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Uniqueness of Solution to a Free Boundary Problem
from Combustion with Transport *

C. LEDERMAN, J. L. VAZQUEZ and N. WOLANSKI

Abstract

We describe results on uniqueness and agreement between different kinds of solutions for a free
boundary problem of interest in combustion theory, which were presented in a lecture in the “VI
Seminario sobre problemas de frontera libre y sus aplicaciones”, Rosario, December 1998. For the
detailed proofs of these results, we refer the reader to [LVW1].

1 Introduction

The purpose of these notes is to describe some results, which were proven in [LVW1], on a free boundary
problem in heat propagation that in classical terms is formulated as follows: find a nonnegative function
u(x,t), defined and continuous in D C RN x (0, T), satisfying the equation

Au—l—Zaiumi —u; =0

in the positivity set D N {u > 0}. Besides, we assume that the interior boundary of the positivity set,
D N o{u > 0}, so-called free boundary, is a regular hypersurface on which the following conditions are
satisfied
u=0, -2%_ T
ov

Here M is a positive constant, and v denotes outward unit spatial normal to the free boundary. In
addition, initial and boundary conditions have to be prescribed on the parabolic boundary of D. Thus,
if the domain is a space-time cylinder, D = Q x (0,T), we prescribe initial data at t = 0

u(z,0) = ug(z) forz € Q,

as well as boundary conditions of Dirichlet or Neumann type on the lateral boundary, 8 x (0,7). We
will refer to this free boundary problem as Problem P.

This free boundary problem arises in several contexts (cf. [V]). The most important motivation to
date has come from combustion theory, where it appears as a limit situation in the description of the
propagation of premixed equi-diffusional deflagration flames. In this case, u is the limit, as ¢ — 0, of
solutions u° to equation P-.:

Auf + ) aiul, — uf = Be(uf),

where u®(z,t) = Ty — T'(x,t), with T the temperature of the reactive mixture and Ty the flame temper-
ature, so that T' < Ty and u® > 0. The function §.(u) represents the exothermic chemical reaction and
is nonnegative and Lipschitz continuous, positive in an interval (0, 6.) near v = 0 and vanishes otherwise
(i.e., reaction occurs only in the range Ty —6. < T < T). The parameter ¢ > 0 is essentially the inverse
of the activation energy of the chemical reaction. Finally, the integral [ . (u)du = M is fixed. The vector
(a1,---,an) represents the transport velocity of the reactive mixture. For further details on the model
see [BuL].

The study of the limit P. — P as e — 0 was proposed in the 30’s by Zeldovich and Frank-Kamenetski
[ZF] and has been much discussed in the combustion literature. For the elliptic stationary case see [BCN]
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and [LW]. The study of the limit in the general evolution case has been performed in [CV] in the one
phase case, and in [CLW1] and [CLW2] in the two-phase case (i.e., with no sign restriction on u).

Problem P admits classical solutions only for good data and for small times, since singularities can
arise in finite time. Various concepts of generalized solution have been been introduced in the literature.
When we perform the approximation process P. and pass to the limit ¢ — 0 this gives rise to a kind
of solutions to problem P, called limit solutions (see [CV]). On the other hand, the concept of viscosity
solution for problem P was introduced in [CLW2].

In [LVW1] we investigate conditions under which the three concepts agree and produce a unique
solution.

2 Main results

The purpose of [LVW1] is to contribute to the questions of unique characterization of the solution of the
free-boundary problem P and the consistency of the different solution concepts. The results in [LVW1]
can be summarized as saying that, under suitable assumptions on the domain, the reaction function (.
and on the initial and boundary data,

if a classical solution of problem P exists in a certain time interval, then it is at the same time the
unique classical solution, the unique limit solution and also the unique viscosity solution in that time
interval.

For definiteness we take as spatial domain a cylinder of the form Q = Rx ¥ with ¥ ¢ RV~! a smooth
domain, or a semi-cylinder, and we put homogeneous Neumann conditions on the lateral boundary Rx 0X..
We require monotonicity of the initial data in the direction of the cylinder axis. In the family of problems
P, we assume that the functions f. are defined by scaling of a single function §: R — R satisfying:

1. B is a Lipschitz continuous function,

2. $>01in (0,1) and 8 = 0 otherwise,

3. [B(s)ds = M.
We then define B.(s) = 15(£).
We write

Lu:= Au+ Zaiuzi — ug,

and we assume that the coefficients a; in the operator are independent of x1, the direction of the cylinder
axis, and belong to C*% (X x [0, 7).

Our results show in particular that there is a unique limit solution independently of the choice of the
function 5. Moreover, we actually prove that the limit exists for any approximation of the initial datum.

3 Classical and viscosity solutions

In this section we give precise definitions of the classical and viscosity solutions. In the situations con-
sidered in [LVW1] a classical solution is a viscosity solution.

Definition 3.1 Let ) = 2 X (T, Ty), with @ C RN a domain, be a space-time cylinder. Let v be a
continuous function in Q. Then v is called a classical subsolution (supersolution) to P in Q if v > 0 in
Q and

1. Lv>0 (L0) in @ N {v > 0}.
2. veC{v>0}), Vv e C¥2 ({v > 0}).
3. For any (z,t) € {v =0} Nd{v > 0}, we have Vv (z,t) # 0 and

SO vaN (v,

where v .= —%. That is,
Vot >V2M (< V2M).

We say that v is a classical solution to P in Q if it is both a classical subsolution and a classical
supersolution to P.
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Definition 3.2 Let u € C(Q); u is called a viscosity subsolution (supersolution) to P in Q if u >0 in Q
and, for every space-time subcylinder Q' C @ and for every v bounded classical supersolution (subsolution)
to P in Q', with Q' N d{v > 0} bounded,

u<v (uw>wv) on 0,Q" and
v>0 on {u>0}N0o,Q
(u>0 on {v>0}N35,Q")

implies that u < v (u >v) in Q.
The function u is called a viscosity solution to P if it is both a viscosity supersolution and a viscosity
subsolution to P.

The following result proves the consistency between both concepts of solution.

Proposition 3.1 (Proposition 2.1 in [LVW1]) If u is a bounded classical supersolution (subsolution) to
P in Q with Q@ N d{u > 0} bounded, then u is a viscosity supersolution (subsolution) to P in Q.

Definition 3.3 Let Q C RN be a domain and let Q = Q x (0,T). Let Ty be an open C* subset of O
and let ONQ =T'n % (0,T).

Let u € C(Q). We say that u is a viscosity solution to P in Q with g—‘; =0 on ONQ, if u> 0 and
there holds:

For every space-time subcylinder Q' C Q) and for every v bounded classical supersolution (subsolution)
to P in Q', with Q' N d{v > 0} bounded, such that g—z =0 on 0,Q"' NINQ,

u<v (u>v) on 0p,Q \ONQ and
v>0 on {u>0}Nd,Q" \INQ
(u>0 on {v>0}N9Q" \INQ)
implies that u < v (u >v) in Q'.
Proposition 3.2 (Proposition 2.2 in [LVWI1]) Let @ = R x ¥ (or (0,400) X X), @ = Q x (0,T) and
ONQ =R x 90X x (0,T) (or OnQ = (0,400) x 0¥ x (0,T)).
Let u be a bounded classical solution to P in @ with @ N 0{u > 0} bounded and g—g =0 on INQ.
Then u is a viscosity solution to P in Q) with g—‘; =0 on ONQ.

4 Uniqueness of classical and viscosity solutions

The results in this section say that, under suitable assumptions, a classical solution is the unique viscosity
solution to the initial and boundary value problem associated to P and, in particular, it is the unique
classical solution.

Theorem 4.1 (Theorem 3.1 in [LVW1]) Let Q = (0,4+00) X X, @ = Q2 % (0,T), OnQ = (0,400) X 0% x
(0,T) and 0pQ = 0,Q \ ONQ.

Let u be a bounded classical solution to P in ) with g—z =0 on ONQ, such that u|8DQ has a bounded,
nonempty free boundary and u,, <0 on {u >0} N IpQ.

Assume that u(0,z',t) > 0 for (z',t) € X x [0, T] with u(0,z',t) € C*1(X x [0,T7]).

Let v € C(Q) be a viscosity solution to P in Q with g—q’; =0 on ONQ.

Ifv=u on 0pQ and {v>0}NIpQ = {u >0} NIpQ, then v =u in Q.
For two classical solutions we have the following uniqueness result.

Corollary 4.1 (Corollary 3.1 in [LVW1]) Let Q, Q, OnNQ, OpQ and u as in Theorem 4.1. Let v be a
bounded classical solution to P in Q with g—q’; =0 on ONQ, such that v =u on OpQ. Then, v =u in Q.

The next theorem proves the uniqueness of viscosity solution under different assumptions from those
in the theorem above. Then, uniqueness of classical solutions follows.

Theorem 4.2 (Theorem 3.2 in [LVW1]) The result of Theorem 4.1 holds if we let instead OnQ = 0
so that OpQ = 0,Q). Moreover, the result of Theorem 4.1 also holds if we let @ = R x ¥ with OnQ =
R x9X x (0,T) or ONQ =0, as long as ||u||ca,%@) < 00. In this case we make no assumptions on u on

{0} x = x [0, 7.
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5 Existence and uniqueness of the limit solution

The results in this section say that, under certain assumptions, a classical solution to the initial and
boundary value problem associated to P is the uniform limit of any family of solutions to problem
P. with corresponding boundary data. This in particular implies that such limit exists and is unique.
Moreover, it is independent of the choice of the function 3.

In particular, under the assumptions of this section our classical solution is the unique classical solution
and also the unique viscosity solution.

First, we give the result in a semi-cylinder.

Theorem 5.1 (Theorem 6.1 in [LVW1]) Let Q@ = (0,400)x %, Q@ = 2x(0,T), OnQ = (0,00)x0Ex(0,T)
and OpQ = 0,Q \ OnNQ.

Let u be a bounded classical solution to P in Q, with g—g =0 on ONQ, such that u|8DQ has a bounded,

nonempty free boundary and u,, <0 on {u>0}NIpQ.
Assume that u(0,z',t) > 0 for (z',t) € ¥ x [0, T] with u(0,2',t) € C*1(T x [0,T).
Let u¢ € C(Q) with Vu® € L% (Q) be a family of bounded nonnegative weak solutions to P. in Q,

with %_1;75 =0 on OnQ, sucﬁ that v — w uniformly on Op@ and {u® > 0} NIpQ — {u > 0} NIpQ.
Then u® — u uniformly in Q.

A similar result holds for a full cylinder as spatial domain, under suitable monotonicity assumptions
at 1 = —o0.

Theorem 5.2 (Theorem 6.2 in [LVWI1]) Let Q =R x X, Q@ = Q2 x (0,T), OnQ = R x 9¥ x (0,T) and
OpQ = 9Q \ OnQ.

Let u be a bounded classical solution to P in Q, with ‘;—‘; =0 on OnQ and ||ul|, < 00, such that

*5@
u|8DQ has a bounded, nonempty free boundary.

Assume that uy, < 0 on {u>0}NopQ and u,, (x,0) < —c1e®2* for ©1 < —a for some constants
c1, c2, a > 0. . .

Let u® € C(Q) with Vu® € L2 _(Q) be a family of bounded nonnegative weak solutions to P: in @,
with %Ln =0 on ONQ, such that u® — u uniformly on OpQ, with {u® > 0}NOpQ — {u >0} NIpQ and
|us (z,0) — u(x,0)| < ky e~k2 ’”?_for 1 < —a for some constants ki, ks > 0.

Then u® — u uniformly in Q.

For the proofs of the results in this section, results on existence and regularity of mixed semilinear

parabolic problems in non-cylindrical space-time domains were needed. Those results were proven in
[LVW3].

6 Extension to the two phase case

The results in [LVW1] were extended to the two phase case. More precisely, in [LVW2] the following two
phase free boundary problem is considered: find a function u(x,t), defined in D C RN x (0, T), satisfying

Au+ Y ai(z,t)uy;, —up =0 in {u >0} U {u <0},
u=0, |Vur]?—|Vu |?=2M on d{u> 0},

where 4+ = max(u,0), v~ = max(—u,0), M is a positive constant and a; are bounded. This is a two
phase extension of the free boundary problem considered in the previous sections and we will also refer
to this free boundary problem as Problem P.

The purpose of [LVW?2] is to investigate conditions under which the three concepts of solution agree
and produce a unique solution for the two phase problem. The results of [LVW2] extend those in [LVW1]
(eliminating the assumption that v > 0) and can be summarized as saying that —under appropriate
conditions— if a classical solution of problem P exists in the two phase case, then it is at the same time
the unique classical solution, the unique limit solution and also the unique viscosity solution.

As in [LVW1], the proofs of the results in [LVW2] require results on mixed semilinear parabolic
problems in non-cylindrical space-time domains. Those results are extensions of the results in [LVW3]
and were proven in [LVW4].
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