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LARGE-SCALE ALGORITHMS FOR MINIMIZING A LINEAR FUNCTION
WITH A STRICTLY CONVEX QUADRATIC CONSTRAINT!

T.I. GIBELLI ? and M.C MACIEL 3
Departamento de Matemdtica, Universidad Nacional del Sur
Av. Alem 1258, 8000 Bahia Blanca, Argentina.

Abstract

The problem of minimizing a linear function subject to convex quadratic constraints appears
in many topological optimization problems such as truss and free material optimization.
Usually this kind of problems is solved using interior point methods. In this work, the
problem with only one constraint is considered. The solution of the problem is analyzed
when the constraint matrix is symmetric and positive definite. A simple iterative algorithm
is proposed. It is essentially based on the steepest descent direction and the geometric
properties of the problem. In this method an iteration goes to the boundary in the negative
gradient direction and then it finds the center of the region determined by the intersection
of the level hyperplane and the feasible set. The convergence of this algorithm is analyzed.
Also, an improved version of the algorithm is established. It comes from the observation
that centers are in the same line, so only one center-finding operation is needed. Because
of its simplicity, these algorithms are appropriate for very large scale problems. Numerical
results are presented.

Key words: Quadratic Constraints, Topological Optimization.
AMS Subject Classification: 49M40, 49N10, 90C25, 90C30.

1 Introduction

Some topologic optimization problems, like truss and free material optimization, can be estab-
lished as a constrained optimization problem as follows

min ¢z

s.t. . (1)

%ZETAZ':E < bi, 1= 1, ceey TN,

where ¢ € R", A; € R™" are symmetric positive semidefinite matrices, and b; € R for all
i=1,..,m[3.
This kind of problems belongs to the more general class of convex optimization problems:

min  f(z)
S.T.
gi(x) <0, i=1,...m,

(2)

where f,g; : R® — R are twice continuously differentiable convex functions, the set of optimal
solutions is a nonempty and compact set and there exists a point  such as ¢;(z) < 0 for all
1=1,...,m.

Many numerical methods solve the problem under some additional assumptions. The inte-
rior point methods are perhaps the most popular [1, 4, 6, 10]. They are used to transform a

IThis work has been partially supported by Universidad Nacional del Sur, Project 24/069 and Fundacién
Antorchas, Project 13900-4.

2tgibelli@uns.edu.ar. CONICET.

3immaciel@criba.edu.ar. Fax: 54-291-4595163.
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constrained problem to a sequence of unconstrained problems, which are solved via well known
algorithms, for instance the Newton method. Ben-Tal and Zibulesvsky [2] have developed an
efficient method for large scale convex problems which are very common in topological design.
The algorithm combines ideas of penalty and barrier methods with the Augmented Lagrangian
method.

In this work, the problem (1) is analyzed with only one quadratic constraint, and the matrix
is symmetric and positive definite. First, the existence of solution and its exact expression is
studied. Then, according to the geometric characteristics of the problem an iterative algorithm
is proposed to find the solution. The convergence of this algorithm is analyzed. Finally, an
improved version of the algorithm is presented and some numerical results are shown to illustrate
the behavior of the algorithms.

2 The problem

We consider the optimization problem

min  f(z) =clx

s.t. (3)
1
§ZETA:E —dTx < b,

where c € R", ¢ #£ 0, d € R™, A € R™ " is a symmetric positive definite matrix and b € R, b > 0.
The problem (3) can be transformed into the following one

min Lz

s.t.

(4)

1
§ZETA:E <b,

via a simple substitution. Such a substitution consists of translating the center of the quadratic
%ZETA:E — d"z = b to the origin.

The proposed algorithm is based on the geometric properties of the last problem. We state
some of them.

Lemma 2.1 The problem (4) has a unique solution x* and it satisfies that Az* and c are parallel
directions.

Proof: It is straightforward. U

Lmin

e = rmin

Tr =T rmax

Tmax

Figure 1: The geometric properties of the problem

Lemma 2.2 The problem (4), where ¢ € R", ¢ # 0, A = I, and b is a positive real number,
2b

E C.

Proof: It is straightforward. U

has a unique solution z* = —
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Theorem 2.1 The problem (4) has a unique solution, =* = — ﬁA_lc.
cl'A-tc

Proof: It follows from Lemma 2.1. O

3 The algorithm

The exact solution of problem (4) requires the computation of the inverse matrix of A. It
is well known that this computation is not convenient because of the numerical errors and the
arithmetic cost. Then, we propose an iterative method which does not require the inverse matrix
of A and takes into account the geometric properties of the problem described above.

The main idea is to find alternatively an interior point and a border point following the
steepest descent direction of the objective function until the minimizer is reached. The algorithm
starts with an interior point. Without of generality, let us take y; = 0.

Figure 2 shows the sequence of interior and border points generated by this algorithm.

Figure 2: The behavior of the iterative method

Algorithm 1:
Given: ¢ € R", ¢ #0, A € R™" symmetric and positive definite matrix and b € R, b > 0.
For k =1,2,.... “until convergence” repeat

Step 1:
- Iszl,y1:0
— If £ > 1, find an interior point y; as the center of the resulting intersection between

the level hyperplane ¢’z = ¢’'z;,_; and the constraint.

Step 2: Find a border point x; as the intersection between the halfline passing through
Yk in the direction v = —c and the constraint.

Now let us describe in details Step 1 and 2.

e Step 1: (k > 1) Since ¢ # 0, there exists at least an index ¢ such that ¢; # 0. If
fr—1 = c"xj_1, then from the hyperplane ¢!z = f,_; it is possible to obtain the component

n

1
zi=—|foci— Y. ¢y

c -~
‘ i, j=1
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Then,
1 0 0 0
1 1 0 0 1 0
Ti_ 0
;1 B c1 Ci—1  Cit1 Cn e fr—1 )
T - —_ “ e - - “ e —_
Tit1 &) & C; ' C; Li41 C; 0
0 0 1 0 Tn 6
n 0 0 0 1
Let

— P e R™("1) be the matrix obtained from the identity I,,_; € R=Dx("=1) 4dding
the zero vector as the i-th row . Clearly PPT = I, and PTP =1,_;.

C; t ’ place i

e
—e= —Z', where ¢! = (0,0,..., 1 ,...,0,0) € R".

So x = BZ + fr_1e where B = (I, —ec")P € R (=1 and 7 = PTz € R"!. The
intersection between the hyperplane x = BZ + fx_1e with the constraint %ZETA:E =1bis

1, ~
5(333 + fro1e)T A(BZ + fr_1e) = b

L . 1
5 TBT ABZ + fr_1e' ABT + 5 2 efAe=1b
1y~ =T =
3 TAZ —dy 7 =y,
where A = BTAB, (ﬂ = —fk_lBTAe y ?)\k =b— %f,?_leTAe.
~ s T~ . . . -~
The center ¥ of %ZETA:E —di T = b, can be obtained by solving the linear system Ax =

~ e T
dy, or equivalently by obtaining the minimizer of the quadratic function %ZETA:E —dp .

Clearly, that point can be obtained via any minimization algorithm.
Finally, yx = By + fr-1e.

e Step 2: The point zj is obtained as the intersection between the halfline z(t) = yx, — tc,
t > 0, and the quadratic constraint 27 Az = 2b. Then,

(y — te)T Alyx — te) = 20
y,{Ayk — 2t Ayy, + t2cT Ac = 2b
(T Ac)t® + 2(—cT Ayp)t + (yL Ay — 2b) =0
" Ay + /(7 Ayy)? — (7 Ac) (yf Ay —20)

cl'Ac
Tk = Y — tkC.

tr =

e Stopping criterion: the termination rules to stop the algorithm are the following:

— if the closeness between interior and border points is less or equal to a given tolerance
lye — @i

< tolerance, or
[z
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. . |zk—1 — x|
— if the closeness between iterates, W < tolerance.
Tk

After these considerations, Algorithm 1 can be written as

Algorithm 1:

Given: ¢ #0 € R", A € R™" symmetric and positive definite and b € R, b > 0.

Compute: B, e, A= BTAB and v = BT Ae.

For k =1,2,.... “until convergence” repeat
Step 1:
olfk=1,y =0.
o Ifk>1,
% compute: fy_1 = clap_1 and d, = —fr_10.

. Ly~ 7.
* Yp = argmin §:L'TA:L' —dp T.
* Yp = Byk + fr-1e.
Step 2:

! Ay, + \/(cTAyk)2 — (CTAC)(ygAyk —2b)
cT'Ac

o i =

® T = Yy — ticC.

4 Convergence of the algorithm

In this section the behavior of the sequences of interior and border points, {yx} and {zx},
generated by the algorithm is analyzed. It will be show that both sequences converge to the
solution of the problem (4).

Lemma 4.1 Let {fi}, with fr = cTxy, and {y}, the sequences generated by Algorithm 1, and
xt=— CTjib_ch_lc the solution of problem (4), then
i) {fx} is a negative decreasing sequence.
0> fi>fo>..> fie1 > fio > forr > oo
ii) Each term yi belongs to the halfline z(t) = t(I, — BA"1BT A)e, t < 0.
iii) T Ax* = 2b.
iv) x* is located to the line x(t) = t(I,, — BE_IBTA)e, t<O0.

Proof:
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o 2b
i) Since x; = — TG Then,
2b
_ T _ T
fl—C Tr1 = — mc c < 0.
On the other hand, for all k, y; belongs to the hyperplane ¢!z = ¢'zj_1. Then Ly, =

cTxp_q. Since xj = yi, — tic with t;, > 0 we obtain,

fro=cloy =y —ticle < Typ = Twpmr = froa.
—~ ~T —~
ii) For any iteration k, g5 = argmin 337 AZ — dj, T, where dy = — f,_1 BT Ae. Therefore,
U = A ld, = —fr_1 A~ BT Ae. Since yi = By, + fr_1e, it can be written
_ -1 pT _ -1 pT
yr = —fr_1BA "B Ae+ fr_1e = fk—l(ln — BA™'B A)e.
Therefore for all k, yi lies on the halfline z(t) = ¢(1,, — BA\_IBTA)e with t = fr—1 <0.

iii) It is straightforward, because

2b
*T * —1 T -1, _
Azt = (—|/ 7CTA_ICA (—1/ CTA 1c CTA 1c A ¢ = 2b.

iv) Let us consider the halfline z(t) = ¢(I,, — BA™ BT A)e with t < 0 and ¢t* = ¢Tz*. Then,

e t* < 0, because

t*: TA = —V2 TA_l .
\l CTA 1c \l CTA T be ¢<0

o z* = t*(I, — BA"1BT A)e, because the facts B = (I, — ecT)P and elc = 1 imply
that BTA:E =0:

2b 2b
T * T . _ T T
Bar = ol o=V agrl Unmeee
2b 2b
= Vaar e meela) =~y g Ple o)

= 0.
Then APTz* = —BT Aec” z*, because
APTz* = BTABPTz* = BTA(I, — ec") PP 2"
= BT Az* — BT AecT &
= —BTAecTz
Therefore, A-1BT AecTz* = —PTz* and
t*(I, - BAT'BTA)e = (I — BAT'BT A)ec"z* = ec"a* — B(A"'BT Aec” z*)

= ecla* + (I, — ech)PPTz* = eca* + 2* — ec’z*

= z*.
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O
We establish the convergence result.

Theorem 4.1 The sequences {yr} and {xx} generated by Algorithm 1 converge to z*.

Proof: Since A is symmetric and positive definite, it is possible to consider the elliptic norm
|2la = V2T Az. In first place we show that the sequence {|lyk||a} is increasing and upper
bounded.

e Since for all k, yy, is an interior point of the feasible region, ||yx |4 = vy Ayx < 2b. Therefore,
the sequence {||yk|/4} is upper bounded by v/2b.

e According to the second part of the Lemma 4.1, ||yk||la = |fe—1|||(Ln — B/T_IBTA)eHA
and from the part i) of Lemma 4.1, the sequence {|fx|} is monotone increasing, then the
sequence {||yx||a} also results to be monotone increasing.

Therefore, the sequence {||yk|la} is convergent and from the fact that {yx} is contained in a
halfline, the sequence {y } is also convergent. For each k, let us consider the triangle determined
by yk, yr+1 and x, which is rectangle at xx. Then

2k — ykll2 < lyk+1 — yell2-
The convergence of the sequence {yx} implies
Jim 2= i
Moreover, from ||xg||4 = v/2b for all k, then

lim ||yx||la = lim ||zk]|a = V20.
k—o0 k—o0

According to Lemma 4.1 ii), iii) and iv), both * and the sequence {yi} are on the halfline
passing through the origin and verify ||y |4 < v2b = ||z*||4. Thus,

lim [lyp —2"[[4a < lim ([lz"][4 = [Jyklla) = V2b = lim |yx[[a = 0.
k—o0 k—oo k—o0
Therefore {y} converges to z*, and

lim zp = lim y, = z*.
k—o0 k—o0

5 Improved version of the algorithm

The Lemma 4.1 suggests a way to simplify the algorithm. Since the interior points generated
by the algorithm lie on a line, it is possible to find such a line using two of them. The solution
of problem (4) can be found as the intersection of the line and the constraint. It means that the
solution can be found by a direct method.

This algorithm has the advantage of being less costly than algorithm 1, but it has the disad-
vantage of choosing the interior point properly because the accuracy of the solution will depend
strongly on the accuracy of this interior point. Figure 3 shows the behavior of the algorithm.

Algorithm 2
Given: ¢ # 0 € R", A € R™*", symmetric and positive definite matrix and b € R, b > 0.

Step 1: Choose the starting point: y; = 0.
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z(t) =y1 + t(y2 — v1)

;L'*

x1

xT Az = 2b
Figure 3: The behavior of the direct method

Step 2: Find a border point x; as the intersection between the halfline passing through
y1 in the direction v = —c and the constraint.

Step 3: Find an interior point yo as the center of the resulting intersection between the

level hyperplane ¢’z = ¢’z and the constraint.

Step 4: Find the solution x* as the intersection between the halfline passing through
in the direction v = y9 — i1 and the constraint.
Let us analyze each step of the algorithm. There are no comments about Step 1, Step 2
and Step 3 because they are similar to those of Algorithm 1.
Let us consider Step 4. Since y; = 0, the point z* is obtained as the intersection between
the halfline x(t) = tys, t > 0, and the quadratic constraint 2 Az = 2b. Then,

2b

(tyo)T A(tys) = 2b, t* = ,
Y3 Ays

Tt = t*yg.

Then, Algorithm 2 is established as

Algorithm 2:

Given: ¢ #0 € R™, A € R™™"™ symmetric and positive definiteb € R, b > 0.
Compute: B, e and A = BTAB.

Step 1: Choose a starting interior point: y; = 0.

[ 2b
Step 2: Find a border point: z1 = —{\/ ——c.
cl'Ac

| SN
Step 3: Find an interior point: yo = Bys + fie with yo = argmin §/ZL'\TA:/L'\ —

where f; = ¢T'z; and d= — f1BT Ae.

d’'z,

2b

Step 4: Find the solution: z* = T Yo.
Yy Ayo

6 Numerical experience

In this section implementations of Algorithms 1 and 2 are described. The algorithms have been
implemented in Matlab in an environment PC with a Pentium 4 processor with 512 MB RAM
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and 2.40GHz.
The specific procedure used is given below.

e The stopping criterion used in Algorithm 1 is: e, = ||yr — zx|| < 10712,

~

e In Step 1 of Algorithm 1 and Step 3 of Algorithm 2 the point 3, = argmin %/ZE\TA\:/E\— dAkT:E
is obtained by applying the spectral gradient method. It is a relatively novel non-descent
method, appropriate to large scale optimization problems and competitive with the tradi-
tional conjugate gradient method. For more details see [5, 7, 8, 9].

In the tables, the following abbreviations are used:

e n: the number of variable of the problem.

e it: the amount of iterations carried out by Algorithm 1.

e Nit: the number of iteration considered from Algorithm 1.

e it SG: the number of iterations required by spectral gradient method to obtain 7 =

Ly~ T . .
argmin §ZETA:E — dp T in the k-th iteration.
e fi = cTzy: the objective function value at the k-th iteration.

lyr — k]| . . L
o ¢ — W: the relative error in the k-th iteration.
Tk

o f* = cTz*: the objective value function at the estimate z*, given by the algorithm.

o= ||%:E*TA:E* — b||: the error constraint evaluated at z*. We observe that r should be
zero since the solution must satisfy the constraint.

e CPU time: the computing time required by the algorithm.

Now, we consider two problems, each of them with different number of variables. Both
problems are considered without the linear term (d = 0) because any other problem can be
reduced to this case.

Problem 1:

Let us consider problem (4) with ¢ = (1,1,...,1)T € R", A = diagonal(1,2,...,n) € R"*"
and b = 1.

Table 1 shows the results obtained at each iteration of the iterative method with n = 100.
Tables 2 and 3 show the results obtained applying Algorithms 1 and 2 with different values of
n (n =100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000).

The fast convergence of the algorithm can be observed in Table 1: the error decreases quite
fast. Also, it is possible to observe that the number of iterations required by the spectral gradient
method to obtain y; decreases as k increases.

Table 2 shows that the number of iterations required by Algorithm 1 do not increase when
the number of variable is augmented. The time required to run the algorithm increases because
of the operations needed at each iterations. Clearly, more computing time is needed if the
number of variable is large.

Comparing Tables 2 and 3, there are not significant differences between the results obtained
by Algorithms 1 and 2, despite the considerable decrease in computing time.
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Nit fo = T er = ”ymk” it SG

1 | —1.99007438041998 1 0

2 | —2.96984668055811 0.18218129703840 132
3 | —3.20683507409673 0.03103981609218 123
1 | —3.22093665958930 0.00178265648084 111
5 | —3.22008665492903 | 6.207052951447885¢ — 006 | 94
6 | —3.22008665555746 | 7.915125095980291e — 011 | 76
7 | —3.22098665555746 | 5.035955884656709¢ — 017 | 18

Table 1: Iterations of Algorithm 1 - Problem 1, n = 100

n fr=cla* r= ||%SL'*TA5L'* = CPU time | It
100 | —3.22098665555746 | 3.330669073875470e — 016 0.0630 7
200 | —3.42871140463044 | 2.220446049250313¢ — 016 0.3430 7
300 | —3.54476060695204 | 3.330669073875470e — 016 1.4530 7
400 | —3.62489439602770 | 2.220446049250313e — 015 2.9850 7
500 | —3.68587124842703 | 9.992007221626409¢ — 016 5.9680 7
600 | —3.73496410209512 | 2.220446049250313e — 015 11.1250 7
700 | —3.77597937377608 | 1.332267629550188¢ — 015 18.9220 7
800 | —3.81115527428657 | 9.992007221626409¢ — 016 27.3750 7
900 | —3.84191771929092 | 1.110223024625157e — 015 38.9690 7
1000 | —3.86923011994643 | 2.220446049250313e — 016 56.9370 7

Table 2: Algorithm 1 applied to Problem 1 and different values of n

n fr=cla* r=|ia*T Az — b CPU time
100 | —3.22098665555746 | 2.220446049250313e — 016 0.0320
200 | —3.42871140463045 | 8.881784197001252¢ — 016 0.1250
300 | —3.54476060695204 | 1.887379141862766e — 015 0.6400
400 | —3.62489439602770 | 8.881784197001252¢ — 016 1.4530
500 | —3.68587124842704 | 8.881784197001252¢ — 016 2.9850
600 | —3.73496410209512 | 1.332267629550188e — 015 5.3910
700 | —3.77597937377609 | 8.881784197001252¢ — 016 9.0470
800 | —3.81115527428656 | 5.551115123125783e — 016 12.5630
900 | —3.84191771929092 | 1.110223024625157e — 016 18.7970
1000 | —3.86923011994643 | 9.992007221626409¢ — 016 24.8750
Table 3: Algorithm 2 applied to Problem 1 and different values of n

Problem 2:
H(v)"H(v)

Let us consider problem (4) with ¢ = (1,1,...,1)T € R*, b=1 and A = 3 € R"x7™,
n

where v = (1,2, 3, ...,n) € R" and H(v) is a square Hankel matrix whose first column is v and

whose elements are zero below the first anti-diagonal. This matrix is symmetric and positive

definite.

Table 4 shows the results obtained at each iteration of the algorithm when n = 100. Tables
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5 and 6 show the results obtained via Algorithms 1 and 2.

Nit fo = Ty e = L=zl it SG
1 | —3.82499150774954 1 0
2 | —7.25025696447532 0.09187993351090 875
3 | —10.07701880238112 0.04035743849082 705
4 | —12.17872638695642 0.02164347403184 753
5 | —13.51681325907164 0.01141576228632 878
6 | —14.16487459323087 0.00498514448544 695
7 | —14.34312557007998 0.00130895964353 732
8 | —14.35752222964941 | 1.044190646555198¢ — 004 | 710
9 | —14.35761670656568 | 6.845619643013136¢ — 007 | 530
10 | —14.35761671063453 | 2.948193549052210e — 011 | 332
11 | —14.35761671063453 0 27

Table 4: Tterations of Algorithm 1 - Problem 2, n = 100

n fr=cla* r=|ia*T Az — b CPU time | It
100 | —14.35761671063453 0 0.4060 11
200 | —20.15598398495877 0 5.8910 13
300 | —24.62326461541155 | 1.110223024625157e — 016 25.4060 15
400 | —28.39588023323513 0 78.4690 17
500 | —31.72283979772807 | 2.220446049250313e — 016 198.0780 18

Table 5: Algorithm 1 applied to Problem 2 and different values of n

n fr=cla* r=| 32T Az* —b|| CPU time
100 | —14.35761671063453 | 2.220446049250313e — 016 0.0630
200 | —20.15598398495877 0 0.7500
300 | —24.62326461541155 | 2.220446049250313e — 016 2.1880
400 | —28.39588023323513 0 7.4060
500 | —31.72283979772806 | 2.220446049250313e — 016 13.3750

Table 6: Algorithm 2 applied to Problem 2 and different values of n

The observations done above are valid for Problem 2. However, it is possible to observe an
increment in the number of iterations required by Algorithm 1 to achieve convergence. Moreover,
it is possible to observe that the computing time required for running Problem 2 is higher than
the one required for Problem 1. It is because in Problem 1, the matrix is sparse.

7 Conclusions

The problem of minimizing a linear function subject to a strictly convex quadratic constraint
has been analyzed. The convergence of the algorithm is guaranteed via simple geometric consid-
erations. The simplicity and the good behavior of proposed algorithm make it adequate to large



Gibelli-Maciel, Strictly convex quadratic constrained linear problem, MAT-Serie A, 14(2007), 1-12 12

scale optimization problems. Since many topologic optimization problems are established as
(1) the next objective is to extend the algorithm when the strictly convex quadratic constraints
appear showing a block structure. The truss optimization problems, if many bars are involved,
show this block structure and the extended algorithm might be successfully used.
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