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Abstract

We consider two steady-state heat conduction problems P and P, (for each av >
0) with mixed boundary conditions for the same Poisson equation. The difference
between both problems is that on the boundary portion I'; a Dirichlet condition
is verified for P and a Newton condition with transfer coefficient « is verified for
P, . We formulate distributed optimal control problems, for a suitable cost function,
over the internal energy ¢g in the material. We make a new proof with respect to the
one given in C.M. Gariboldi - D.A. Tarzia, App. Math. Optim. 47 (2003), 213-230
on the strongly convergence when a — oo of the optimal control gy, , the system
state ug,, oand the adjoint state pgy,, o to the optimal control g, system state
g, and adjoint state py,, corresponding to P, and P respectively. For this proof
we eliminate the restriction on the constant of coerciveness of the bilinear form,
and we use properties of the cost function and the theory of variational equalities
instead of the fixed point theorem.

Key words: Variational Inequality, Distributed Optimal Control, Mixed Elliptic
Problem, Adjoint State, Steady-State Stefan Problem, Optimality Condition.
AMS Subject Classifications: 49J20, 35J85, 35R35.
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1 Introduction

We consider a bounded domain €2 in R™ whose regular boundary I' consists of the union
of two disjoint portions I'y y I'y with meas(I';)> 0 and meas(I';)> 0. We denote with
meas (I') the (n-1)-dimensional Lebesgue measure of T'.

We consider the following two steady-state heat conduction problems P and P, (for
each parameter o > 0) respectively with mixed boundary conditions:

—Au=g¢ in Q u|Fl =B —%|F2 =q (1)
and

. ou ou
—Au =g in Q —%|F1:a(u—B) —%|F2:q (2)

where g is the internal energy in €, B is the temperature on I'; for (1) and the temperature
of the external neighboord of I'; for (2), ¢ is the heat flux on I'y; and « > 0 is the heat
transfer coefficient of I'y (Newton’s law on I'), that satisfy the following assumptions:

geH=IQ), qel’Ty), BeHIT) (3)
Problems (1) and (2) can be considered as the steady-state Stefan problem for suitable
data ¢, g and B [5], [8], [11], [18], [19] and [21] .
Let u, and uy, be the unique solutions of the mixed elliptic problems (1) and (2)
respectively whose variational equalities are given by [15], [19]:

a(ug,v) = Ly(v), Yv € Vg, uy, € K (4)

and

Ao (Uga, V) = Lgo(v), Yo €V, ugq €V (5)

where

V =H'(Q); Vo={veV/v|, =0};

K=v+Vy; (9.h)= (9,h)u z/ghd:ﬂ; (6)
Q

a(u,v) = /QVU.V’U dr ;  aq(u,v) =a(u,v) + a/ Buv dvy
I

qudy; Lgo(v) = Lg(v) —I—a/ Buv dvy

I

Ly(v) = (g,0)n — /

I

for a given vy € V, v, = B.
We consider g as a control variable for the cost functionals J : H —Rj and J, :
H — R{ respectively given by:
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1

M
T9) = 5 Ity — zally + - ol @
and
1 M
Tal9) = 5 ltga = 24l + 5 gl 0

where zy € H is given and M =const.> 0.
Then we can formulate the following distributed optimal control problems [7], [9], [10],
[12] and [16]:

Find g,, € H such that J(gop) = IgIél;Il J(9) 9)
and
Find g,p, € H such that J,(gsp,) = IgIél;Il Jo(9) (10)
respectively.

The use of the variational inequality theory in connection with optimal control prob-
lems was done, for example, in [1], [2], [3], [4], [6], [14] and [17]. In [13] an optimization
problem corresponding to (1) is studied in order to avoid a change phase process.

In Section 2 we get that the functional J is coercive and Gateaux differentiable on H,
J' is a lipschitzian and strictly monotone application on H. We also obtain the existence
and uniqueness of the distributed optimal control problem (9). Similary, in Section 3
we get that the functional J, is coercive and Gateaux differentiable on H, J/, is a lip-
schitzian and strictly monotone application on H for all & > 0. We also obtain the
existence and uniqueness of the distributed optimal control problem (10) and strongly
convergence (when a—o0) of the states system (2) and the corresponding adjoint states
to the respectives of the system (1), for all g € H. Sections 2 and 3 follow [12].

In Section 4 we study the convergence when a— o0 of the optimal control problem (10)
corresponding to the state system (2). We prove that the optimal state system u,,, , and
the optimal adjoint system p,, . of problem (10) are strongly convergent in V to the
corresponding u,,, and py,, for problem (9) respectively when a—oo. Finally the strong
convergence in H of the optimal control g,,, of problem (10) to the optimal control g,, of
problem (9) is also proved when a—oco. This proof is new with respect to the one given
n [12]. We have eliminated the restriction on the constant of coerciveness of the bilinear
form a and we use the variational equality theory and the optimal control problem instead
of the fixed point theory.

2 Problem P and its Corresponding Optimal Control
Problem

Let C : H— Vjbe the application such that:

C(g) =uy — uo (11)

where v is the solution of problem (4) for ¢ = 0 whose variational equality is given by:
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a(up,v) = Lo(v), Yv € Vi, ug € K (12)
with

- [
Ty
Let II: H x H—R and L: H— R be defined by the following expressions:

(g, h) = (C(g),C(h)) + M(g,h), Vg,he H (13)

L(g) = (C(g),2a —uo), VY g€H.

We have that a is a bilinear, continuous and symmetric form on V' and coercive on
Vo, that is [15], [19]:

3 A > Osuch that a(v,v) > X|v|?, Vv € V. (14)

Lemma 2.1. (i) C'is a linear and continuous application, II is a linear, continuous, sym-
metric and coercive form on H,that is:

(g,q) > M|g|5.¥g € H (15)

and L is linear and continuous on H.
(ii) Jcan be also written as:

1 1
J(g) = 51(g, k) = L(g) + 5 luo — zall} Vg € H. (16)

(iii) There exists a unique optimal control g,, € H such that:

J(gop) = min J(g) (17)

geH
iv) The application g € H — u, € V is lipschitzian, that is:
9
1
Hugz - ungV < B\ H92 - 91HH>\V/91>92 € H. (18)
(v) Jis a Gateaux differentiable functional and J'is given by:

(J'(9) h) = (ug — 20, C(h)) + M(g,h) = 1l(g,h) — L(g), Vg.heH. (19)

(vi) The Gateaux derivative of J can be written as:

J'(9) =pys+ Mg, Vg€ H. (20)
where the adjoint state p, corresponding to problem (1) or (4), for each g € H, is the
unique solution of the following mixed elliptic problem:

: dp
—Apg = ug — 24 in (Y pg|r1 =0; 3—7”f|rz =0 (21)

whose variational formulation is given by:
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a(py,v) = (ug — za,v), Vv € Vo, p, € W. (22)

Moreover, the adjoint state p, satisfy the following equalities:

(pg, h) = (ug — 24, C(h)) = alpy, C(h)) ¥V g, h € H. (23)
(vii) The optimality condition for the problem (9) is given by J'(g,,) = 0in H, that is:

Pgop + Mgop =0 in H (24)
(viii) We have the following inequality:

1
Hpgz _pngV <3 Hugz _ungH Vagi,90 € H (25)
A

Proof. (i)-(iv) See [12].
(v)-(viii) The mean ideas of the proof are the following expressions:

@) T+ 1 = 9) = Ta)] = Sl — ugotag — ) + (g — 2,107 — 1)

2
+M(g,f — )+ 5~ 9.~ 9)

b) a(pg, O(h)) = a(pmuh - UO) = a(pmuh) - a(pg,uo) = (p97 h)

2
C) A Hpgz _p91HV < a(pgz — Pgi1yPgo _pgl) < Hugz - UngH Hpgz _p91HH

and the details are given in [12].

Now, we are in conditions for obtaining other properties of the functional J.

Lemma 2.2. (i) The application ¢ € H — p, € V; is strictly monotone. Moreover,
we have:

(pgz _pg1792 - gl) = Hugz - um“?{ Z 07 v.gng € H. (26)

(ii) Jis coercive or H-elliptic, that is:

Mt(l—t
(1=t)J(g2)+tJ (g1)—J (1—t)gattg1) > % lg2 — a1ll3; > V1,92 € H, Vte[0,1].
(27)
(iii) J'is a Lipschitzian and strictly monotone application, that is:
1
19(g2) = T (g0)llzr = (M + 55) llgr = g2l (28)

and

(J'(g2) = T (91), 92 — 91) = |Jug, — ug, |5 + M llg2 — q1llz; = M |lg2 — gull3 » Vo1,92 € H.
(29)
Proof. See [12]
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3 Problem P, and Its Corresponding Optimal Con-
trol Problem

LetIl,: Hx H—R, L,: H— Rand C, : H— V be defined by:

IL.(g,h) = (Calg), Ca(h)) + M(g,h), Vg, h€ H

Lo(9) = (Calg), 24 — wa), Yg€ H (30)

Ca(g) = uga — Uoa, Vg€ H

where ugy, is the unique solution of the variational equality (5), ug, is the unique solution
of (5) for g = 0 whose variational equality is given by:

aa(an,'U) = LOa('U)>v'U € V;UOQ eV (31)
with

Loo(v) = a/ Buv dvy —/ qu dry (32)
I'y I's

and a, is a bilinear, continuous, symmetric and coercive form on V, that is:

aa(v,0) > Ao |J0[l}, Vo € V. (33)

where A\, = A;min(1,a) > Ofor all & > 0 and \; is the coerciveness constant for the
bilinear form a; [20].

We can obtain similaries properties to Lemma 2.1, following [13], [15], [16] and [19]
which proof is omitted.

Lemma 3.1. Let @ > 0 be. (i) C,is a linear and continuous application, I1, is linear,
continuous, symmetric and coercive on H, that is:

.(g,9) > M|gll3 Vg € H. (34)

and L, is linear and continuous on H.
(ii) J,can be also written as:

1 1
Ja(g) = §Ha(g7 h’) - La(g) + 5 HUOQ - Zd“?{? v.g € H. (35)

(iii) There exists a unique optimal control g,,, € H such that:

Jo(Gopo) =min Ja(g)- (36)

geH

(iv) The application g € H — uy, € V is lipschitzian, that is:

1
Hugza - ugm“v < )\_ Hg2 - ngH ,Vg1,9, € H. (37)

(v) J, is Gateaux differentiable functional and J/, is given by:
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(Je(9), h) = (uga — 24, Ca(h)) + M(g,h) = a(g, h) — La(g), ¥V g, h € H (38)
(vi) The Gateaux derivative of J, can be written as:

J'(9) = pga + Mg,V g € H (39)

where the adjoint state py, is the unique solution of the following mixed elliptic problem
corresponding to (2) or (5), for each g € H and o > 0:

: OPga OPga
—Apga = Ugo — 2q In 5 — OZ I, = Pga; 8;; I, =0 (40)
whose variational formulation is given by:
Ao (Pgas V) = (Uga — 2a,V), YV € V,pyo € V. (41)

where ug, is the unique solution of (5). Moreover, the adjoint state p,, satisfies the
following equalities:

(pgcu h’) = (Uga - Za? Ca(h’)) = aa(pgcu Ca(h’))7 v.g?h' € H (42)
(vii) The optimality condition for problem (10) is given by J/ (gop,) = 0 in H, that is:

Pgopaa T MGop, =0 in H. (43)
(viii) We have the following property:

1
Hp92a _pgmHV < )\_ Hu92a - ugmHH V910 Goa € H (44)

Proof. See [12]

Remark 1. We note the double dependence on the parameter a for the optimal state
system ug,, o and the adjoint state pg,, «-

Lemma 3.2. (i) The operator g € H — p,, € V is strictly monotone, that is:

(pgza - pg1a792 - gl) = Hugza - uglaHz Z 07v91792 € H. (45)

(ii) J, is coercive or H-elliptic, that is:

Mt(l -t
(1=t)Ja(g2)+tJa(91) = Ja((1-t) g2+tg1) = % lg> — g1ll a; . Vg1, 92 € H; ¥t € [0,1].
(46)
(iii) J! is a Lipschitzian and strictly monotone operator, that is:
1
19(92) = Jalg)lly < (M +5) llor = 92l -V 91, 92 € H (47)
and
2
(Jal92) = Jo(91), 92 — 1) = M llg2 — g1l , Vg1, 92 € H. (48)

Proof. See [12]
Now, we will prove the following result of convergence when o — 0.
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Lemma 3.3. For all @ >0, g € L2(I;), B € H3(I';), we have the following limits:

i) Im |luge —ugl,, = 0,Vge H
i) lm |luga —uolly, = 0 (49)

iii) ah_{f)lo [Pga —pglly, = 0,Vg € H.

Proof. (i) Taking into account [12] and following [19] and [20] we obtain that there exists
(1, a constant independient of «, such that for large a:

C 2
i =l < 5 @) [ (e gy < (50)
)\1 T )\1
and we deduce that there exists w, € K such that:
a(wg,v) = Ly(v),Vv € Vo,w, € K (51)

and by uniqueness, we have wy = uy. Therefore, ug, — u, strongly in V' as o« — oo
because the following inequality:

At [[uga — ug”%/ < Ly(uga — ug) — altga, Uga — Ug)-

For the case (ii) we take g = 0 in the case (i).
(iii) We prove that there exists Cy a constant independent of «, for large «, such that:

C Cy)?
e N e R (52)
)\1 Fl )\1
and we deduce that there exists §, € V{ such that:
a(&y,v) = (uy — 24,v), Vv € Vy, &, € V. (53)

and by uniqueness, we obtain §, = p,. Therefore, taking into account the following
inequality:

2
)\1 Hpga _ngV S (uga - Zd7pga - pg) - a(pgppga _pg)

we get that p,, — p, strongly in V.

4 Convergence of Problem P, and its Corresponding
Optimal Control as a — oo

In this section we will make a new proof with respect to the one given in [12] of the
strongly convergence of the optimal control g,,, of problem (10) and its corresponding
adjoint state py, o (41) to the optimal control g,, of problem (9) and its corresponding
adjoint state pg,, (22) respectively when the parameter o (heat transfer coeflicient on I';)
goes to infinity. We will eliminate the restriction on the constant of coerciveness of the
bilinear form a and we will use properties of the cost function and the variational equality
theory instead of the fixed point theorem.
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Theorem 4.1. (i) If p,,, and p,, . are the corresponding adjoint state of the problem
(9) and problem (10) respectively, then:

O}l_)ni.lo Hpgopaa - pgop 1% =0 (54)

(ii) If gop and gop, are the solutions of the problem (9) and problem (10) respectively,
then:

Jim lgop, = gopllr = 0. (55)

(iii) If ug,, and ug,, o are the corresponding solutions of the problem P and problem
P, respectively, then:

= 0. (56)

ah_I,:gO Hugoznaa — Ugop

v

Proof. First we will prove some preliminary results. Since g,p, is the solution of the
problem (10), we have the following inequality:

M

1 ) 1 M
5 Ntgopea = Zallyy + =5 N9opallsr < 5 ltga = 2ally + = gl s Vg € H,
2 2 2 2

then, taking g = 0, we have:

M

1 2 1
3 | Ugopear — 2al|f + - | Gopa I3 < 3 [woa — 2l < C3,Ya > 0,

where (3 is a constant independent of parameter a because ug, is convergent when
a — 00. Therefore
HgOPa HH S 04 and HugopaaHH S 05 (57)

where C4 and Cy are constants independent of . Now, if we take v = ug, o — ug,, in
the variational equality (5), following [19] and [20] we obtain for o > 1:

2 2
A1 Hugopaa — Ugyy ||y, T (a—1) / (Ugopaar = Ugop) AV < Ga(Ugopya = Ugops Ugppaar — Ugoy)
IR

< Cs Hugopaa = Ugey

v
where Cs = C(gop, ¢, Ug,,) is independent of . Next, we have:
2 06 / 2 (06)2
Ug, o — Ug, < — , a—1 Ugy o — Ug, ) dy < 58
H Yopa Yop ||V )\1 ( ) 1"1( Jopa gp) ’y )\1 ( )
and therefore we deduce that:
dn € V sucht that u,,, o — nweakly in V, (59)

and because the following inequalities:

a—00

0< / (n— ugop)Qd'y <lim inf / (ugopaa _ Ugop)Qd’y —0,
I r,
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we obtain that n € K. Next, if we take v = py, o — Py, in the variational equality
(41) we get:

2
M || Pgopmac = o]y + (@ = 1) / (Pgopac = Paop)’ @Y < @a(Pgopncc = Paoys Pgopac = Daop)
IN]

< Oy Hpgopaa — Pgop

V )
with C7 = C7(Cs, py,,). Next, we obtain:
2 Cr 9 (Cr)?
a— < +— ) —1 a— dy < 60
Hpgc);na pgop VvV — )\1 (Oé )/Fl(pgozna pga;n) Y )\1 ( )
and therefore we deduce that:
3¢ € Vsuch that p,,, o — {weakly in V (61)

and by the following inequality:

0< / (6 - pgop)Qd'}/ Shm inf / (pgopaa _ pgop)Qd'}/ —0
I'y a—00 I

we obtain ¢ € V. Now, we consider v € V; and taking into acount (59) and (61), from
the variational equality (41) we have:

a(€7v) = (77 - Zd,'U),\VI'U € %76 € W. (62)

Next, from (57) we deduce that there exists f € H such that g,,, — f weakly in H.
Therefore if we put v € V; in the variational equality (5) and we pass to the limit « — oo,
we obtain:

a(n,v) = (f,v) — / qudy, Yo € Vo, € K. (63)
1)
Now,
a(n,v) = L¢(v),Yv € Vo,n € K (64)

and from the uniqueness of solution of the variational equality (4), we have:

= uy. (65)
On the oder hand, from (62), (65) and the uniqueness of solution of the variational
equality (22), it results that:
§=py

Now,
Ja(goz)a) < Ja(f*),Vf* € H

J(f) = Ja(f) <lim inf Jo(gop,) <lim inf Jo(f*) =lim Jo(f*) = J(f7)

a—0o0 a—0o0 a—0o0
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and from the uniqueness of the optimal control we obtain that f = g,,. Therefore n =

up = Uy, and £ =psr=pgy, .
Moreover, from (61) and the following computation:

2
v < aa(pgopaa ~ Pgopr Pgopaa — pgop)

= Qq (pgopam Pgopga — pgop) - a(pgop 1 Pgopac — pgop)

= (ugopaa — Zdy Pgop o — pgop) - a(pgop7pgopaa - pgop)

A Hpgopaa ~ Pgop

we have (54). From the optimality condition (24) it results that:

1 1
19opa — Gopllr = M Hpgop _pgopaaHH < M Hpgop _pgopaaHV

and therefore (55) holds. Now, we have:

2
v

IN

A1 Hugopaa — Ug,, o (Ugopga = Ugeps Ugopga — Ugop)

Qo (ugwaa’ ugopaa - UQO;D) — Qo (ugozn’ u90;naa - ugop)
- LQOPaa(ugopaa B ugozn) - a(ugt?p’ ugopaa - ugop) - Oé/ b(ugopaa - b) d’}/
IN]

= a(ugﬁma ’ u90;naa - ug();n) - a(ugc);n? u90;naa - ugop)
= a(ugﬁma - u90;n7 u90;naa - ugop)

and taking into account (55) and the fact that ug,, — ug,, strongly in V' when a — oo
because (18), we get (56).
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