=nVot+ Y WV, V=g/c
k=ni1+1
We assume that the fine particles (species 1,...,k) are transported convectively by the flux, while the

dissolvable species diffuse in the fluid with a diffusive molecular flux J; = —D;V(m;/e)(Fick’s law).
Hence, we have:

(3.3) Vo =V, i=1,...,0k  Ji=mi(Vm, = V)/e=V(mife), i=k+1,...,n

As a consequence, we make use of equations (1.7) for the moving species k = n+1,...,2n, by considering
that Iy, = —8bk/8t:

8mk 0 q _ 6bk _
(34) W‘i—%(mkg)——ﬁ, k‘—l,...,nl, (.’L',t)EDT
omy, 0 0 my, 0 q\ _%
(35) ot +(9a:< Dregee >+ 5 (m2) ==5F

k=ny+1,...,n (x,t) € DrURr

The kinetics of fine particles and dissolvable species are regulated by means of the following empirical
laws:

Oby,
(3.6) 6—; = —Fi(q,b)Ge[bi — Br(q,b)]", k=1,...,m, (2,t)€ Dy
(3.7) %:—Hk(q,b), k=ny+1,....,n, (z,t) € DrURyp

In (3.6), (3.7) F;, G;, H; are positive functions. The threshold concentrations S play a crucial role in
the model. They decrease if the flux increases, since a more intense flux operates in a larger population
of bound particles. The dependence of the functions Fj, Gy, Hy on the whole vector b is explained by
possible interactions between different species (for instance, a coating of fat substance can interfere with
the dissolution of the underlying components).

The following equations can be obtained by combining the conservation equations (3.23),(3.24) with (3.1)
and (3.2):

e, 94 _ 9 pim

(3.8) =gl Dg, (5,0) € DU Ry
9 , 9 qy _

(3.9) 9 + Oz (n(nl)g) =0, (x,t) € DrURy

They are useful from the mathematical point of view and physically expressive. Both of them express
saturation and incompressibility. The first one says that the variation in porosity is due to the dissolution
of substances from the porous matrix and to the incoming or outcoming flux. We remark that the
quantities corresponding to the fine particles are not present in the evolutive equation for the porosity,
since they are computed in the complementary volume both if they are bound to the porous medium
and if they are in motion. The second equation is the conservation of the total flux of all the moving
components: actually, the second term can be seen as the volumetric flux of the fine particles.

Finally, we assume that the liquid flux is given in terms of the pressure gradient:

0
(3.10) q= —K(q,b,m,s)a—i, (z,t) € Dr U Ry
The hydraulic conductivity K is constant in the compact layer Rr.
The initial conditions of the problem prescribe the concentrations and the porosity for ¢ = 0:
(3.11) my(z,0) =myo(z), k=1,...,n, z€][0,1]
(3.12) e(z,0) = eo(z), =z €]0,1]
(3.13) be(z,0) =bio(x), k=1,...,n, =z€][0,1]
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The boundary conditions are one of the most delicate point in the model. At x = 0 (inflow surface), we
assume that there is no immission of fine particles and that the velocity of the diffusing species is zero,
that is (see (1.21))

(3.14) me(0,8) =0, k=1,...,m, 0<t<T

om (O)t)mk(ovt)
3.15 Dpe(0,t 0,t —_— 7 k= 1,... 0<t<T
( ) kg( ) ox ( ) E(O,t) ) ny +1, y 1, <t<

At the same boundary we prescribe the inflow pressure:
(3.16) p(0,t) =po(t) >0
At the free boundary s(t) we assume, as it is natural, that the liquid pressure is continuous:

(3.17) [P =0, = =s(t)

Moreover, assuming that the concentrations of the dissolvable species relative to the liquid (m;/e, i =
k+1...,n) is continuous at = = s(t), that is

(3.18) H%H:o k=ni+1,....n

we get from (1.21)

0 mp _ _ _

As to the fine particles, we assume that they are completely at rest in the compact layer. We call M}, the
concentration of the fine particles in that region, k = 1,...,ny. The structure of the compact layer, which
corresponds to a sequence M, ..., My, , depends on the history of the process. To model the formation of
the compact layer means to prescribe a constraint for the concentrations My, that is to define a packing
configuration. A simple but reasonable assumption is to assume that the medium is compact when the
incoming particles occupy the maximum volume at their disposal, which is the quantity ©. By using
(1.21) for the fine particles, we get the free boundary condition

(3.20) (© = (Nny) +0nr))) :——Zaknk, r=s(t),0<t<T.

Finally, we assume that the outflow pressure is the atmosferic one
(3.21) p(1,t) =0

and that there is no diffusion at the outflow surface x = 1:

0 my _

3.3 The mathematical result

We are going now to summarize the set of equations of the model:

8mk 0 8bk o
omy, 0 6 0 q __%
(3:24) ot +8m< Diegy >+8x (m’“g) BT
k=ni+1,....,n ( )EDTURT
(3.25) qg=—-K(q, b,m,s)%, (z,t) € Dy U Ry
Oby,
(3.26) 5 = —Fi(q,D)Grlbr — Bi(g, )", k=1,...,n1, (z,t) € Dy

ot
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(3.27)

(3.28)

%:—Hk(q,b), k=n+1,...,n, (x,t) € DrURp
- 2 — ___ plm D

8t+8x ata , (z,t) € DrURyp
@4-3%(01172):0 (z,t) e DrUR

or 61’k:1 kk8 ) ) T T
mg(z,0) =mpo(z), k=1,...,n, z€]0,1]

e(x,0) =¢go(z), z€]0,1]

be(z,0) =bro(z), k=1,...,n, z€][0,1]

m(0,¢) =0, k=1,...,n1, 0<t<T

Dks(o,t)%(o,t) -

ny

(6_(77(n1)+9(n1)))‘§:_gzaknk) :L’:S(t),OStST
k=1

0

%%(u) =0, k=m+1,...,n

p(O,t) :po(t) >0, p(]_,t) =0, 0Lt<LT, S(O) =1

23

The 2n + 4 unknown quantities are the concentrations by e my, (or the specific volumes 6y e 7 ), the flux
q, la pressure p, the porosity £ and the interface s.
In [3] we proved that system (3.23)-(3.38) has exactly one solution. We are not going to reproduce here
all the details of the proof: we will summarize the main steps of the procedure.
The assumptions on the given functions are the following:

1. K(b,m,¢), ® = Fi(q,b)Gr(n), Br(q,b), k =1,...,n1, Hp(q,b), k =n1 +1,...,n are non-negative

C" functions such that:
0 < Kp < K(bym,e) < Ku ||| < oo, ||H|| < o0
|Sk(q1,0) — Sk(g2,b)| < LE g1 — gzl
1 2 b (1) (2)
Sk (g, b)) — Sy (q,0)| < Lg, lrél%xn b, — b7

OSk 0S;

‘8—(1(%,1)) - 8—q(Q2,b)‘ < qukq|Q1 — g2
9Sk(q, b(l)) 0S5k (q, b(2)) b 1 2
‘ 6b] B 8()] S LSkbi 1213%% |b£ '- bsﬂ )|

where § = (®1,..., By, Hoy 1, Hy), ® = Y0 & H=Y1 . H,
and [[W]| = sup  [W(q,b)].

q2>0,0<br <by,0
eo(x), mio(z), bro(z), k=1,...,n and po(t) are C'-functions such that

0 < pg* < polt) < pit
meo(x) Z0, bro(z) Z0, =z €]0,1]
Ny .0(2) + 0(nny0(@) <O < 1= (Bo(z) + 6 (), 2 e[0,1].

1— (@ + 6(z) +93"1)(x)) <eolr) <1—bp(x), z€l0,1].

Under such an assumption it is not difficult to find out that 0 < el < go(x) < e} < 1,

where ' = xren[(i)r’ll] (1 — (@ +00(x) + 9(()”1)(33))) , el = Jél[%,}i] (1 —6p(x))

z €1[0,1]
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The mathematical procedure is based on an iterative scheme, which consists in fixing a pair (q(z, t), s(t))
in a suitable space (specified below) and following the steps:

e calculate bg(z,t), k=1,...,n, by (3.26), (3.27) and (3.32);
e solve the O. D. E. (3.28), (3.31) to find &(z,t);

e calculate my(z,t), k = 1,...,n; from the hyperbolic problems in Ry given by (3.23), (3.30) (k =
1,...,m1), (3.33) and my(x,t), k =n1 +1,...,n from the parabolic problems of diffraction type in
R7 U Dy given by (3.24), (3.30) (k= ny +1,...,n), (3.32), (3.34), (3.35), (3.37);
e compute p(z,t) by (3.25), (3.38).
Equations (3.29) and (3.36) are used in order to find a new guess ¢ and §.
Formally, we denote by Br the rectangle (0,1) x (0,7) and we define the set
ST(U’la U2, Aya At: Mya Mt: 50, A87 MS) =
{(u(y,t),s(t)) | u € Cl’l(BT)au(yaO) = qo(?/)a 0 S Y S 170 <u S U(y,t) S uz2,
ou
—(y,t)| <A
By (y,t)

> Ay,

ot

0 _
—“(y,t>‘ < Ay, (51) € By,

) G
a—yU(yl,t) - a—yU(ymt)‘ < My |yr —y2|, Y y1,92 € [0,1],

0 0
G0 = G| < Ml = el Ve € 01,
s€C'0,T],s(0) =1, 0<so<s(t)<1l,—A,<5(t) <0, 0<t<1,

|§(t1) — S(t2)| < My |t1 —t2|Vt1,t2 S [O,T]}

For a pair (u,s) € Er, set B
q(z,t) = u(z/s(t),t), (z,t) € Dr

and define the map F(u, s) = (4, §)

ay,t) = f(t)ma (y,t) € Br,
I (s(7), )a(s(r), 7) i
0=t / 0= (o (5(1.7) + O o)1) 7 €T
where | = 1,,)/e and “
7t = a(0.6) = — Pott
}) 1 1 g+ 1—s(t)

0 1+l(£7t) K(Eat) KO
Then define G(z,t) = i(x/5(t),t) in the set {(z,t) : @ € [0,5(t)], t € [0,T]}.

If (@, 5) is a fixed point of F in &, then § = @(z/5,t), 5 together with (b, m,&,p) are solutions of (3.23)-
(3.38).

Remark 3.1 : the initial flux qo is not given, but it has to be calculated:

PO(O) 1
/1 1 1 e 1+ l(x)
o 1+10(&) K(bo(§),mo(€),e0())

q(r) =

with ly = Gm).0 given function.

€0
We also remark that e is not necessarily differentiable w. r. t. z. Using (3.29), we get

s <18q 1

0
- )

___'_7
qO0r £+, O
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Moreover, we replace € + 1(,,) with —fg(z) + (0 + 8(n,))/ 0%, which is computed by means of

oG on oo .,
ot~ 0q Ox VoSr-¢, k=1,...,n

Ce(z,0) = Co(z) =0 (x), k=1,...,n

o
Problem (3.23) (k=1,...,n1), (3.30), (3.33) for my, k=1,. n1 (ﬁne particles) is replaced by

oE
Th 1 ith E(z,t h that — + .
en, replace ¢/e wi (z,t) such tha o = (Co Z Ck)

O, OE  qOny 06,

Zk - = — =1,. D
ot ™ or T o a0 F s (@,1) € Dr
me(x,0) =mgo(x)/pk, k=1,...,n1, x€]0,1]

n:(0,6)=0, k=1,...,ny, 0<t<T.

On the other hand, problem (3.24) for the diffusive species k = n; + 1,...,n is modified by replacing

Oe/0z with
. dq 8E

Parabolic problem w. r. t. ¢, = my/e, k =ny + 1, ...,n in the domain D7 U Rr becomes

Ocy, Ocy, 8ck ap(m) .

E_F _:L’<_ al’>+ q—DkE %_CkT_Hk’ (:U,t)EDTURT,

ck(z,0) = mpo(z)/eo(z), =z €]0,1],

9k o1y = -2 (4O g ) 0,0, 0<t<T

dz ) 2(0,t) \ De(0,1) ) TR ED ’

o[foz] -0 o

ack( t)=0, 0<t<T.

Oz
We first obtain a local result, which is based on the proof (given in [3]) of the two following lemmas:

Lemma 3.1 Define

el — Ay T/s0, €2 = b + e + 105,

€1 =
~ ~ nl
Ci = |Inmooll/eg” + | ®llus/ez, & =Y Bk(q, pr61,- -, pubn)/pi-
k=1
Under the assumptions
(1) €2C1 + |00l <©
0K
(iii) the Lipschitz constants w. r. t. x of €0, M(n,),0, n(()nl), s ném)yo and LqSi, I'S;,i=1,...,n are

sufficiently small

then it exists a set of positive values { T, u1, u2, Ay, Ay, My, My, so, As, Ms} such that if (u,s) € Er,
then (i, 5) € Er.

Hence the map F operating on the closed, convex and bounded set & has the property F(Er) C Ep for
a suitable choice of the constants.

Lemma 3.2 Under the same assumptions, together to
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(iv) L%Z_q, Lf’gibj, i=1,...,n sufficiently small,
the map F is continuous in Er and F(Er) is precompact.

By applying the Fixed Point Theorem of Schauder, we get at least a solution of (3.23)-(3.38) for a suitable
T>0.

The well posedness of the prob}em can be extended far any time ¢ > 0.

[ vrpg”

— ,ea =l + el + ||0[()n1)|| and choose C; s. t.
€o

For this purpose, define § =

ni ~ 9”1
<||77( m),o|| +ﬂ> 1-p) 1< < 196n1) 01l

€o €2

Proposition 3.1 Under assumptions

. €/eqt 1
(Z)a 1 _OB ||77(n1),0|| + ||0(n1),0|| + 62@ < 97 6 < ]->

(i)a  p'(1+C1)?

oK _,

dq ’

(7i7) of lemma and (iv) of lemma , system (3.23)-(3.88) has exactly one solution (my, ..., My, b1, ...,
bn, €,q,p,8) for any time t > 0.

The proof of Proposition is based on the following arguments:

e (i)a, (ii)a are more restrictive of (7) e (i), hence it exists a local solution in [0, 7]

The solution verifies the following properties:
mo _ 1
(]-) S(t) Z Smin = 1- 67 mo = fO (n(n1),0 + 0(n1),0)dx
(2) the concentration of fine particles is below the critical value: 9,y +0(,,) < ©, (2,t) € Dr;

(3) et <e(x,T) <ed, x€[0,s(T)].

e apply the local result for ¢t € [T, 2T].

By iteration, find a solution global in time.

3.4 Non-constant temperature

Let us call ¢, £ = 1,...,N + 2, the specific heats of each species. We can assume that ¢, = cgin,
k=1,...,n, as it is natural. Energy balance (1.17) writes (assume no change of phase occurs)
- or 9

oT
(339) kzﬂ(mk + bk)cka + % <_k(m) b,E, q)%) +

a T & 8 rm\\ OT my.. \ 0T
+I§clcmkV% + kgl Ck (mkV - EDk% (?)> e + Cwpuw (q - Z n—>"V; o 0.

k=ni1+1

In (3.39) we denoted with p,, and ¢, specific density and specific heat of water, respectively.
By virtue of tha mass balance conditions (3.35), the condition on the free boundary (1.22) is simply

(-

The problem, which is more complicated, because the concentrations ¢, and my (and possibly all the
coefficient of the equations) depend on T, is an open question by the moment.
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