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A GLIMPSE INTO MATHEMATICAL MODELLING

P. M. Jacovkis1

1. Systems and models

A system, for our purposes, is a (perhaps infinite) set of elements, with numerical or
non numerical attributes, and such that some kind of relationships influence the elements.
This definition is very general, in order to permit its application to almost all possible
cases in which a mathematical model may be built. In fact, a mathematical model is
the (usually simplified) representation of a system through the mathematical language.
For instance, the mathematical model of the solar system (or, to be precise, one simple
mathematical model of the solar system, because many other more complex mathematical
models of the solar system may be constructed) has as its elements the sun and the
planets (and perhaps the satellites of the planets, and the comets, etc.). The attributes
of the elements are their diameters, their masses, their positions and their velocities,
and the relationships are the differential equations that govern their movement. In this
case the relationships are equations, but, in a linear program problem, for instance, the
relationships are inequalities. The attributes do not need to be numerical, either: a
fluvial model may include the transport and diffusion of suspended particles, and perhaps
an important attribute of the particles is their classification as pollutant or non-pollutant.

The most primitive models are mental models. Each human being has mental models
of the universe, of the place where he or she lives, of how things happen. Mental models
may be inconsistent or incomplete, because to detect contradictions, for instance, a careful
analysis (analysis that most human beings do not carry out) is necessary. But homo
sapiens has the ability of communicating through language; so verbal models appear,
that in general have less inconsistencies than mental models, and are more complete,
because usually the verbal model is subject to some analysis, perhaps very intuitive.
Anyway, a verbal model is not robust, in the sense that information verbally transmitted
is usually changed, sometimes very much changed, from individual to individual.

When one of the most important technical advances of civilization appeared, namely
writing, models began to be written. Usually a written model is more consistent and
complete than a verbal one, because the writer has time to think about what he or she
is going to write, and also is more robust, because, although a written document may
be interpreted in different ways, this situation seldom occurs, at least until a long time
has passed. But the real revolution in models happened when mathematical and physical
models began to be formulated.

A mathematical model is a model that employs mathematical symbols and uses mathe-
matical theories. A physical model is a physical construction that represents some physical
process that we want to study. The elements of the physical construction may be exactly

1Facultad de Ciencias Exactas y Naturales and Facultad de Ingenieŕıa, University of Buenos Aires.



4 P. M. Jacovkis, A glimpse into Mathematical Modelling, MAT - Serie A, 18 (2011)

the elements of the process we are interested in, or they may be different, and some cor-
respondence must be found between the behavior of our model and the behavior of the
actual process.

When, more than sixty years ago, computers appeared, mathematical models began to
be more and more complex, and more and more detailed. Because usually one creates
a model to compute some result, that means that such and such element behave this
or that way, and before the computers only very simple, mostly linear, models could
be exploited (it was extremely tedious to solve a standard linear equation that includes
a 10 × 10 matrix). Mathematical models are in general cheaper than physical models,
and faster to implement: for instance, a mathematical model of a river such as, say, the
Paraná River, can be easily prepared and easily changed into a mathematical model of the
Uruguay River, whereas to prepare a physical model of the Paraná River at the INA (the
Argentinean National Institute of Water Resources) a careful reproduction of the river bed
(on a smaller scale) must be built, and in order to change this model into a model of the
Uruguay River the first model must be almost completely destroyed and a new one must be
built. Anyway, physical models continue being extremely important, for two main reasons:
on the one hand, eventually all models (at least the first time they are used) should, if
possible, be compared with what really happens in reality and, on the other hand, there
are some physical phenomena that are not yet sufficiently known to be represented by
mathematical equations and inequalities, unless one uses empirical relationships (which, of
course, are extremely convenient, but not necessarily help when one is trying to understand
the corresponding complex physical processes). For instance, turbulence is not completely
understood, and there are no conceptual equations representing exactly the hydrological
cycle, namely how rainfall in a basin transforms into discharge into a river.

2. Mathematical models

Let us take a very simple model, namely a discrete model that simulates the growth of
a population in absence of wars and natural constraints, such as lack of land or of food.
Such a model may be written as

Pn+1 = Pn(1 + α), (2.1)

where Pn indicates the population at the beginning of period n (for instance, at the
beginning of year n) and α is the rate of growth of the population. Although we know
the value of α, equation (2.1) is not enough for knowing completely the evolution of the
population. And it is not enough because we need something more: we need the initial
conditions (in this case, only one initial condition), that is, the value of the population at
the initial period, that we may denote, without loss of generality, the period with n = 0.
That is, we need also an equation

P0 = a, (2.2)

a being a (positive) real number that indicates the size of the population at the beginning
of our computations. In fact, this is a model with only one variable, P , but the state of
the system represented by the model at each period is indicated by the value of all its
variables (in this case, one), and the initial state must be known, that is, the value of all
its variables at the initial time must be prescribed.

This is a characteristic of all models that change with time, be it at a discrete number
of instants, like this simple model, or at a continuum of instants2. Models that change

2Anyway, from a practical point of view, the state of a continuum model must be computed only at a
finite number of instants, so that some kind of “discretization” has to be adopted.
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with time are called evolutionary models, or transient models, or dynamical models. In
this kind of models, besides the equations - or, more generally, relationships - that govern
their behavior, some data are always necessary: the initial conditions. For example, in a
more complex model, the one-dimensional heat equation (the classical parabolic partial
differential equations), that represents the conduction of heat in a one-dimensional infinite
bar, namely

∂u

∂t
= σ2∂2u

∂x2
,

where u = u(x, t) means the temperature at position x and time t, and σ2 is the thermal
diffusivity, the initial condition is

u(x, 0) = u0(x),

where u0 is a known function, that is, the necessary data are infinite, namely (theoreti-
cally) values for all x, −∞ < x < ∞ must be prescribed.

The problem with (deterministic) evolutionary models whose data are only the initial
conditions (and the parameters, like σ2 in the heat equation and the rate of growth α
in the population model, but we delay the discussion on parameters to subsection 2.1)
is that, if the model represents the physical process, all we can do is forecast the state
of the model in the future, but we can not “modify” this future, in the sense that the
future is completely determined by the equations and inequalities of the model and by the
initial conditions3. But, when possible, we want not only to forecast but also to control,
that is, to take measures in order that in some instant in the future the state of the
system be a state that satisfies us, or at least a state that is as close as possible to a
state that satisfies us. For that kind of “control” we need also other data. For instance,
the evolution of population may be modified through immigration or emigration. If we
represent with variable In the immigration or emigration (immigration will be a positive
value, emigration a negative one) from time n to time n + 1, the equation (2.1) changes
into

Pn+1 = Pn(1 + α) + In. (2.3)

Of course, the existence of data In does not mean that in fact there is a “control”, that
is, not always we can change the value of I in order to have, after a certain simulated
period, the results we want. But sometimes we can.

In our parabolic partial differential example this “control” is available if instead of
having an infinite bar we have a finite bar whose extremes are points a and b, that is, its
points x satisfy a ≤ x ≤ b, and then the problem should be formulated as follows:

∂u

∂t
= σ2∂2u

∂x2
, (2.4)

u(x, 0) = u0(x), (2.5)

3In fact, this is exactly what Laplace had in mind when he wrote his famous phrase “We may regard
the present state of the universe as the effect of its past and the cause of its future. An intellect which
at a certain moment would know all forces that set nature in motion, and all positions of all items of
which nature is composed, if this intellect were also vast enough to submit these data to analysis, it
would embrace in a single formula the movements of the greatest bodies of the universe and those of the
tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would
be present before its eyes.[10]” The equations of motion require as initial conditions the position and
velocity of all elements of the system. As no boundary conditions are present, the initial positions and
velocities determine the future positions and velocities. In fact, as classical mechanics is reversible, the
time’s arrow is not important, and we are - theoretically - able to know not only the future but also the
past.
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u(a, t) = uL(t), u(b, t) = uR(t). (2.6)

In (2.6) uL and uR are the boundary conditions of the partial differential equation
(2.4) with initial condition (2.5) (the theory of the heat equation shows that for a finite
bar boundary conditions must be prescribed at both ends of the bar). So, using the
terminology of partial differential equations, we could say that In is also a boundary
condition. Perhaps we can control uL and uR, perhaps not. But it is obvious that,
when boundary conditions are introduced, the results in the future are not completely
determined by the state of the system at the initial time. In partial differential equations it
is customary to call a problem with initial conditions, but not with boundary conditions,
an initial-value problem, or a Cauchy problem, and a problem with both initial and
boundary conditions a mixed initial-boundary problem4.

2.1. Parameters. We then always need as data (if the model evolves with time) the
initial conditions; sometimes we need also some data that represent the external influences
on the model along the time (the “boundary conditions” of partial differential equations)
and finally we need a different kind of data: parameters, like α in equation (2.1) and σ2

in equation (2.4). In general, parameters are constant, or they seldom change, during the
simulation time, and often one of the most important problems in implementing a useful
model is to have the right parameters5. Sometimes one can measure the parameters, and
sometimes not. When one can not measure the parameters, it is necessary to calibrate
them, that is, to obtain the values of the parameters as close as the actual (and unknown)
data as possible. More about this subject will be said afterwards.

2.2. Stationary problems. Some models are not evolutionary problems, that is, time is
not a variable. In these case we say that the models are stationary or steady-state. Many
civil engineering models are steady-state, because engineers (and people in general) prefer
steady-state bridges, tunnels, etc. Partial differential equations that govern steady-state
phenomena are often elliptic. The simplest homogenous linear elliptic equation (in three
dimensions) may be written

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0, (2.7)

where u = u(x, y, z) is a function of three variables in a three-dimensional domain Ω. In
this case, data are provided by the boundary conditions (no initial condition is possible
or necessary, given that the process does not change with time), for instance

u(x, y, z) = g(x, y, z) on the boundary ∂Ω of Ω. (2.8)

Equation (2.7) is known as the Laplace equation. If instead of being homogeneous the
right-hand-side is different from zero, namely

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= f(x, y, z), (2.9)

4Let us remark at this point a difference between the heat equation (which is the simplest linear
homogeneous parabolic partial differential equation) and the equations of motions about which Laplace
was thinking: for the heat equation, the time’s arrow matters. We can predict the future, but not compute
the past, and the interesting thing is that this is signalled by the fact that the parameter σ2 must be
positive.

5Sometimes, according to the value of a parameter a model behaves in completely different ways, and
it is important to know what values of a parameter are the limits between one behavior and other. We
shall not discuss this phenomenon in these notes.
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the function f(x, y, z) offers additional data, and equation (2.9) is called the Poisson
equation. Of course, we can include coefficients multiplying each term, more terms, etc.,
and then these parameters must be measured or calibrated. Boundary condition (2.8) is
called a Dirichlet condition, and of course there are other types of boundary conditions.

2.3. Deterministic and stochastic models. All these models, evolutionary or steady-
state, are deterministic models, in the sense that assuming that the equations represent
exactly the phenomenon under study, that we are able to perform all measurements
with the required precision, and that if the errors originated in computing with a finite
number of digits numbers that contain an infinite number of digits are satisfactorily
bounded, we obtain the exact (that is, exact plus or minus some acceptable error) result:
in an evolutionary model, for instance, we should obtain what will happen, under those
parameters, those initial conditions and those boundary conditions, at the end T of the
simulation time. But some (very important) models are stochastic models, in the sense
that the model should reflect a reality where states change randomly. For instance, a
queue model: the system consists of an employee who is busy with the first person in
a queue, there are other people waiting in the queue, and the time of occupation of the
employee with the attendee is random, as well as the time between the arrival of a client
to the queue and the arrival of the following client. And we want to model this process.

Here there are two different problems: on the one hand, the computer is a deterministic
machine: one hopes that, if one runs a program in his or her computer today, a rainy
and chilly day, with some set of data, and tomorrow, a warm and dry day, the program
is run with exactly the same set of data, the result will be the same. One could become
extremely nervous if the result is different. How can we represent, with a deterministic
machine, a situation that includes randomness? And, on the other hand, if the result
is random, supposing that the first problem is solved, what does the result mean? The
result could have been completely different, because random inputs are included in the
model.

Focusing on stochastic models is not the scope of these notes, but we can say that the
first problem is solved using pseudorandom numbers, that is, numbers deterministically
generated but that statisticians can not detect as different from random, and the second
problem is solved simulating many instances of the process under study, so that we can
collect the relevant information necessary. By the way, stochastic models are usually
evolutionary.

Let us now introduce some simple models.

3. Population dynamics

The simplest demographic model (or, if we are talking about living beings in general,
not necessarily human, population dynamics model) is model (2.1), (2.2) or, if we include
immigration/emigration, model (2.3), (2.2). Of course this model is not sustainable during
a large period: eventually all the surface of the Earth would be occupied by human
beings, without room for moving from one place to another. But for a short period the
model may be perfectly realistic. We have mentioned that term In may be considered
a “control”, in the sense that through this variable someone may try to obtain certain
results after some years. Indeed it has been, or tried to be, a control. For instance, several
countries (the immigration countries: United States, Canada, Argentina, Uruguay) during
the 19st century had an active policy favorable to immigration (perhaps selective: the
Argentinean Constitution, for instance, indicates someplace that Argentina is interested
in European immigration) and other countries did not mind that some of its countrymen



8 P. M. Jacovkis, A glimpse into Mathematical Modelling, MAT - Serie A, 18 (2011)

leave the country (Italy, Spain) as a way to reduce social tensions. Not always the control
worked exactly like planned: Britain was interested in emigration to its settlement colonies
(Canada, Australia, New Zealand) but anyway many people from Britain emigrated to
the United States.

Of course, the parameter α may be the control: a good health policy may increase its
value, so that the population grows faster, and on the other hand a policy of birth control
(like the Chinese one) may reduce α.

Finally, it is obvious that a continuous (exponential) version of this model may be built:
if instead of a time step equal to one we have an arbitrary time step ∆t, and α continues
being the rate of growth for unit time, equation (2.1) becomes

P (t + ∆t)− P (t)

∆t
= αP (t)

and with ∆t tending to zero all becomes the ordinary differential equation

dP

dt
= αP (t)

with initial condition P (0) = P0, whose solution is of course P (t) = P0e
αt. The “bound-

ary” condition would be the “instantaneous” immigration or emigration flux I(t), if we
take it into account, so that we could write

P (t) = P0e
αt + I(t). (3.1)

(3.1) is simply the continuous version, and (2.3) is the discrete version of this elementary
population model.

Anyway, this model is often too simple. On the one hand, for long periods is unrealistic,
given that the population can not grow indefinitely. On the other hand, we often need a
more detailed model, that includes, for instance, how population is distributed according
to age, geographic location or social class.

To take into account the first problem, the logistic model may be a good approximation.
The idea is that the resources are sufficient only for a limited population, so that the
rate of growth of population instead of being proportional to the population (like in an
exponentially increasing population) is proportional to the population times a factor that
decreases with the population. The simplest decreasing function is a linear function, so
that the logistic continuous equation is

dP

dt
= P (t)(a− bP (t)), (3.2)

with, of course, the initial condition P (0) = P0.
Analogously, the discrete logistic equation is

Pn+1 = Pn(1 + aPn(1− Pn

K
)) (3.3)

or (if the time step is not unitary)

Pt+∆t − Pt

∆t
= aPt(1− Pt

K
), (3.4)

and b = a
K

.
We shall discuss equations (3.2) and (3.3) or (3.4) (for which of course we must also

include the initial condition P (0) = P0 separately). The continuous logistic equation was
formulated for the first time by P.-F. Verhulst ([22])
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3.1. The continuous logistic equation. The continuous logistic model is then governed
by equation (3.2), which is a nonlinear first order ordinary differential equation, with initial
condition P (0) = P0. It can be proved that this equation has an explicit solution (see for
instance [7]), namely

P (t) =
a/b

1 + (a−bP0

bP0
)e−at

,

or

P (t) =
K

1 + (K−P0

P0
)e−at

and then it is easy to see that

lim
t−→∞

P (t) =
a

b
= K,

and that if P (0) < K then P (t) always increases, and is always less than K (if P (t) > K
then P (t) always decreases and is always greater than a/b, although this case does not
interest us). In fact, we can deduce this property analyzing equation (3.2) directly without
knowing its explicit solution. Of course, we can introduce the immigration or emigration
flux per unit time I(t), but, taking into account that for physical or biological reasons the
bound a/b = K cannot be surpassed, we should write in this case

dP

dt
= P (t)(a− bP (t)) + min(I(t), K − P (t)).

Anyway, usually we are not interested in immigration or emigration flux when using
the logistic equation, because the population is considered in a closed environment, or is
a global population.

Here we have two parameters that need to be calibrated, namely a and b (or K). In cases
as simple as governed by equation (2.1) or (3.2), which have few parameters, probably
the best way to calibrate the parameters is applying directly, for instance, least squares:
we have the recorded data for several times ti1 , ti2 , . . . , tin , we know the initial population
P0 and then we search

min
α

N∑
j=1

(ln Pij − ln P0 − αtij)
2

for the exponential case6.
The logistic case is more complicated: one may attack the problem from different

angles. For instance, the curve obtained in the logistic case is a sigmoid, that is, has
an S form; near the initial condition is similar to an exponential, and then we may
try to use only values close to the initial time and obtain the coefficient a, and then
approximate K for the rest of the values. Or we may “discretize” the equation, and use
the discretization. Anyway, this example shows that calibrating a model is not necessarily
easy, not only technically: in fact, a calibration consists in solving an inverse problem,
that is, a problem in which, knowing the result, we want to obtain the data, or some

6By the way, although the time-honored least square method is the most used technique for calibrating
models, it is not always necessarily the best: on the one hand, it has many “good” theoretical properties,
and besides, we can obtain a minimum set of values using tools from mathematical analysis: the extremum
value will be (if it exists at the interior of a domain) at a point where the derivative is zero; on the other
hand, the method is not robust, in the sense that the existence of an outlier (or a bad measurement) may
significantly change the result. Least squares is essentially a minimization in the space l2; if we want to
minimize in l1 (that is, if we want to minimize the sum of absolute values, instead of sum of squares) the
problem is one of least absolute deviations and a linear-programming approach can be applied, see for
instance [1].
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data, and inverse problems are often ill-conditioned in the sense of Hadamard7. Often the
calibration (above all when many parameters exist) is empirically obtained (for instance,
if one is trying to model a reach of a river with a hydrodynamic model, probably the
calibration is performed through a “trial and error” approach, in which the experience
of the modeler is fundamental; we shall comment on this point at section 5). Of course,
theoretical mathematical approaches are possible, interesting and challenging; see for
instance [6].

3.2. The discrete logistic equation. In this case, we have in general

Pt+∆t − Pt

∆t
= aPt(1− Pt

K
).

One can observe that in this case also the limit of the population is K, both for populations
initially over or under K. If the time step is unitary, i. e., ∆t = 1, we have

Pt+1 − Pt = aPt(1− Pt

K
),

that is,
Pt+1 − Pt = Pt(a− bPt),

with b = a
K

, and then

Pt+1 = Pt(1 + a− bPt) = Pt(γ − bPt),

with γ = 1 + a. Let now xt be such that Pt = γ
b
xt. Then

γ

b
xt+1 =

γ

b
xt(γ − γxt),

xt+1 = γxt(1− xt).

If 0 ≤ x0 ≤ 1, and 0 ≤ γ ≤ 4, xt ∈ [0, 1] always. In a memorable paper ([18]; see also
[14]), Robert M. May showed the surprising behavior of the equation, according to the
value of the parameter γ. In fact, what one can prove is (we exclude from this analysis
the initial values x0 = 0 and x0 = 1− 1

γ
, for which xi = x0 always, and x0 = 1, for which

xt = 0 if t ≥ 1)

(1) If γ ≤ 3, the iteration converges (of course, if γ ≤ 1 it converges to zero; if
1 < γ < 3 the limit is 1− 1

γ
);

(2) From 3 on, xt will approach, oscillating, two values when t tends to ∞ until
approximately 3.45 (3.44948...). Then - increasing γ - xt will approach, oscillating,
four values, then eight values, then sixteen values,... until around 3.57 (3.56994...).

(3) Then chaos appears (except for some isolated ranges of λ with non-chaotic be-
havior), that is, slightly changing the initial value x0 dramatically changes the
behavior of the iteration. Besides, no oscillation of finite period can be observed.

The rate between two consecutive duplications tends to a constant (the Feigenbaum
constant). So with the discrete logistic equation we may model situations in which a
population has a chaotic behavior. As May says in his paper “. . . apparently erratic
fluctuations in the census data for an animal population need not necessarily betoken

7Without formalizing too much, a well-conditioned problem is a problem in which
(1) There exists a solution;
(2) The solution is unique;
(3) The solution depends continuously on the data of the problem.

An ill-conditioned problem is a problem that is not well-conditioned. Of course in order to formalize this
definition we need a topology that gives meaning to the term “continuously”.
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either the vagaries of an unpredictable environment or sampling errors: they may simple
derive from a rigidly deterministic population growth relationship . . . ”.

3.3. Delay. If the delay between the instant a descendant is conceived and it becomes
fertile is significant (in the sense that the total population may have changed) both the
exponential and logistic models (be they discrete or continuous) must be replaced by
models with a time delay. The general continuous model should be now

dP (t)

dt
= f(P (t− td)) (3.5)

with td being the delay, and f a general function. For the exponential case (3.5) becomes

dP (t)

dt
= αP (t− td) (3.6)

where α is a constant rate of growth. If the rate of growth R(P ) changes with the
population, (3.6) becomes now

1

P (t)

dP (t)

dt
= R(P (t− td)). (3.7)

In particular, the delay logistic equation is

dP (t)

dt
= P (t)(a− bP (t− td)). (3.8)

Equations like (3.5), (3.6), (3.7) or (3.8) are called delay-differential equations, and are
often considerably more difficult to solve than ordinary differential equations. In fact,
taking delay into account the solution can oscillate around the equilibrium point P (t) = a

b
or, what is worse, destabilize itself.

If we now analyze discrete equations with delay, that is, delay difference equations, we
have for instance

P (t + ∆t)− P (t) = α∆tP (t−∆t), (3.9)

(constant rate of growth),

P (t + ∆t)− P (t)

∆tP (t)
= R(P (t−∆t)), (3.10)

(variable rate of growth) or

P (t + ∆t)− P (t) = ∆tP (t)(a− bP (t−∆t)). (3.11)

(the discrete delayed logistic equation).
Remark that equations (3.9), (3.10) and (3.11) take into account automatically a delay

∆t. When the time step ∆t is different from the delay td the models are technically more
complicated, for instance

P (t + ∆t)− P (t) = α∆tP (t− td) (3.12)

or

P (t + ∆t)− P (t) = ∆tP (t)(a− bP (t− td)). (3.13)

Let us now suppose that td = ∆t. Then we use (3.11). We have now three different
levels of time: t + ∆t, t and t−∆t. If we now put t = m∆t, P (t) = P (m∆t) = Pm, what
we get is

Pm+1 − Pm = Pm(α− βPm−1), (3.14)

where α = a∆t and β = b∆t. (3.14) is a (nonlinear) second order difference equation.
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Let us analyze the stability of (3.14). We shall use the perturbation technique, namely,
we shall suppose that the equation near the equilibrium point is a very small perturbation
from it, that is,

P (t) =
α

β
+ εP1(t),

where ε << 1. Equivalently we may write

Pm =
α

β
+ εym,

with t = m∆t, such that |εym| << α/β.
Replacing in (3.14) we obtain

α

β
+ εym+1 − α

β
− εym = (

α

β
+ εym)(α− α− εβym−1)

and finally we get

ym+1 − ym = −βym−1(
α

β
+ εym). (3.15)

We neglect the nonlinear term −βym−1(εym) and then we have

ym+1 − ym = −αym−1. (3.16)

We may then remark that only α = a∆t determines the behavior of the population near
the equilibrium.

Now, (3.16) being an homogeneous linear difference equation of second order, given two
initial values y0 and y1 known the general solution has the form

ym = c1r
m
1 + c2r

m
2 ,

with coefficients c1 and c2 obtained thanks to the two initial conditions and r1 and r2

being the roots of the second order equation

y2 − y + α = 0,

that is

r1,2 =
1

2
±

√
1

4
− α.

For this analysis we suppose that the roots r1 and r2 are different. If α ≤ 1
4

both roots
are real, and they have both a modulus lesser than 1, so that the stationary point is stable
(the perturbation vanishes when m approaches infinity). If α > 1

4
the roots are complex

and they have the form

r1,2 =
1

2
± i

√
α− 1

4

whose absolute values are given by the formula

|r1,2| =
√

α,

so that the equilibrium point is stable provided that α < 1, that is, a∆t < 1. The
perturbation converges to the equilibrium point oscillating above and below it.

But if α > 1, the perturbation oscillates diverging: the delay causes a destabilization
of the population.
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3.4. The Leslie matrix. Anyway, the exponential and logistic models, both in their
continuous and discrete versions, are too simple for a more detailed analysis8. Often we
want to know the evolution of different classes of a population. For example, we can
divide the total population into individuals belonging to different geographic regions, or
of different ages, or of different socioeconomic classes. Suppose a human population for
which we want to know the evolution of its population pyramid, year after year. Let
Pn(E) the population that, at year n, has age E. We need of course decide from which
day to compute the year, for instance, from January 1st. To age zero belong all individuals
that are born during the year under analysis. And, supposing that there exists an age
U such that the incorporation to this age of individuals older than U does not change
significantly the size of class U , this age U will be the last one, and then, neglecting
immigration and emigration, we can write the equations of a demographic model; firstly,
the evolution from one year to the following of individuals that have already been born
at year n:

Pn+1(E + 1) = Pn(E)(1− Tm(E)). (3.17)

Here Tm(E) means the rate of mortality of individuals of age E. Equation (3.17) indicates
the normal situation in which each year some people the same age of us die: we recognize
this phenomenon when we participate in the annual party of our old schoolmates and
at each party less and less individuals appear, because some of them died from party to
party.

For individuals who are in the group of age U , or go into this group from year n to year
n + 1, a slightly different equation is necessary:

Pn+1(U) = Pn(U − 1)(1− Tm(U − 1)) + Pn(U)(1− Tm(U)). (3.18)

Obviously, now the group of age U the following year consists of those who “arrived” at
this group (from group of age U − 1) and those who were already U or more years old
and survived.

Now we need to compute individuals born during year n:

Pn+1(0) =

E2∑
E=E1

Pn(E)Tf (E). (3.19)

Equation (3.19) indicates that women can have children from age E1 to age E2 (we neglect
the few cases of women who bear children too young or too old), and Tf (E) means the
rate of fertility of women of age E. Remark that it is important to know whether the rate
of fertility is taken with regard of all individuals of age E (as is shown in equation (3.19)
or with regard only of women of age E. In this case, considering that more or less we can
suppose that feminine population is one half of the total population, we have to take one
half of Pn(E), for each age.

This model may be written in vector form: if we consider the vector

~Pn =




Pn(0)
Pn(1)
Pn(2)
· · ·

Pn(U)




then we have the equation
~Pn+1 = A~Pn (3.20)

8In what follows we have used above all [3] and [7] as references.
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where A is the matrix


. . . Tf (E1) . . . Tf (E2) . . .
1− Tm(0) . . .

1− Tm(1) . . .
· · ·

. . . 1− Tm(U − 1) 1− Tm(U)




Matrix A has zeroes except where indicated and between the fertility rates Tf (E1) and
Tf (E2). If class U is the class of all individuals of age U , and nobody is supposed to
survive this age, and no assumption is made about the fertility ages, that is, individuals
may be fertile since age zero (as in many species) matrix A changes into matrix




Tf (0) Tf (1) . . . Tf (U)
1− Tm(0) . . .

1− Tm(1) . . .
· · ·

. . . 1− Tm(U − 1) 0




This is a Leslie matrix, originally formulated by Patrick H. Leslie in the two fundamental
papers [12], [13].

The parameters of the model given by equation (3.20) (with initial condition ~P0 given,
of course) are the rates of fertility and mortality. Naturally, these parameters may also
change with time; in fact, the parameters are “control” parameters, in the sense that
with improvement in health conditions the rate of mortality may decrease, and for a
richer and more educated society the rate of fertility decreases, because individuals begin
bearing children at an older age, and less children die as infants (on the other hand, as
less children die as infants the rate of fertility increases, so both phenomena should be
analyzed). Typical numerical experiments should simulate the population of Argentina,
for instance, under no variation of these rates, and under different kinds of variations,
to see what could happen with the Argentine population in, say, fifty years. Anyway,
when analyzing a country like Argentina, where many immigrants have influenced its
population (during many years mostly European immigrants, now mostly Latin American
immigrants), immigration must be taken into account, so that equations (3.17), (3.18),
(3.19) should be replaced by

Pn+1(E + 1) = Pn(E)(1− Tm(E)) + In(E), (3.21)

Pn+1(U) = Pn(U − 1)(1− Tm(U − 1)) + Pn(U)(1− Tm(U)) + In(U), (3.22)

Pn+1(0) =

E2∑
E=E1

Pn(E)Tf (E) + In(0). (3.23)

In equations (3.21), (3.22) and (3.23) the corresponding immigration fluxes during year
n have been included. We have written I(U) meaning that we include in this flux the
immigrants aged U − 1 and aged U or plus.

Of course we may have more complicated situations, that thanks to the current com-
puting power may be approached, namely that there may be two (or more) different
categories of classes, for instance by age E and by geographic section G. In this case the
variables are Pn(E, G), and the equations should be reformulated accordingly. They are
cumbersome, but not difficult. We shall not continue in this direction, the readers can
complete the equations.
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3.5. Nonnegative matrices. Sometimes we need some general idea with regard to the
behavior of the Leslie matrix, namely whether an equilibrium population is reached (not
necessarily in the sense that an equilibrium population appears, but in the sense that the
proportions in the population pyramid are stable). Therefore, some theory on positive
and nonnegative matrices is convenient.

A positive matrix A of order n is a matrix for which all its entries ai,j are strictly
positive real numbers, that is, ai,j > 0 for a ≤ i, j ≤ n. In 1907 Oskar Perron proved the
theorem that carries his name, which is the following:

Theorem 1. If A is a positive square matrix, there exists a dominant eigenvalue λ =
λ(A) with the following properties:

(1) λ is positive and its associate eigenvector v has positive entries, namely,

Av = λv,

with λ > 0, vi > 0 ∀ i,

v =




v1

v2
...
vn


 ;

(2) λ is a simple eigenvalue (is a simple root of the characteristic polynomial);
(3) The absolute values of all other eigenvalues µ are strictly less than λ, namely if µ

is another eigenvalue, |µ| < λ (therefore, λ is the spectral radius);
(4) Matrix A has no other eigenvector with nonnegative coordinates.

The theorem is not difficult and its proof may be consulted in [11]. In fact, this theorem
is only the beginning of the theory, because a more general result is needed. And a more
general result is needed because the theorem has a restriction that significantly reduces
its applicability: most matrices in the real world, for which this theorem could be applied,
allow zero entries, that is, are nonnegative matrices (we define a nonnegative matrix A
as a matrix all whose entries ai,j are nonnegative, i. e. ai,j ≥ 0).

Nonnegative matrices are really important because they are extremely useful in many
types of models. For instance, in the theory of Markov chains we have stochastic (square,
finite or infinite) matrices, that is matrices P with entries pi,j such that pi,j ≥ 0 ∀ i, j
and such that ∑

j

pi,j = 1 ∀ i,

where there are, for instance, N possible outcomes (for finite Markov chains) or infinite
possible outcomes, and pi,j is the probability of outcome j on this trial in a series of trials,
provided that in the previous trial the outcome was j. (An excellent treatment of Markov
chains may be consulted in [4].)

Other very useful application of nonnegative matrices is the Leontiev input/output
theory in economics, where we have an economy (of a country, for instance) for which we
have N different sectors of industries. Each sector produces a single kind of commodity.
Let Xr be the production of sector r, xr,s the amount of good Xr whose destination is
sector s and fr the amount of Xr required for final demand. Then we have

Xr = fr +
N∑

s=1

xr,s. (3.24)
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Let us suppose that the economic model is linear, that is,, to obtain an unit of s we
need ar,s units of r (where ar,s ≥ 0, naturally). Then

xr,s = ar,sXs.

We call

A =




a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

aN,1 aN,2 · · · aN,N




the input/output matrix, or I-O matrix, or Leontiev matrix, and the ar,s are the technical
coefficients, of the Leontiev coefficients. Obviously, A is a nonnegative matrix. Further-
more, we have, from (3.24) and linearity,

X = f + AX, (3.25)

where, of course,

X =




X1

X2
...

XN


 .

Now, two remarks are important regarding equation (3.25). On the one hand, the
Leontiev coefficients are not completely determined by the current technology: if we do not
include some parameter related to salaries, the level of salaries must influence the Leontiev
coefficients, so that not necessarily two countries with the same level of development must
have the same Leontiev coefficients (besides, some goods may be cheaper in one developed
country than in other for geographical reasons, or for other reasons not related to the
level of development). On the other hand, is seems extremely simple to solve a certain
important control problem: we decide what will be the final demand fs from all sectors,
and, provided that matrix I − A is invertible (I is the identity matrix of order N), we
only have to solve

X = (I−A)−1f (3.26)

to know what should be the production that satisfies our requirements, and people would
be very happy.

Or course, this is not true: on the one hand, the necessary production may be unfeasible,
in the sense that we are not capable of producing the required units of some or all the
sectors; on the other hand, there exist a subtler problem: the non singularity of matrix
I−A does not guarantee that the solution vector X has all its entries nonnegative. We
shall return to this problem soon.

There are some extensions to the Perron theorem. The first one is the Frobenius
theorem.

Theorem 2. Every nonnegative square matrix A of order n has an eigenvalue λ = λ(A)
with the following properties:

(1) λ is nonnegative, and its associated eigenvector w has nonnegative entries:

Aw = λw,
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with

w =




w1

w2
...

wn


 , wj ≥ 0 ∀ j;

(2) If µ is another eigenvalue of A, then |µ| ≤ λ;
(3) If |µ| = λ then µ is of the form µ = e2πik/mλ, with k and m positive integers,

m ≤ n.

Except for the third property, which is more complicated, the other properties are easily
deduced supposing A is the limit of positive matrices. The proof can also be consulted
in [11].

We need two other definitions to arrive at the main Perron-Frobenius theorem.
A nonnegative square matrix A is reducible when, transposing conveniently its rows

and columns, we are able to obtain a matrix of the form

B =

(
B1 B2

0 B3

)

where B1 and B3 are square submatrices, 0 is a submatrix composed exclusively of zeroes,
and B2 is other submatrix.

The adjective reducible comes from the fact that, taking into consideration changes of
the x and b entries, solving Ax = b is the same as solving Bx′ = b′ (where x′ and b′ are
x and b, respectively, with conveniently changed subindices), and we have reduced the
problem, because, partitioning conveniently b′ and x′ as

b =

(
b1

b2

)
, x =

(
x1

x2

)
,

we have

Bx =

(
B1 B2

0 B3

)(
x1

x2

)
=

(
b1

b2

)
,

and this equation may be decomposed into

B3x2 = b2,

B1x1 = b1 −B2x2,

where we have first obtained x2 (solving a lower order equation) and then solving the
other equation, also simpler. Of course the best situation is when B1 and B2 have the
same order (if the order of A is even).

An irreducible matrix is a square matrix that is not reducible.
Now we can formulate the Perron-Frobenius theorem.

Theorem 3. If a nonnegative matrix A is irreducible, then its spectral radius is a simple
eigenvalue ρ(A), all eigenvalues of A with the same modulus are also simple, A has an
eigenvector x all whose entries are strictly positive corresponding to ρ(A), and all other
eigenvectors of A with nonnegative entries are multiple of x.

For its proof, see [5] or [2].
A nonnegative square matrix A is primitive if there exists a natural number m such

that Am is a positive matrix.
If the irreducible square matrix A is primitive, we can “almost” arrive at the result of

Perron:
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Theorem 4. The following conditions are equivalent for a nonnegative square matrix A:

(1) A is irreducible and ρ(A) is greater than the modulus of any other eigenvalue;
(2) A is primitive.

For a proof, see [2].
These theorems are extremely useful when treating with nonnegative matrices. For

instance, let us analyze for a moment a typical stochastic matrix P. It is easy to see that
1 is an eigenvalue of P (in fact, if we take the vector

~1 =




1
1
...
1


 ,

as P is stochastic we have P~1 = ~1, so that 1 is an eigenvalue and ~1 is an eigenvector). If

P is strictly positive, Perron’s theorem indicates that, as ~1 has all its entries positive, 1
is the spectral radius.

Let us now analyze the nonnegative matrix A of (3.20). If A is irreducible and primitive
we have the following theorem (see [3] for a complete proof):

Theorem 5. (The fundamental theorem of demography.) If the nonnegative matrix A is
irreducible and primitive, let λ be the strictly dominant eigenvalue of A and v its associate
vector (with all entries positive). If ~Pn is the solution of

~Pn+1 = A~Pn,

with an initial state ~P0 with some nonzero entry, then

(1)

lim
n→∞

~Pn

|Pn| =
v

|v| ,
where for any vector v, |v| = ∑

i |vi| is the norm l1 of v; as in our case all entries

are nonnegative, for ~Pn this mean the total population at time n;
(2) If λ < 1 limn→∞ |Pn| = 0 and if λ > 1 limn→∞ |Pn| = ∞.

That is, the dominant eigenvalue is the growth rate of the population. After many
iterations, when we are “close” to the limit, the proportion of the different ages with
respect to the total population is more or less constant: if the dominant eigenvalue is 1,
then the population tends to an equilibrium.

Let us now investigate the Leontiev matrix. We can be sure that (3.26) has a reasonable
solution (from the economic point of view) if the spectral radius of A is less than one,
because in this case the series

(I−A)−1 = I + A + A2 + A3 + . . . (3.27)

converges (because if the spectral radius is less than one, as the spectral radius is the
infimum of the norms of matrix A, we have

‖I + A + A2 + A3 + . . . ‖ ≤ ‖I‖+ ‖A‖+ ‖A‖2 + ‖A‖3 + . . . =
1

1 + ‖A‖ ,

‖ ‖ being a norm such that ‖A‖ < 1). And in that case obviously the solution will have
nonnegative entries, because is obtained with sums and products of positive terms. If A
is irreducible, often the Perron-Frobenius allows as to estimate the value of the eigenvalue
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corresponding to the spectral radius, and see whether (3.26) has a feasible solution. But
many times we are almost sure that A is irreducible. Let us analyze why.

In general, for a square matrix A of order N (not necessarily a Leontiev matrix, or a
nonnegative matrix) with entries ai,j there is naturally a graph associated to the matrix,
namely a graph whose vertices are the points 1, 2, . . . , N and there is an edge between
vertex i and vertex j if and only if ai,j 6= 0. Naturally, if the matrix A is symmetric, the
graph is not directed, else it is directed. A graph is strongly connected if from each vertex
a path exists to any other vertex, and it can be proved without too much difficulty the
following theorem:

Theorem 6. A matrix is irreducible if and only if its associated graph is strongly con-
nected.

The proof may be consulted in [2].
The economic meaning of this theorem is the following: if Leontiev matrix A is irre-

ducible, the strong connectivity of its associated graph shows that each sector is necessary
for each other sector, directly or indirectly. So in general we may assume that when a
Leontiev matrix of the economy of a developed country is prepared, the matrix is ir-
reducible: except for very small isolated areas with an economy of subsistence (usually
neglected in the preparation of the Leontiev matrix) the economy of a developed country
is integrated, and that means exactly that the associated graph is strongly connected.

3.6. The Usher matrix. Let us return to the Leslie model, but suppose now that the
simulation time step instead of being equal to the time step during which an individual
belongs to a class (as is the case with the Leslie matrices) is less than it. For instance,
the simulation time may be, as before, one year, but the classes include individuals from
age 0 to age 9, from age 9 to age 19, . . . , etc. The at each time step a proportion of
individuals jump from class h to class h + 1, and the remaining individuals of class h
continue belonging to class h. We can easily deduce that, if classes are 1, 2, . . . , K, so
that at time n the population vector ~Pn is

~Pn =




Pn(1)
Pn(2)

...
Pn(K)


 ,

then we represent the dynamic behavior of the model through the vector equation

~Pn+1 = B~Pn,

where now B is called the Usher matrix, and has the form

B =




t1,1 + f1 f2 . . . fK−1 fK

t2,1 t2,2 . . . 0 0
. . .

0 0 . . . tK,K−1 tK,K


 ,

where now we have written fi for the rate of fertility of individuals of group i, ti,i−1 =
1 − Tm(i), with Tm(i) the rate of mortality of group i, and ti,i denotes the proportion
of individuals of group i that remain in that group after the time step. It is easy to see
that an Usher matrix is irreducible if f1,K > 0 and all ti,i−1 > 0; besides, if two successive
groups are fertile (that is, if it exists an i such that fi and fi+1 are greater than zero) the
matrix is primitive.
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4. Traffic models

Now, we change from discrete algebraic models to models governed by partial differential
equations. In a brilliant approach, two well-known specialist in fluid mechanics, Lighthill
and Whitham, formulated the traffic model as, in a sense, a fluid dynamics model, where
the vehicles (cars, buses, vans) were assimilated to particles of a fluid [16]9. Indepen-
dently of Lighthill and Whitham, Richards [19] also modelled the traffic flow through a
fluid dynamics approach; he published his result in a journal specialized in this type of
problems. Thereafter, an abundant bibliography has appeared; here we follow above all
the book by Haberman [7]. It is not strange that the theory appeared in the ’50 of the
past century: after the Second World War the access of the western European middle
classes to car’s ownership (until then restricted to American middle classes) originated
often traffic problems that ought to be solved.

The model we shall present is very simple: we consider a highway with one lane, and
we do not allow overtaking (the model will probably hold reasonably well for bridges and
tunnels, where in many countries it is not allowed to overtake another vehicle) . Besides,
we shall consider a mean length L of the vehicle (when we eliminate these restrictions the
models are more complex and challenging, of course, but in general it is useful to begin
with a simple theory and then to increase its complexity - if feasible). Taking vehicles
individually, we say that the position of vehicle i at time t is xi(t), its velocity is dxi(t)/dt
and its acceleration is d2xi(t)/dt2.

We consider a short time step ∆t between times t and t + ∆t, and count the vehicles
that pass an observer located at a point x. The quantity measured is the traffic flow
q(x, t) during the interval [t, t + ∆t]. We suppose a continuum of vehicles, and fix a very
small unit of time, changing conveniently the time step (of course now the quantity q is
not necessarily an integer). Analogously, we consider a “picture” at time t of the vehicles
between points x and x + ∆x. This quantity we call the density of vehicles ρ(x, t) in the
interval [x, x + ∆x]; again, we suppose a very small space unit, and ρ does not need to be
an integer. In certain simple cases we can compute ρ directly, for instance if we consider
vehicles of same length equally spaced with distance d between them. If ∆x is, say, one
kilometer, then the density (vehicles per kilometer) is

ρ =
1

L + d
,

(of course L and d should also be measured in kilometers). Now, if all vehicles have
constant velocity u, in ∆t units of time each vehicle will cover u∆t kilometers, say (with
the corresponding units of u), and then it is easy to see that q = u× ρ. It may be shown
(and it is very intuitive) that if we accept that a velocity field exists, namely that at each
point x at instant t we suppose that a “point” vehicle through x has velocity u(x, t), then

q(x, t) = u(x, t)ρ(x, t),

and of course

u(x, t) =
dx

dt
.

Individualizing the vehicle located at x at time t as x(t), we may write

u(x(t), t) =
dx

dt
,

9This paper is the second part of a very important paper [15] devoted to a simplified model in one-
dimensional fluid dynamics; the comparison of both papers allows us to observe where the differences
exist between the “original” fluid dynamics approach and the “adapted” traffic one.
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and knowing the position of the “particle” at initial time 0, namely

x(0) = x0,

we have a first order differential equation.

4.1. A conservation equation. We must now obtain a conservation equation. Let us
take a spacial interval [x, x+∆x], and a time interval [t, t+∆t]. We have that the quantity
of vehicles that enter the interval [x, x + ∆x], namely (approximately) q(x, t)∆t, minus
the quantity of vehicles that leave this interval, namely (approximately) q(x + ∆x, t)∆t,
must be equal to the variation of the quantity of vehicles that are into this interval at
time t+∆t with regard to time t, namely (approximately) (ρ(x, t+∆t)−ρ(x, t))∆x, that
is,

(q(x, t)− q(x + ∆x, t))∆t = (ρ(x, t + ∆t)− ρ(x, t))∆x.

We now divide by ∆x and ∆t, let both ∆t and ∆x tend conveniently to zero, and
obtain

−∂q(x, t)

∂x
=

∂ρ(x, t)

∂t
,

that is,
∂ρ(x, t)

∂t
+

∂q(x, t)

∂x
= 0,

or, taking into account that q = uρ,

∂ρ(x, t)

∂t
+

∂

∂x
(u(x, t)ρ(x, t)) = 0 (4.1)

The conservation law says simply that something that “enters” (if there is no creation or
destruction of this “something”) either goes out or is accumulated (supposing that what
“enters” is greater that what “leaves”).

We have here the partial differential equation (4.1), and two unknown functions ρ and
q, or ρ and u. We need some kind of “equation of state” that relates both functions. If
we make the assumption that u = u(ρ) (that, is, the velocity depends on the density of
the flow, what seems (at least in many cases) plausible10, we get then

∂ρ(x, t)

∂t
+

∂

∂x
(u(ρ(x, t))ρ(x, t)) = 0

or, more generally
∂ρ(x, t)

∂t
+

∂

∂x
q(ρ(x, t)) = 0. (4.2)

If q is a linear function of ρ, equation (4.2) is the simplest hyperbolic partial differential
equation, namely

∂ρ(x, t)

∂t
+ c

∂ρ(x, t)

∂x
= 0, (4.3)

where c = dq/dρ. In this case, let us then search for a solution over the line dx/dt = c of
the total derivative

Dρ(x(t), t)

Dt
. (4.4)

10For instance, if there is no other vehicle in the highway, ρ = 0, and then the maximum velocity umax

may be attained: u(0) = umax, where umax is a technical or legal bound. On the other hand, if ρ = ρmax,
we have bumper-to-bumper vehicles, and the velocity is zero, u(ρmax) = 0. A decreasing function may
be constructed between these values.
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We have
Dρ(x(t), t)

Dt
=

∂ρ

∂t
+

∂ρ

∂x

dx

dt
=

∂ρ

∂t
+ c

∂ρ

∂x
=

∂ρ

∂t
+

dq

dρ

∂ρ

∂x
= 0.

That means that, over the line dx/dt = c, the total derivative (4.4) is zero. That is,
over that line ρ is constant, and therefore, if x = ct + x0, then ρ(x, t) = ρ(x − ct, 0) =
ρ(x0, 0) = ρ0(x0), which we know because it is the initial condition. So equation (4.3), the
simplest homogeneous linear hyperbolic equation, is easily solved: the solution is exactly
the initial condition transported, at time t, a distance ct.

What happens if q is a nonlinear function of ρ, namely

dq

dρ
= c(ρ)?

In this case let us again try the solution over the curve dx/dt = dq/dρ = c(ρ(x(t), t)).
Thanks to the fundamental theorem of ordinary differential equations, we know that,
under plausible initial conditions (that we assume) a solution, at least until a certain time
T is reached, exists. We take again the total differential Dρ(x(t), t)/Dt over dx/dt and
again we find that the total derivative is zero, so that the solution is a constant, like
before, so that dx/dt is a line like before. But we know that for nonlinear functions things
are different from what they are for linear functions, so what is wrong with our argument?

Nothing. There is a difference. Before, all curves x = ct+x0 differed only in the initial
point x0, they were parallel, and now they may have different slopes, namely, the curves
are dx/dt = c(ρ)t+x0. But that means that two lines, beginning at x1 and x2, may move
away from each other, or they may intersect, depending on the values of their respective
slopes. If they move away, everything is all right. But if they intersect, then the solution
of (4.3)11 has a discontinuity, because at the intersection point different values coming
from different points cannot give the same solution. In these cases what we have is called a
shock, and represents exactly that: a crash between a vehicle that reaches another vehicle
forward but at a slower speed.

What we have obtained is a shock wave. The theory of hyperbolic equations as conser-
vation laws and shock waves is - apart from its extreme usefulness in many situations, for
instance in the examples above - fascinating from the mathematical point of view, and
may be consulted in many textbooks, for instance in the excellent text ([20]).

We have seen that we may begin with a legitimate and very “good” (in the sense that
it is as continuous and derivable as we want) initial condition and in spite of it we arrive
at a discontinuity. Anyway, the world does not finish after this discontinuity: we may
continue working with the equation, under the definition of weak solution, a concept
which is extremely useful in many instances. What is exactly a weak solution? The idea
is, in general, that a weak solution is a solution that not necessarily has all the properties
that an “authentic” solution has, and that if a problem has an “authentic” solution, this
solution is also a weak solution. The simplest idea is analyzing derivatives: suppose that
in an interval [a, b] we have a function f(x), with a derivative f ′(x). Let us take an
arbitrary function g(x) with a continuous derivative such that its support (the closure of
the points where g(x) is not zero) is strictly contained in (a, b), the interior of [a, b] (that
is, g ∈ C1

0 [a, b]). Then let us look at the integral

b∫

a

f(x)g′(x)dx.

11Remark that now c = c(ρ) is not constant anymore, so that now (4.3) is not linear.
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Integrating by parts we have

b∫

a

f(x)g′(x)dx = [f(x)g(x)]ba −
b∫

a

g(x)f ′(x)dx,

where the value between the brackets is the difference between the values at b and the
values at a. But, as g(x) is zero at both points, we in fact have

b∫

a

f(x)g′(x)dx = −
b∫

a

g(x)f ′(x)dx,

and this happens for all functions g ∈ C1
0 [a, b]. Now, if it exists a function h(x) such that

for each g(x) differentiable that is zero at the extremes we have

b∫

a

f(x)g′(x)dx = −
b∫

a

g(x)h(x)dx,

we call h(x) a weak derivative of f(x). It has some of the properties of a derivative, but
not all, but the properties it has are enough for many problems. Moreover, as we shall see
in the following footnote, a weak derivative sometimes is not even a “proper” function,
the concept is key in theory of distributions, and “extending” the concept of derivative
we can use it for a derivative of any order. Of course, when f(x) actually has a derivative,
this derivative coincides with h(x) (this is of course a necessary condition for having a
reasonable definition using the word “derivative”)12.

In the same sense, forgetting traffic problems, we can define a weak solution for a scalar
conservation law. Strictly speaking, consider the general conservation law in t > 0

ut + f(u)x = 0, u(x, 0) = u0(x). (4.5)

A bounded measurable function u(x, t) is called a weak solution of the initial value problem
(4.5) with bounded and measurable initial data u0, when the equation

∫ ∫

t≥0

(ugt + f(u)gx)dxdt +

∫

t=0

u0gdx = 0 (4.6)

12This notion of “weakness” has generalizations. Disregarding technicalities, let us take the Heaviside
function H(x), namely

H(x) =
{

0 if x < 0,
1 if x ≥ 0.

Let us now take the Dirac delta “function”, namely δ(x) such that for all convenient functions g(x)
we have ∫

g(x)δ(x)dx = g(0).

.
The Dirac delta (which, in fact of course is not a proper function), is, according to our previous

definition, the weak derivative of the Heaviside function, because, for any convenient function g ∈ C1
0 [a, b],

where a < 0 < b,
b∫

a

H(x)g′(x)dx =

b∫

0

g′(x)dx = [g(x)]b0 = −g(0) = −
∫

g(x)δ(x)dx.
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holds for all functions g ∈ C1
0 . Of course it is not too difficult to prove that (4.6) holds

when u is an “authentic” solution of (4.5).
There is more to say about shocks. When a shock exists at a point x and time t, and

(4.6) holds, the discontinuity is a “jump”: the values

u(xl) and u(xr),

where xl and xr mean the limits from the left and from the right, respectively, are different.
The discontinuities form smooth curves Γ (in the sense that, apart from the right and left
limits on both sides of Γ, the function u is smooth away from Γ), and, if we call [u] the
jump ul − ur, and analogously [f(u)] = f(ul)− f(ur), we have the following

Theorem 7. s[u] = [f(u)], where s = dx/dt is the speed of the discontinuity.

The proof may be consulted in [20].
Relation s[u] = [f(u)] is called the jump condition, or Rankine-Hugoniot condition in

gas dynamics.

4.2. The Riemann problem in traffic. There is a famous problem in gas dynamics,
called the Riemann problem, in which (for a one-dimensional situation) the initial con-
ditions are constant at the left and at the right of a certain point, say, x = 0, but there
is a discontinuity at 0. That is, using the notation of equation (4.5) we have, as initial
condition

u(x, t) =

{
ul x < 0
ur x > 0

.

The Riemann problem is enormously important in the theoretical and numerical research
of hyperbolic partial differential equations, see for instance the text [20] already men-
tioned. It can easily be adapted to traffic situations that we suppose are governed by the
conservation law (4.2), namely, suppose

(1) Vehicles move uniformly along a road with density ρ0, and suddenly a traffic light
turns red at time t = 0.

(2) The same situation, but now the vehicles are all waiting (with density ρmax) that
the traffic light turns green, and the traffic light turns to green a time t = 0.

It can be proved (see [7]) or, for the general approach in gas dynamics, [20], that in the
first situation there is a shock, namely each vehicle “crashes” against the vehicle that is
already halted (in fact, of course this is only an approximation, because normally there
are slowing downs phenomena included in the process, and no crash). In fact, we have a
kind of Riemann problem with

ρ(x, 0) =

{
ρ0 x < 0
ρmax x > 0

.

The shock propagates “backwardly”; the path of the shock must satisfy the shock
condition

dxs

dt
=

[q]

[ρ]
.

We know the initial condition of this ordinary differential equations, namely xs(0) = 0;
besides, at time 0 and at the position x = 0 of the traffic light we shall have maximum
density ρ = ρmax (because the first vehicle has stopped and the following vehicles will
stop bumper-to-bumper). Therefore,

dxs

dt
=

ρmaxu(ρmax)− ρ0u(ρ0)

ρmax − ρ0

,
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but as u(ρmax) = 0 (no movement is possible in a bumper-to-bumper situation) we have
finally

dxs

dt
=
−ρ0u(ρ0)

ρmax − ρ0

< 0.

As we had said, the shock moves backwardly. Using the initial conditions, we may write

xs =
−ρ0u(ρ0)

ρmax − ρ0

.

So we may remark that the shock moves through a line, with constant velocity xs, and
at time t the shock will be at position xst. Behind the shock, vehicles move forward with
a constant density ρ0; ahead of the shock, vehicles are standing still. In this simplified
model, vehicles must decelerate from u(ρ0) to zero “instantaneously”; a more accurate
model should take into account that usually vehicles decrease their velocity, perhaps very
quickly, but without crashing. Anyway, very often the model coincides, to a reasonable
approximation, with what really happens.

In the second situation all is smoother. The density is maximum for the vehicles waiting
that the light turns green and when it turns green the vehicles begin to move rightwards.
The Riemann conditions are

ρ(x, 0) =

{
ρmax x < 0
0 x > 0

.

In this case the first vehicle may go (and we suppose that it goes) with maximum
velocity umax (because there is no vehicle ahead, that is, density is zero ahead of it) but
the following cars must wait until they are able to move (an experienced situation for all
drivers); If the distance between vehicles is L, the nth vehicle should wait until time

t =
(n− 1)L

−ρmaxu′(ρmax)

to move.
Interesting and useful experiments have been performed with this model, for instance

at the Lincoln tunnel, in New York.
Incidentally, the Riemann problem may also be applied to a sudden dam break situation.

Without analyzing the equations (we shall say something thereabout in the next section)
we can suppose that upstream the dam a reservoir exists with a constant water level
hconst, and downstream the dam the water level (that we may suppose constant too, for
simplicity) is hdownstream < hconst. Analyzing carefully the variables and the equations, a
similar phenomenon happens.

5. Shallow waters

Suppose now that we have a “not too deep” watercourse, that is, intuitively speaking,
a watercourse shallow along all its course, and we assume that the lateral velocity is
negligible, as well as the vertical velocity. We then have a one dimensional system of
quasilinear hyperbolic partial differential equations: it may be proved (see for instance
[21]), under reasonable physical assumptions, that the equations that govern the one-
dimensional shallow water open channel flow are

∂S

∂t
+

∂Q

∂x
= 0, (5.1)

∂

∂t
(
Q

S
) +

1

2

∂

∂x
(
Q

S
)2 + g

∂Z

∂x
+ g

Q2

D2
= 0, (5.2)
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where x is the spacial coordinate along the longitudinal axis of the watercourse, t is the
time, Q = Q(x, t) is the discharge at point x and instant t, Z = Z(x, t) is the surface
level measured from a fixed plane of reference, S = S(Z(x, t), x) is the wetted cross
sectional surface at point x when the level is Z(x, t), g is the acceleration of gravity, and
D(Z(x, t), x) is the conveyance at point x and level Z(x, t), conveniently related to the
frictional resistance to the flow. The conveyance is a parameter that indicates the influence
of the geometry of the watercourse, its bed, the vegetation, etc., on the flow: it is intuitive
that water flows very differently in a rectangular glass channel than in a watercourse where
the cross sections have a very complicated geometry and, besides, there exists a significant
vegetation on the bed. Equations (5.1) and (5.2) are usually called the Saint Venant
equations of fluvial hydraulics (the conservation of mass and conservation of momentum
equations, respectively), for the rôle the great French engineer of the 19th century had
in their formulation. Technically speaking, we have a one-dimensional gradually varied
unsteady water flow in open channels or rivers with arbitrary cross-sections and fixed
bed, governed by the Saint-Venant hydrodynamic equations. Naturally, as there are two
equations, there must be two independent functions whose existence (and unicity) should
be guaranteed under certain assumptions. The functions are Z and Q, generally, although
Q sometimes (above all in channels with a very simple geometry, and in two dimensions)
may be replaced by the velocity V = Q/S, and Z can be replaced by S, if a one-to-one
relationship exists between Z and S at each point x. Let us remark that if a relationship
can be established between the discharge Q and the level Z, we can neglect the equation
(5.2) and equation(5.1) becomes a scalar conservation law, as we saw previously. In fact,
this is the kinematic equation, that Lighthill and Whitham treated in their article [15].
Sometimes, when few data are available, a complete hydrodynamic (fluvial) model must
be replaced by a simpler one, a kinematic model.

Of course we need initial conditions, say, Q(x, 0) = Q0(x), Z(x, 0) = Z0(x), and, as the
reach of river we are analyzing is not infinite, boundary conditions that, for watercourses
with a certain type of flow called subcritical13 are one at the upstream boundary a and
the other at the downstream boundary b. For instance, Q(a, t) = f1(t), Z(b, t) = f2(t).
Boundary conditions, as well as initial conditions, must satisfy certain physical constraints
that do not interest us now. If we use a simplified kinematic model, as we have only one
equation in this case, only one boundary condition is necessary, namely the discharge
upstream. A description of the problems that can be treated with the hydrodynamic or
kinematic equations in fluvial basins may be consulted in [8].

The Saint Venant equations cannot be analytically solved except in very special cases,
so that they must be numerically solved. This is not a problem nowadays. A vast amount
of very efficient numerical methods exist to solve the equations, see for instance [23].
The technical problem is not solving the Saint Venant equations, the technical problem is
(sometimes) to find the conveyances D. In fact, we have a lot of parameters: at each point
of the river the cross sectional geometry may vary, the type of bed may also vary, and
the conveyances depend also on the water level. So often we must have values of D, for
instance, 100 points that represent significant points in a river, and at each point for, say,
20 different heights. So we need to calibrate 2000 parameters, and, although theoretically
to find the values of parameters that minimize the differences between the results of a
model run with historical records and the real records is an inverse problem, usually it is

13A subcritical flow is a flow where the (dimensionless) Froude number Fr is less than 1, Fr = V/
√

gh,
where V is the velocity of the fluid and h the hydraulic radius, that is, wetted cross-sectional area divided
by surface width. If the Froude number is greater than one, we have supercritical flow, and both boundary
conditions must be prescribed upstream.
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simpler and more efficient to have an experienced modeler that, by a carefully designed
trial and error method, perhaps automatically running the model several times, obtains
the required values. Of course, the modeler will begin with educated guesses, that is, if
the river is similar to other rivers on which he or she had worked (in the sense that the
type of bed is similar, and/or the geometry is similar, and/or the discharges are similar,
etc.), it is reasonable to think that it is possible to begin the calibration using values of
conveyances already used in the other river. It is possible also that the modeler will need
several historical records (for instance, the records of water levels for a dry year, for a
year neither particularly dry nor particularly wet, and for a wet year), in order that many
different situations may be simulated and compared with actual data recorded.

Other problem that may exist modelling rivers (and in many other situations) is what
is called the “warming-up” of the model. To carry on a run we need boundary conditions
and initial conditions. Boundary conditions are in general known: for a calibration run,
for instance, one may use as upstream boundary condition the water levels recorded at
the upstream point during a certain period, and as downstream boundary condition the
corresponding water levels. But not necessarily one knows what is the initial state of the
river, that is, the heights and discharges at all discretization points14. Then a process
is necessary by which, beginning with sound initial conditions (sound in the sense that
are physically reasonable: for instance, the surface slope corresponding to a steady state
situation), and slowly carrying the boundary conditions until they have the initial values
they should have (and then sometimes maintaining these values during a certain period,
in order to begin the “real” run with a steady state situation), one can begin the run:
the model is already “warmed-up”. This is one of the fundamental differences between
problems in partial differential equations (and sometimes other types of equations) with
only initial conditions prescribed, that is, Cauchy problems, and mixed initial-boundary
problems like this one: in Cauchy problems once the initial conditions are given, if the
problem is well posed in Hadamard’s sense the results in the future are (neglecting nu-
merical errors) completely determined, and can not be changed by any means: if we have
not the real initial conditions (or initial conditions sufficiently close to the real conditions)
we shall never obtain satisfying results. But in mixed initial-boundary problems often the
boundary conditions “force” the problem to approach convenient conditions, and then we
use them.

By the way, the “warming-up” problem helped Edward Lorenz detect the phenomenon
of chaos: with his very ancient (for our standards) computer (a Royal McBee LGP-30)
Lorenz was working in weather prediction, via a very simple (and now very famous) model
(a “toy” model) consisting of three ordinary differential equations slightly nonlinear15. He
had “good” initial conditions for a certain simulated time, but to go from this state of

14Here we suppose that the problem is numerically solved by finite differences, that is, by conveniently
replacing derivatives by incremental quotients at certain points, the discretization points. If other type
of numerical method is used, there will be perhaps slight modifications in this approach, but essentially
the idea is the same. This remark holds also for the analysis of conveyances above mentioned.

15For the sake of completeness we write here his equations:

dx/dt = σ(y − x),
dy/dt = x(ρ− z)− y,
dz/dt = xy − βz.

Here σ is the Prandtl number and ρ the Rayleigh number. The three parameters σ, ρ and β must
be positive, and the system is chaotic for certain values of ρ. Remark that chaos is not associated with
complexity of the equations: there are only three equations, and the “nonlinearity” is weak (only the
product of two functions).
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the system to the state he was really interested in, and then perform the experiments
he wanted, he ought to spend a lot of machine-time (the computer was very slow). So
he used a (printed) description of the state of his system at the appropriate simulated
time; the printed numbers were rounded to less decimal points than the actual numbers,
as represented in the computer memory, but as he believed that his problem was well
posed he did not care for the slight difference. The surprising result (the trajectories were
completely different) opened the path to the theory of chaos, and was published in [17],
becoming a very famous and profound paper.

6. Building and operating a model

Now, both in discrete and continuous models, there are some general rules which,
if possible, we follow: we formulate the problem, and try to “translate” the problem
into a mathematical model. The mathematical model should not be more complex than
necessary: it makes no sense to prepare a very detailed model that requires many different
kinds of data when we are not able to collect (or to collect in a near future) or imagine the
data. The model should also take into account the computer resources available: although
nowadays we can use extremely powerful computers and clusters, some problems are really
“big”, for instance some 3D meteorological models; never prepare a model that you can
not find a computer to run it in. Sometimes the programming of the model forces us to
re-analyze the equations, of even to re-analyze the assumptions. Anyway, with the model
programmed and implemented, after many runs with artificial or special data, we are
able to calibrate the model. After calibration, it is necessary to validate the calibration:
how do we know that the calibrated parameters are (more or less) the actual parameters,
and not parameters that “force” the model to approximate the real situations we have
used for calibration, but not other situations? If possible16, it is necessary to validate the
model with other real situations not used for calibration: for the model to be considered
well-calibrated, the differences (in the chosen norm) between the simulated results and
the real values must be reasonably similar to the differences obtained in the runs used for
calibration. When the model has many parameters, it is possible that according to the
input data some parameters are or are not involved in the calculations; therefore, it is
convenient that the validation runs assure that all parameters take part in the calculations
(of course that means that it is important that the calibration runs allow the calibration
of all parameters). But only after the model has been sufficiently calibrated17 can we
really take advantage of it.

If the model is ready for the numerical experiments we want to perform with it, then it
may be a powerful tool to assess the feasibility or the consequences of different alternatives.
For instance, with a demographic model we can evaluate, for different rates of fertility
or mortality, what will the population pyramid be taking a horizon of, say, 50 years18.
Then we can, for children and teenagers who should be in school, compute how many
teachers we need, how many buildings, and then the necessary budget. Of course, some
policies may be unfeasible, perhaps for physical or technical reasons (it will be impossible

16Sometimes we have no time, or no other historical record, to validate the model.
17Of course not always are we totally satisfied with the calibration. Anyway, when using a model it

is important to know how well it represents the phenomenon modelled, so as to avoid conclusions not
sufficiently backed.

18How distant the horizon can be depends, of course, on the type of model. For a Leslie-type demo-
graphic model the horizon may be reasonably distant, because it is a linear model, and linear models are
stable. But a meteorologist predicting the weather must be satisfied with an horizon only some days in
the future, because, as Lorenz showed, the problem is ill-posed.
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to get that number of teachers in those years, or the political cost of assigning too much
money to education - and, for instance, not enough money for the old - is too high, etc.).
Naturally, what the model offers us is a menu of scenarios: it would be very dangerous
to believe that one, and only one, is the outcome associated with an alternative, because
always there are “boundary conditions” that we do not control. For the traffic model it is
possible to evaluate how convenient could be the construction of a new tunnel or bridge
in a city. For the fluvial model, many runs may be performed, to experimentally detect
what happens when downstream, for instance, we have a dam, and several alternatives of
water release (that is, discharge as downstream boundary condition) are tested.

It is always important to know what the model can not do: for instance, a fluvial
model using a finite difference implicit method for numerically solving the Saint-Venant
equations is not apt to model the sudden breaking of a dam, because in this case we must
surely analyze a shock wave, and finite difference implicit methods usually smear out the
shock wave.

Sometimes the modeler is one person, experienced in the problem, in its mathematics,
and in programming. But usually (above all if the problem to be modelled is complex)
an interdisciplinary group works in the modelling. Depending on the problem, perhaps
an engineer (or a demographer, in one of our examples) with an applied mathematician,
and a computer scientist, and assistants. Each scientist or professional must be able
to understand the language and the type of approach of the others; this is not only
important and useful for the success of the modelling, but also is incredibly enriching for
all participants.

Finally, it is interesting to remark that, as a tool in modelling, applied mathematics
may sometimes become an experimental science, in the sense that its criteria begin to
look like the criteria of physicists or engineers. Sometimes a careful and good strategy for
the design of experiments is extremely convenient. An analysis of this kind of approach
in applied mathematics may be seen in [9].
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