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Abstract

For a steady-state heat conduction problem in a poligonal domain  , with heat fluxH ‘§ n

condition in a portion of the boundary, , and a Fourier type condition in the rest of the>2

boundary,  , we obtain the minimum total heat flux on , so that the whole material is in> >1 #

the solid phase. For this purpose we use the finite element method in order to convert the
optimization problem into a linear programming problem.
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I. Introduction

We consider a steady-state heat conduction problem in a material  which occupies aH

poligonal bounded domain in , with boundary =  (with meas( ) 0 and‘ > > > >n
1" # 

meas( ) 0). We impose a Newton law with a transfer coefficient 0 and an exterior> !#  

temperature b 0 on , and an outcoming heat flux q 0 on . We assume, without loss > >1 2

of generality, that the phase-change temperature of the material is 0°C.

This problem was studied in [TaTa] and it was stablished that if the heat flux q is between
a minimum flux q  and a maximum flux q , which are functions of the coefficient  and the7 M !

temperature b, then there is a steady-state two phase Stefan Problem, that is the temperature is
of non-constant sign in .H

In [GoTa1] a thermic flux optimization problem was solved: the maximization of the
output heat flux on a portion of the boundary domain, , while on the other portion, , the> ># "
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distribution of the temperature was fixed. The maximization was carried out under the
condition that there is no phase change.

In [GoTa2] the maximum heat total flux on  was found, such that the temperature is>#

positive in the whole domain  considering a boundary Fourier type condition on .H >"

Following the ideas of these papers, the goal of the present work is to minimize the total
heat flux on the boundary  so that all the material is in the solid phase. In order to solve this>#

minimization problem we will use the finite element method and we will obtain a linear
programming problem.

We remark that all the results of this work are still valid if we consider that the boundary
> H > > > > > of the domain   is the union of three portions, ,  and , such that on and  there1 3 1 # #

exist the same conditions stated above, and  is a wall impermeable to heat.>3

In Section II we present the mathematical model of the minimization problem and in
Section III we discretize it and a linear programming problem must be solved in order to
obtain the solution.

II. Mathematical Model of the Problem

If   represents the temperature in  and we define the function u = k k , where) H ) )6 =
 

k  is the conductivity of the phase  (  =  for the liquid and = s for the solid)  then the3 3 3 6 3 ß

following equations represent the mathematical model of the corresponding steady-state heat
conduction problem [Du, Ta]:

     = 0  in ? Hu
    ,      œ Ð  FÑ  œ ;` `

` `
u u
n n¹ ¹
> >" #

! u (1)

    
where B = k b 0 and b is the exterior temperature.6 

We want to minimize the total heat flux on  with the constraint that the whole material>#

is in the solid phase. In other words  the problem isß

   Find   such that q   J(q )  = J(q) ‡ ‡ Inf
u 0 in Ÿ H

       (2)

where

J(q) =   q d   , q L' 

>#

# − Ð# >#Ñ

 The variational formulation of the problem is given by(1) 



Sanziel - Tarzia, Optimization of the heat flux, MAT Serie A, 7 (2004), 25-30                                           27

   a (u,v) = L (v) ,  v V , u V    (3)  ! ! a − −

where

 a (u,v) a(u,v)  uv d     ,             L (v)  L(v)  B v d! !
> >

œ  œ ! # ! #' '  

" "

  a(u,v)   u v dx  , L(v)  q v d   , V  H ( ).  œ f f œ  œ' '  

H >#

# H"

III. The Discrete Problem and the Linear Programming Problem
We construct a regular triangulation , of the poligonal domain  with Lagrange7 Hh

triangles of type 1, with afin equivalent finit elements of class C , and we approach the spaceo

V by [Ci1]:

V  v C ( ) v | P (T), T  ,
_

h h h T hœ − − a −š ‚ ›!
"H 7

where P  is the set of the polynomials of degree 1." Ÿ

The approximate variational problem consists in finding  u   V  so thath h! −

    a (u ,v )  L (v )  ,   v   V  . (4)! ! !h h h h hœ a −

  
We call R the total number of nodes of the triangulation, r is the number of nodes on the

portion of the boundary > >" and  p is the number of nodes on .2

Let a basis of the space V . We can think the basis asÖ ×=3
R
3œ" h

Ö × Ö ×  Ö ×  Ö ×= = = =3
R " < # R
3œ" 3œ :"3 3 33œ"

:
3œ<"= H N

N

where we denote  the function whose value is 1 on the node N of the boundary =j
3 3ß >" if j = 1,

of the boundary > H2 if j = 2 or of the interior of the domain  if j = H, and whose values are
zero in the other nodes. Then we have

   u =  u  u  uh
i=1 i= 1 i= p 1

i i i

p

! ! ! !< R
" #

< R 

R

= = =" #
3 3 3     (5) H H

where  and  u  (i = 1, . . ., r), u  (i = r + 1, . . ., p) u  (i = p + 1, . . .,  ) are the real" #
i i i

H R  R  R

unknown values at the corresponding nodes.
With the expresion (5) considering  , we get the following system ofand v = in (4)h =j

3

linear equations
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    A A A" # $
" #u u u b œH+ !

    A A A% & '
" #u u u       œH+ ! (6)

    A A A( ) *
" #u u u b œH+ Ð;Ñ

where the matrices , ...,  are given by:A A" *

A R  ,  A R  , " #
" " #
34 34 34 34=  = =  = Ð+ Ñ + Ð+ Ñ +− − r x r  r x  + ra ( , )  a( , )! = = = =" " "

4 3 4 3ß ßRÐ: Ñ 2 H

A R  ,  A R  , $ %
$ $ % % "
34 34 34 34=  = =  = Ð+ Ñ + Ð+ Ñ +− − r x   + r x r: RÐ: Ña( , )  a( , )= = = =# "

4 3 4 3ß ßH

A R ,  &
& &
34 34=  = Ð+ Ñ +−   + r  x  + rRÐ: Ñ RÐ: Ñ a( , )  = =H H

4 3 ß

A R  , A R  , ' (
' ' # ( ( " #
34 34 34 34=  = =  = Ð+ Ñ + Ð+ Ñ +− −  + r x   x rRÐ: Ñ : :a( , )  a( , )= = = =4 3 4 3

H ß ß

A R  , A R  , ) *
) ) # * * # #
34 34 34 34=  = =  = Ð+ Ñ + Ð+ Ñ +− −  x r  x : : :a( , )  a( , )= = = =H

4 3 4 3ß ß

u u u" #− − −R ,  R , Rr p N p  H Ð <Ñ

and      b = b = ! (b (b!
3 3Ñ − Ð;Ñ Ð;ÑÑ −< R

3œ 3œ1 p 1R , Rr p 
R  ,

with
b b!
3 3œ Ð;Ñ œ  d      q  d  .! # #F ' '  

> >" #

= =3 3
" #,

 The system (6) can be expressed as follows

      A bu ,     = Ð(Ñ

where  E E− R
A A A
A A A
A A A

N x N is the finite element matrix , =
Î Ñ
Ï Ò

" # $

% & '

( ) *

and
 u = (u u u b  b" #, , ) ,  H − œ Ð ß !ß Ð;ÑÑ −R b RN N ! Þ  
 

We obtain the elements b  and b through a numerical computation of the!
3 3Ð;Ñ 

corresponding integrals, for example by using the trapezoidal rule. For this purpose we
consider that the curve ( can be decomposed by>3 3 œ "ß #Ñ
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  = ,  with p 1 if  is open or  p if  is closed
s

> > > >3 3 3
4
3 = œ  = œ

4 œ "

and

  d   d  ' '! !  

 > >3 4
3

0 # #œ 0 ¸
4 œ" 4œ"

= =
1
# 4¸ ¸Š>4

3 0Ð Ñ  0Ða a4"Ñ‹,

where we have denoted with > >4
3 3 the portion of the curve  whose limit points are the nodes

a a4 and  the measure of that portion of the curve.4" and we have denoted with ¸ ¸>4
3

In this way the linear system  becomes inÐ Ñ7
Au  = +     Q ; ,µ µ

where À

ñ − and   ,; ; ;µ µR    p
3 is the value of the flux in the node aRp+i

ñ − , , , œ
µ µ µR   N ,  3 3approaches the value of b  for i = 1 . . .r and 0 for i = r+1, . . ., N,!

3

ñ Q Q
Q

Q
 =Œ "

#
"− −R RN  p N p   p‚ Ð  ‚ß  Ñ is a zero matrixß

Q#=(7 Ñ −33
R
3œR: + 1 R  p  p‚ is a diagonal matrix , with

      1
#
¸ ¸>3

# if  = + 1 or  = , 3 3 RR  : 
m33 œ
  ( )  1

#
¸ ¸ ¸ ¸> >3" 3

# # if  = + , . . ., 1, 3 # R R  : 

if ># is an open curve, or

 m if  = + 1, . . ., ,33 #œ  1 ( ) ¸ ¸ ¸ ¸> >3" 3
# # 3 RR  : 

if  > > >#
R:
#

R
# is a closed curve, (here we have considered =  ),   and the i-th component of the

vector approaches the value of  b  i.e. ( ) bQ ; Ð;Ñ Q ; Ð;Ñµ µ    .3 3 3¸

After all these considerations, the optimization problem (2) is transformed into the
following linear programming problem :

   Minimize    = 
u −


Y

X F( )^         ; ; µ µ
>#ß Rp (8)

where
 ("# #¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸>"

2
2 p 2 p-1 p-1, , . . . , , ) if is open,Ð  Ñ Ð  Ñ> > > > >"

# #


# # # >

X>#
=
 ("# #Ð Ð  Ñ Ð  Ñ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸> > > > >p p-1 p

2
2

# # #
"
# #+ ), , . . . , )  if is closed,>" >
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 Þ ß Þ  Y R
pp is the usual inner product in  and the set  is defined byR

  = {  Y    , ; ;µ µ− R R , Rp N x p N À G G −Ÿ . . }− ß

 with andG Q = A   A    " "  =.  ,
µ .

 
Taking into account that it results that the linear programming F( ) 0,   0 ^     ; ;µ µ  a  

problem  [Ci2].(8) admits at least one solution  

We construct a programm in MATLAB and we get the solution of the problem (8) for 
some different domains. From these numerical results we can guess that the minimum
optimum flux is given by is the solution of the following elliptic; œ ‡ `

`
u‡

n ¹
>#

where u  ‡

problem
     = 0  in ? Hu*

    = 0  , . u*¹ ¹
> >" "

`
`
u*
n œ F!
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