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Abstract

We study a one-phase Stefan problem for a semi-infinite material with temperature-
dependent thermal conductivity and a convective term with a constant temperature
boundary condition or a heat flux boundary condition of the type —qo/v/t (go > 0)
at the fixed face x = 0. We obtain in both cases sufficient conditions for data in
order to have a parametric representation of the solution of the similarity type for
t > to > 0 with tg an arbitrary positive time. We improve the results given in
Rogers-Broadbridge, ZAMP, 39 (1988), 122-129 and Natale-Tarzia, Int. J. Eng.
Sci., 41 (2003), 1685-1698 obtaining explicit solutions through the unique solution
of a Cauchy problem with the time as a parameter and we also give an algorithm
in order to compute the explicit solutions.

Key words : Stefan problem, free boundary problem, moving boundary prob-
lem, phase-change process, nonlinear thermal conductivity, fusion, solidification,
similarity solution.

2000 AMS Subject Classification: 35R35, 80A22, 35C05

I. Introduction.

We consider Stefan problems for a semi-infinite region x > 0 with temperature-
dependent thermal conductivity and a convective term with phase change temperature
6; = 0 [16]. In all of them is required to determine the evolution of the moving phase
separation x = s(t) and the temperature distribution é(z,t). The modeling of this kind of
systems is a problem with a great mathematical and industrial significance. Phase-change
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problems appear frequently in industrial processes an other problems of technological in-
terest [1],[2],[8] - [14],[17]. A large bibliography on the subject was given in [27]. We
consider one-phase Stefan problems in fusion process with nonlinear heat conduction
equations.

Owing to [19], [24] we consider the following free boundary (fusion process) problem

pc%—%(k(@,x)g—z) —v@%, 0<z<s(t), t>0 (1)
k@@ﬂﬁ%%&ﬂ:—%%qwﬂht>0 (2)

k(0 (s(t),1),5(t)) % (s(),6) = —pls(t) , £ >0 (3)
0(s(t),t)=0,t>0, 5(0)=0 (4)

where the thermal conductivity k(6,x) and the velocity v(f) are given by

d 1+ dx
v(0) = pc—— , k(0,r) =pc—
O) = re o O.2) = pe e

(5)
and ¢, p and [ are the specific heat, the density and the latent heat of fusion of the medium
respectively, all of them are assumed to be constant with positive parameters a,d and
real parameter b. This kind of nonlinear thermal conductivity or diffusion coefficients was
considered in numerous papers, e.g. [3, 6, 7, 15, 20, 21, 25]. The nonlinear transport Eq.(1)
arises in connection with unsaturated flow in heterogeneous porous media. If we set d = 0
and b = 0 in the free boundary problem (1) — (5) then we retrieve the classical one-phase
Lamé-Clapeyron-Stefan problem. The first explicit solution for the one-phase Stefan
problem was given in [16]. Here —qy/+/t denotes the prescribed flux on the boundary
x = 0 which is of the type imposed in [26]. We will determine which conditions on the
parameters of the problem must be satisfied in order to have an instantaneous phase-
change process.

In Section IT we consider the free boundary problem (1) — (4) with the nonlinear heat
coefficients (5) under the hypotheses b > 0 and a > bl/c, or b < 0. We follow [19, 24]
and we improve [19] in the sense that the existence of the explicit solution of the problem
(1) — (5) is obtained through the unique solution of the Cauchy problem (55) — (56) in
the spatial variable and the time ¢ is a parameter for ¢t > t; > 0 where t, is an arbitrary
positive time. This explicit solution can be obtained as a function of a parameter ¢ which
is given as the unique solution of the transcendental Eq. (38). We also give an algorithm
in order to compute the explicit solution for the temperature = 0(x,t) and free boundary
x = s(t).

In Section III we consider the free boundary problem (1), (3) — (4) with the nonlinear
heat coefficients (5) and the temperature boundary condition (62) (with 6y is a constant
temperature given on the fixed boundary x = 0) instead of the heat flux condition (2)
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under the hypotheses a > 0,d > 0,b < 0 and a + by > 0. We improve [19] obtaining
the explicit solution through the unique solution of the Cauchy problem (92) — (93) in
the spatial variable and the time ¢ is a parameter for ¢t > t; > 0 where t; is an arbitrary
positive time. In this case, the explicit solution can be also obtained as a function of a
parameter § which is the unique solution of the Eq. (85). We also give an algorithm to
compute the temperature § = 0(x,t) and free boundary = = s(t). Other problems with
nonlinear thermal coefficients in this subject are also given in [4, 5, 18, 22, 23].

I1. Solution of the free boundary problem with heat flux condition on the fixed
face.

We consider the problem (1) — (4). Taking into account (5) we can put our problem
as

90 0 [ 1+de 00 d
a:%((a+w)?%+2b(a+b€>) 0o <slt), £>0 (6)
1 00, @
(a+be(o,t))2%<0’t>_ vitt7! "
”a—is(’f)g_z (s(t),1) = —as(t) , ¢ >0 (8)
0(s(t),t)=0,t>0, s(0)=0 9)

[
where o = - ,qé‘:@ and a,d € R*,b € R.
c pc

If we define the transformations in the same way as in [20], [24]

{ y = 3 (@ +ant—1] | 5= 3 [0+ ds(e))? 1 0
O(y,t) = 0(x,t)

we obtain the following free boundary problem

— 1 — _
W _0 (L %) 4y o5),t>0 (11)
Ot Oy \ (a+1b0)" 9y
1 0 9%

, >0 (12)

(a+b§(0,t))25_y( R

%g_z (S(t),t) = —aS(t), £ >0 (13)
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6(S(t),t)=0,t>0, S0)=0 (14)

Then, we define the new transformation

(=) = Si) (a+ b8 (0,0)) do + (—ab+ a) 5(1)

ok R\ 1 . 15
Q(y’t)_—aer@(y,t) =t (15)
S () =" |50 = (~ab+a) S(0).

\

In order to obtain an alternative expression for y* we compute

%f = —(a+b§(§(t),t))§(t)+/bgf (0,t)do + (— ab+a)§(t):
S(t)
<y 1 0
= —abS — o=
’ (t)—i_sé)baa ((a—f-b@(a t)) do )d
_ —abé(t)er((aer;(y’ ))zg—z(y )—%2—5(?@),0) _
b o

T b b b 0f
N [5_0 ((a + b0 (o, t))25—0(g’ t>> o (a + 06 (0, t))Qi?y(O ¥ (16)

then the new expression for y* is given by

y*(y,t)z/ (/%(a-i—bg(aﬂ'))dai)ji) d7+/(a+b§(a,0))daz

Y
= / (a+ 06 (0,t))do — 20q5V/t (18)
0
Now, applying (10) and (15) the problem (6) — (9) is transformed in a Stefan-like
problem with a convective boundary condition given by [28§]
o0+ 0*0*
ot oy’

2@Vt <yt < ST, >0 (19)
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0 .
0 (S*(t"),t") = ™ S*(t") , t* >0 (21)
dy*
0" (S*(t"),t") =03, " >0, S°(0)=0 (22)
where
ab 1
e — 0 =—. 23
“ T (—ab+ a) ’ I (23)
Then, if we introduce the similarity variable:
5 y*
§ = (24)

vV 2y*t*

where v* is a dimensionless positive constant to be determined, and the solution is sought
of the type

0" (y",t7) =07 (&) , S() = /27t (25)

then, we get that (19) — (22) yields

d2®* * *d6* * 2 *
wT T =0, —bgiy /2 <€ <1 (26)
do* * 2 _ % % * * [ 2
d_ﬁ* <—bCJ0\/ ?) = /27*¢yb © (—bQO\/ 7*> (27)
doe* . .
e (1) = 0. (29)

The solution of the differential equation (26) is given by
O (¢*) = Aerf (\/gg*) + B (30)

where A and B are two unknown coefficients to be determined. From (28) and (29) we
get

A= \/E\/ga* exp (%) (31)
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B=1_m/Tarexp(%)erf (,/%) : (32)
where
erf (z) = Eah exp (—u?) du . (33)
VT Jo

The unknown constant 7* is determined by the remaining boundary condition (28)
which yields the following equation

QT =2 : e (F) 77 >0 (34)

where

R(z) = = P(z) = zexp(z?), 2 >0 (35)

By defining the new unknown
5=/ L (36)

the equation (34) is equivalent to the equation

ac
X
9(ba5, ) P(6) = Lh— — E@) , 6>0 (37)
that is
g(650-5)=~g(bas %)  6>0. (38)

Theorem 1.- If b > 0 and @ > %, or b < 0, then the free boundary problem (1) — (4)
has a unique solution of the similarity type which is given by
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where

~ [ Z
and A, B and ~y are given by (31),(32) and (43) respectively.

Proof. First, we have to study the existence and uniqueness of the equation (34) or
(38) . It’s easy to see that g(0,p) = —oo, g(+00,p) =1 and %(x,p) >0,Vr>0,Vp<0
[4]. Therefore if we have b > 0 and

1—%<0(thatisa>ab:%) (41)
(0%

and taking into account that g (bqg , \%) > 1, the equation (38) has a unique solution

d > 0. From (25) we obtain the expression of S(t) given by

S(t) = /29t (42)

where v is given by

*

2
7= (—ab+a)? (43)
From (24), (25) and (30) we can obtain the parametric solution of the problem (1)—(4)
given by (39) and (40) . Note that £* [c—o= % = — ,%bqg = —%.

If we have now b < 0 then the equation (38) for § is given by

9(0,a0) = —g (—bqé, #) , 0>0 . (44)
which has a unique solution § > 0 taking into account that

a=01-5) >0, g(-bak)>1, <0 (45)

Remark 1. There does not exist any solution to the free boundary problem (1) — (4)
if b> 0 and 0 < a < % because the non existence of a real solution of the Eq.(38).

In order to obtain the explicit solution for the cases b > 0 and a > %, or b < 0 we

have:
(i) There exists a unique 6 > 0 solution of the Eq. (38).
(i) We have

v = 252, A= a*ﬁP(é) , B= 9; — a*ﬁE(é) (46)
where

of = b 0 =1, a=l/c (47)
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(¢4i) We have
0" (y*, t") = ©" (¢*) = Aerf (\/gﬁ) + B =B+ Aerf (6¢")

with & = ;2 and

S*(t) = /2yt = 26/t
(iv) We have

Yy
Y (y,t) = / (a+ b0 (0,1)) do — 2bg;V't , q = qo/pc
0

(v) We have

U

(1) = ot = VT

a—ab a—ab

1 = *(ar* et N 2 0 * B
at+bi(yt) 0*(y*,t) =07 (") = Aerf (29\/5) 4+ B =

v _
= B+ Aerf {ﬁ/o (a+ b0 (0,1)) da—bqgl

which is an integral equation for 6 = 6(y,t) where ¢t > 0 is a parameter.
(vi) The free boundary s = s(t) is given by:

s() = L[(1+450)" = 1] = 5[+ 25vD)" — 1] =
ot = e 2VE+ ]

(a—ab) a—ab

_ 2%

a—ab

+

(vii) If we define

y _
Y(y,t) = —bgy = # /o (a+ b0 (0,t)) do

then we obtain

Y a+ b0 (y,t)
—(y,t) = —=2~=
ay(y ) 2V€

that is Y = Y'(y, t) satisfies the following Cauchy problem in variable y :

oY

1 1 <Q
a_y(ya ) = Wi <B+Aerf(y(y’t))> ,0<y <S(t),t>0

Y (0,t) = —bq; ,

where t > 0 is a parameter.

(48)

(50)

(51)

(52)

(54)

(55)

(56)
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(viii) The temperature 6 = 0 (y,t) is given by:

_ 1 _
Q(y,t)ZE[m—a],0<y<5(t),t>0 (57)

as a function of Y.
(iz) The temperature § = 0(z,t) is given by:

0z, t)=0(2 (VIi+de—1),t) = (58)

b | B+Aerf(Y(2(VIt+dz—1),t))
as a function of Y where s(¢) as defined in (52) .

1
——{ ; —a1,0<x<s(t),t>0

Theorem 2 Let us consider the hypothesis b > 0 and a > bl/c, or b < 0. Let 6 > 0
be the unique solution of the Eq. (38) and A and B the coefficients defined by (31) and
(32) respectively or by (46).

(1) There exists a unique solution Y = Y (y, t) of the Cauchy problem (55) — (56) for
all t >ty > 0 where t; is an arbitrary positive time.

(i7) There exists a unique solution § = 6(z,t) and s = s(t) given by (58) and (52)
respectively of the free boundary problem (1) — (4) for ¢ > ¢, > 0 where t; is an arbitrary
positive time.

Proof:
It is sufficient to prove that the Cauchy problem has a unique solution for ¢t > to > 0.
The ordinary differential equation, with parameter ¢ > 0, can be written as

oY
where
Gy t,V) = — ! (60)
YOI =S i\ BT Aerf(Y)
satisfies the condition
'g—g(y,t,Y)’ < Const , Vt>=1ty>0 (61)

with ¢y > 0 an arbitrary positive time.

Remark 2. The existence of a solution for t > tg > 0 with ty an arbitrary positive
time for the cases b > 0 and a > bl/c, or b < 0 is similar to the one obtained in the free
boundary problem studied in [20].

Remark 3:

The particular case b > 0 and a = bl/c can not be studied through a similar method
developed for the case b > 0 and a > bl/c because the transformation (15) is not useful
due to the definition of the free boundary S*(¢*) as a function of the S(t).

Remark 4:
For the cases b > 0 and a > bl/c, or b < 0 we can obtain the explicit solution § = (z, t)
and s = s(t) of the free boundary problem (1) — (4) by the following process:
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(1) Compute § > 0 as the unique solution of the Eq. (38).
(77) Compute
A=ao"\/mP(6) , B=0;—a"V1E(®))
where o, 0} and « are defined in (47).

(1i1) Fix to as an arbitrary positive time and compute Y = Y (y,t) as the unique
solution of the Cauchy problem (55) — (56) for ¢ >ty > 0 .

(1v) Compute the free boundary s = s(t) by the explicit expression (52)
(v) Compute the temperature 0 = (z,t) by the explicit expression (58)

III. Solution of the free boundary problem with temperature boundary
condition on the fixed face.
Now, we consider the problem (1) — (4) with a,d € R" and b < 0 but the heat flux

boundary condition (2) will be replaced by the following temperature boundary condition
(6o > 0) given by

9(0,15):(90,25>0,Witha+b90>0. (62)

We can define the same transformations (10) and (15) as were done for the previous
Section but now we get

W _ / (0,t)do + b %=
ot % ot (a+b0(0,1))" %Y
7
0

0% t)d + b 85( t)
— (o, t)do —(0,
a (l + b00)2 ay
Then
t Yy — Yy
*(y,1) —/ /3 (a+ b0 (o, T))da+L%(0 ) d7+/ (a+b0(0,0)) do =
e 9 (a+b6o)* 0y ’
o \'o 0
/ b [oB
= + b0 (0,t)) do + — (0, 7)dr. 63
[ @)oo [ 0. (63
0 0
Therefore our free boundary problem becomes (21) — (22) and
o0 9% 80
= 59*2 d AT A
ot oy 8(07‘)7’<y <S*(t*), t* >0 (64)

t*

7 5982/2_2(0a7)d7>t* =0}

(65)
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where 6% and o* are given by (23) and

* 1 _ 1 _ 1
90 T atb0(0,t)  a+b0(0,t) T a+bly (66)

It is easy to see that we have a classical Stefan problem so that the free boundary
must be of the type

s () =2yt (SO =yt 7 =q(a—ab)’) (67)

where v* (i.e. 7) is a dimensionless constant to be determined.
If we introduce the similarity variable (24) and we propose the solution of the type
(25) then the problem (21) — (22) and (64) — (65) yields (28),(29) and

d*O* de* bos? (%’

de= +7°¢ e 0, ,/27*‘{* (0 T)dr <& <1,1°>0 (68)
)
o (i [ Pomir) =5 100 (©9)

From (69) we must necessarily have that there exists a constant &} such that

t*

o6
/ o (0,7)dr =& be*g\/Qv*t* ) (70)

0

Therefore (68) and (69) can be written as

d€*2+75d—€*=0,§o<5<1 (71)
0" (&) = b5 - (72)

The solution of the problem (28),(29),(71) and (72) is given by
0" (¢*) = A’ erf <,/V2—*§*> +B ., &g<&<l (73)

where the unknown coefficients £, A’, B" and v* must satisfy the following equations

A'erf ({0\/7) +B' =65 , 4/ ri*
A erf (@) £ B =0y and 05\/56 = —Lexp (-5 6?) (75)

(-%) =%, (74)
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If we define
B=\%, z=&V% (B>2) (76)
we have to solve the following system of equations:
Alerf(z) + B'=0; , A'erf(3)+ B =05 (77)
exp( £ o . A’
6 I\//]_T ) 00 &= _ﬁexp(_z2> (78>
From (77) we get
0% — 65
’ ;0 (79)

" of (B) —erf (2)

O erf (B) — 0% exf (2)

b= erf () — erf (2) (80)
and from (78) we obtain
exp(=F7) — 5 F) s lerf(3) — erf(2)] (81)
M = & [erf(B) — erf(2)] (82)
with
5= VT _avmlatbby) o Vma (83)

S 0i—0  (a—ab)by 7 b

Taking into account that & < 1,b < 0 and a + by > 0, we have [erf(5) — erf(2)] > 0,
51 >Oand(52>0.

Taking into account the properties of the real function g = g(z,p), defined in (35),
for p < 0, from (81) we have

1 exp(—=f%)
6 B8

if 8 > xy where zy > 0 is the unique positive zero of g(z, —%) = 0 which is given by
o= E"1(1/41).

Moreover, for § we have the following equation:

& F(3)
018 eXp(52)

where the real function F' is defined by

F(z) = exp [(erf -1 (g(x, 5—3)))2} erf 1 (g(x, g—f)) , x> 0. (86)

z=erf ! lerf(B) — (84)

=1, B>x0=E"(1/8) (85)
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If we define the real function:

(52 F(.CI])
Glr) = ———= >0 87
(z) 6 vexp(x?) . (87)
and following [20] we have the following properties:
G(z) =0, lim G(z)= % (88)
0 ? T——400 51 + \/7_T
Then there exists a unique solution 3 > ¢ of the Eq. (85) if and only if 5 > 1if
and only if a 4+ bfy > 0 which is our hypothesis.
Moreover, we have
— 20
S(t) = 89
()= Vi, (59)
and for 0 < y < S(t), t > 0, we obtain
1
—— = Py t) =0 (&) =Aeaf (B)+ B =
Ty~ W =0 (@) = At ()
= B’—i—A’erf( y ) =
2V
= B +Aert z+—/ (a+ 06 (0,t)) do (90)
which represents an integral equation for @ in variable y with ¢ a parameter.
In order to solve this integral equation we define
Y(y,t) —z+—/ (a+ b0 (0,t)) do, (91)
which must satisfy the following Cauchy problem
oY 1 _
8_y(y7t) = 2\/¥ (B/JrA/erlf(Y(y,t))) , 0<y < S<t> , t>0 (92>
Y(0,t) =z (93)

Therefore we obtain the following theorem.

Theorem 3. Let us consider the hypothesis a > 0,d > 0,b < 0 and a + bfy > 0. Let
8 > 0 be the unique solution of the Eq. (85), and A" and B’ the coefficients defined by
(79) and (80) respectively.

(i) There exists a unique solution Y = Y (y,t) of the Cauchy problem (92) — (93) for
all t >ty > 0 where ¢y > 0 is an arbitrary positive time.
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(73) There exists a unique solution # = 0(x,t) and s = s(t) given by (95) and (96)
respectively of the free boundary problem (1), (3) — (4) and (62).

Proof.

(i) The Cauchy problem (92)—(93) has a unique solution Y = Y (y,¢) for allt > ¢, > 0

with ¢y > 0 is an arbitrary positive time following a similar method given in Theorem 2.
(#7) From (90) and (91) we get

Tot) =5 [B’ A ejf(Y(y, ) “} ()
that is
O(z,t) =By, t) =0 (% (m - 1) ,t> — (95)
1 1
b | B+ A erf(Y(2 (VI+de—1),1) a]
and
s(t) = é (1 + g§<t)>2 - 1] - % (1 + - fﬁabﬁ)g - 1] = (96)
T a —ﬁab {2\@ * a —6&bt]

Remark 5 For the case a > 0,d > 0,b < 0 and a + bfy; > 0 we can obtain the
explicit solution 6 = 0(x,t) and s = s(t) of the free boundary (1), (3) — (4) and (62) by
the following process:

(1) Compute the positive parameters §; and d, given by (83).

(7) Compute [ > 0 as the unique solution of the Eq. (85)

(771) Compute the coefficients

_ -1 1 exp(—3?)
z = erf " |erf(B) — 5—17}
x 2 _ Py* _ ﬁ ?
Vo= 267, 7_(a—ab)2_2(a—ab)
& = 3

(1v) Compute the coefficients A’ < 0 and B’ > 0 given by (79) and (80) respectively.

(v) Fix ty as an arbitrary positive time and compute Y = Y (y, t) as the unique solution
of the Cauchy problem (92) — (93).

(vi) Compute the free boundary s = s(t) by the explicit expression (96)

(vi) Compute the temperature § = 0(x,t) by the explicit expression (95).

Acknowledgments. This paper has been partially sponsored by the project PIP N°
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