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Introduction

These notes originate from a short series of lectures delivered by the last named author
at the Departamento de Matemática, FCE, of the Universidad Austral de Rosario in
September, 2003. The aim was to give a quick introduction to the main ideas underlying
the direct methods of the Calculus of Variations and to present some classical results on
the lower semicontinuity of scalar and first order integral functionals, for which we discuss
also existence of minimisers under suitable side conditions. Our aim is to discuss some
general ideas and methods, without looking for the most general results. Our presentation
is neither original nor exhaustive, and we refer to the treatises [6], [9], [10], [13], [22], [26]
and to the lecture notes [8], [14], [11], [16] for further information. More references will
be given in each section, but the bibliography is very far from being complete.

The mean theme of the Calculus of Variation is the search for extreme values (maxima
and minima) of real functions defined on a priori abstract sets of admissible competitors.
Probably the most ancient (a formulation of it is referred to the foundation of Carthage by
the queen Dido as is mentioned also in Virgil’s latin poem Aeneid) and famous variational
problem is the isoperimetric problem:

among all the closed plane curves of given length, find that which includes the
largest area

which admits the following equivalent dual formulation

among all the plane figures of given area, find that whose boundary has min-
imal length.

As easy to state it seems to be, a closer look shows that all the terms used to formulate
the problem must be defined in a precise way, in order to proceed to a rigorous study.
For instance, the terms “area included in a closed curve”, “length of a curve” or of the
boundary of a plane region (how regular?), “area of a generic plane figure”, all require a
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definition that allows to identify the class of competitors. In any case, historically this
problem has been regarded as a well-posed one for a long time, and several proofs of
the fact that the optimal set is a circle have been found (see e.g. [28]). Even though
more difficult, proofs of the isoperimetric property of the sphere in three dimensions are
available as well since a long time, but all these arguments in fact prove that, if a solution
of the problem exists, then it is a circle or a sphere, respectively, whereas the proof of
the existence of an optimal set was overlooked for a long time. We shall come back to
the isoperimetric problem in the last section, and, for the present, we confine ourselves
to notice that showing that the solution of a variational problem exists, and identifying
it, or describing its properties, are often different steps and could require different tools.
In fact, what is usually referred to as the classical methods of the calculus of variations is
based on the derivation of necessary extremality condition, whereas the direct method of
the calculus of variations, which is the topic of these notes, focuses rather on the study
of the existence of solutions of variational problems. In particular, we consider integral
functionals like

F (u) =

∫

Ω

f(x, u,Du, . . . , Dku)dx, (1)

where Ω ⊂ RN is a bounded open set in the whole paper, and u : Ω → Rn; more precisely,
we deal almost exclusively with scalar and first order problems. This means that we deal
with the case where the admissible functions are real valued and under the integral sign
only the first order derivatives of u appear (i.e., with the above notation, n = 1 and k = 1).
We shall briefly discuss the vectorial case n > 2 in Sections 3 and 4 in order to highlight
the main differences with respect to the scalar case. Dealing with the general case in (1)
still for a while, let us mention that the classical approach to the minimisation of the
functional F above under appropriate constraints has been the derivation of necessary
conditions for extremality based on the computation of the first variation or Gateaux
derivative: this amounts to writing a system of partial differential equations of order 2k
with suitable boundary conditions. In the classical approach, the main peculiarity of the
scalar case is that the first variation yields an equation and not a system, and in the scalar
and first order case the equation thus obtained is of second order, a rather special class.

Furthermore, let us notice that direct methods of the Calculus of variations are by now
a quite standard way to prove the existence of weak solutions of elliptic boundary value
problems. The very first remark in this direction goes back to Gauss (1839), who pointed
out that the harmonic function in an open bounded set Ω ⊂ RN taking a prescribed
boundary datum g : ∂Ω → R can be found by looking at the minimisers of the functional
D (see (2) below) among all functions u such that u|∂Ω = g. The situation is much more
delicate, and took a long time before being completely understood. Nevertheless, Gauss’
remark, which was extensively used by Riemann under the name of Dirichlet principle, is
usually referred as the birth of the direct methods.

The Dirichlet functional

D(u) =

∫

Ω

|Du|2dx (2)

is in fact one of leading examples we have in mind, the other being the non-parametric



Garguichevich - Gariboldi - Marangunic - Pallara, MAT - Serie A, 13 (2006) 5

area functional

A(u) =

∫

Ω

√
1 + |Du|2dx. (3)

There is a big difference between these two examples, because in D the integrand f(ξ) =
|ξ|2 has a growth of order 2 when |ξ| goes to ∞, whereas the integrand f(ξ) =

√
1 + |ξ|2

in A has a first order growth. This leads to study the minimisation problems for D in
reflexive Sobolev spaces, and for A in BV , a completely different situation. We deal with
the former case in Section 2, and present some results concerning the latter in Section 4.
Of course, the above mentioned examples are rather special because there is no explicit
dependence on x and u. The case of irregular dependence of the integrand on x and u
are delicate, and will be only mentioned in the sequel.

The plan of the notes closely follows the content of the lectures: after giving some
topological preliminaries in Section 1 (lower semicontinuity, coerciveness, relaxation), in
Section 2 we present the main classical results on 1st-order integral functionals with scalar-
valued variables, in the case of growth p > 1, whose model is the Dirichlet functional
(2). These problems are well-posed in Sobolev spaces W 1,p. Section 3 is devoted to a
very sketchy discussion of the vectorial case, with the aim to give a flavour of the main
differences between the scalar and the vectorial case. In Section 4 we define the space of
functions of bounded variation and discuss some results for functional with growth p = 1
like (3), which are typically well settled in BV .

Acknowledgements The lectures that are on the basis of these notes have been de-
livered by the last named author during a very pleasant and fruitful stay at the Depar-
tamento de Matemática of the Universidad Austral de Rosario in September, 2003. He
is very grateful to the other authors for their cooperation in expanding and putting in
the present form the initial draft, and to Prof. Domingo Tarzia and the whole staff of
the Departamento Matemática for the very warm hospitality. The financial support of
Direzione generale per la promozione e la cooperazione culturale of the Italian Ministero
degli affari esteri is gratefully acknowledged.

1 Topological preliminaries

The direct methods are concerned with the existence of extreme values, and in this sense
are the analogue of the classical Weierstrass Theorem of elementary calculus.

As we have said in the Introduction, we state some topological conditions on the
functional that ensure the existence of the solution of a variational problem.

Let us begin by recalling some general definitions that can be given in a topological
space X.

Definition 1.1 Let X be a topological space. The function F : X → R = [−∞, +∞] is
lower semicontinuous (shortly l.s.c.) if

∀t ∈ R the set {x ∈ X : F (x) 6 t} is closed in X. (1.1)

Remark 1.2 Condition (1.1) is equivalent to any of the following ones:

∀t ∈ R the set {x ∈ X : F (x) > t} is open in X (1.2)
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{
(x, t) ∈ X × R : F (x) 6 t

}
is closed in X × R (1.3)

{
(x, t) ∈ X × R : F (x) > t

}
is open in X × R. (1.4)

Since we are dealing with (possibly extended) real valued functions, and in particular
with the search for minimum points, our arguments will often rely upon the consideration
of sequences in X (see e.g. the proof of Weierstrass-Fréchet theorem below and the
subsequent comments). For this reason, it is convenient to introduce a notion of lower
semicontinuity based on sequences of points rather than the underlying topology. Of
course, if X has a countable neighbourhood topology (as is the case for metric spaces)
the two notions coincide.

Definition 1.3 The function F : X → R is sequentially lower semicontinuous (seq.
l.s.c.) if

{xn} ⊂ X, xn → x ∈ X =⇒ F (x) 6 lim inf
n→∞

F (xn).

Remark 1.4 Characterisations analogous to those in Remark 1.2 hold for sequential
lower semicontinuity. Moreover, if X is a metric space, Definitions 1.1 and 1.3 are equiv-
alent.

Let us mention a few properties we will need in the sequel, which are easily obtained
from the previous definitions.

(i) If F is l.s.c. and G is continuous, then F + G is l.s.c.

(ii) If (Fα)α∈A is a family of l.s.c. functions (or seq. l.s.c.), then F = supα∈A Fα is l.s.c.
(resp. seq. l.s.c.).

This is only one half of what we need to deal with minimisation problems. The other
side is coerciveness.

Definition 1.5 The funtion F : X → R is coercive (or seq. coercive) if {x ∈ X : F (x) 6 t}
is relatively compact (resp. rel. seq. compact) for all t ∈ R, that is

∀t ∈ R ∃ K compact (seq. compact) such that {x ∈ X : F (x) 6 t} ⊂ K.

The following classical result is the main tool in the applications.

Theorem 1.6 (Weierstrass-Fréchet Theorem) If F : X → ]−∞, +∞] is sequential
l.s.c. and sequential coercive then infX F is attained.

Proof. Let {xn} ⊂ X be such that F (xn) → infX F.
Since F is sequentially coercive, there exist N0 ∈ N and K sequentially compact, such

that {xn, n > N0} ⊂ K, hence there is a subsequence {xnk
} and a point x such that

limk→∞ xnk
= x.

From the sequential lower semicontinuity of F we infer that

F (x) 6 lim inf
k→∞

F (xk) = inf
X

F,

that is, F (x) = minX F. Notice that the above equality shows, in particular, that
infX F > −∞.
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In the above proof, our starting point has been a sequence {xn} ⊂ X such that
F (xn) → infX F . Such a sequence is called a minimising sequence, and we shall meet this
construction quite often in the sequel.

In our applications, we shall be mainly concerned with spaces endowed with a richer
structure, like Banach spaces (reflexives or not), for instance, W 1,2

0 in the case of the
Dirichlet functional and W 1,1 or BV in the case of non parametric area functional.

In these spaces, we have two natural topologies: the norm and the weak (or weak∗)
topology. We have also the notion of convexity, which plays an important role.

In the sequel, we simply write: open, closed, l.s.c., etc, when using the norm topology,
while we add the prefix w: w-open, w-closed, w-l.s.c., etc. when using the weak topology.

For Banach spaces, we have other useful characterisations for the previous concepts.

Theorem 1.7 Let X be a Banach space and F : X → ]−∞, +∞]

(i) If F is convex then:
F is l.s.c. ⇐⇒ F is w-l.s.c.

(ii) If X is reflexive then:

F is w-coercive ⇐⇒ lim
‖x‖→+∞

F (x) = +∞.

Proof. (i) If F is convex then {x ∈ X : F (x) 6 t} is a convex set ∀t ∈ R.
On the other hand, by the Hahn-Banach theorem, a convex set is closed if and only if

is w-closed.
(ii) If lim‖x‖→+∞ F (x) = +∞, then for any t the set {x ∈ X : F (x) 6 t} is bounded,

and therefore, it is relatively w-compact because closed balls are w-compact in reflex-
ive Banach spaces. Conversely, if lim‖x‖→+∞ F (x) = +∞ does not hold then, for some
t ∈ R there exists {xn} ⊂ X such that ‖xn‖ > n and F (xn) 6 t, so that Et =
{x ∈ X : F (x) 6 t} is not bounded. Since relatively sequentially w-compact sets are
norm-bounded, Et cannot be w-compact and we get a contradiction.

Both (i) and (ii) can be used for the Dirichlet functional, whereas the situation is
more difficult for the area functional, due to the lack of reflexivity of the natural spaces
involved. This point is discussed in Section 4.

We wonder what can we say about functionals that do not satisfy the hypothesis of
the Weierstrass-Fréchet Theorem and could possibly not have a minimum.

For this purpose, the relaxation technique is by now a standard tool. The main ideas
go back to Lebesgue thesis at the beginning on the 20th century. In particular, it is
convenient to introduce a new functional F (x) with the following properties:

(i) minx∈X F (x) = infx∈X F (x)

(ii) Every x ∈ X such that F (x) = minx∈X F (x) is the limit of some minimising sequence
of F .

(iii) Every minimising sequence of F has a subsequence which converges to a minimum
point of F .

The relaxation technique allows us to handle this situation by studying the behaviour
of minimising sequences.
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Definition 1.8 Let X be a topological space and F : X → ]−∞, +∞]. The functional

F (x) = sup {G (x) : G l.s.c., G 6 F in X}

is called the relaxed functional of F .

Remark 1.9 By Remark 1.4(ii), F is the greatest l.s.c. functional such that
F (x) 6 F (x).

In order to deal with F , it is convenient to look for a constructive characterisation of
it. In particular, we highlight its local character, which is hidden in Definition 1.8.

Theorem 1.10 For all x ∈ X, let N (x) be the set of all neighbourhoods of x. Then,

F (x) = sup
U∈N(x)

(
inf
y∈U

F (y)

)
.

Proof. Set F ′(x) = supU∈N(x) (infy∈U F (y)). Since F ′(x) 6 F (x) for all x, it is sufficient

to prove that F ′ is l.s.c. to conclude F ′ 6 F . Let x ∈ X, t ∈ R such that F ′(x) > t. By
definition of F ′, there exists U ∈ N (x) such that infy∈U F (y) > t. As U ∈ N (y) for all
y ∈ U , we have

F ′(y) = sup
V ∈N(y)

(
inf
z∈V

F (z)

)
> inf

z∈U
F (z) > t

so that {F ′ > t} is open, and then F ′ is l.s.c.
In order to prove that F 6 F

′
, let us consider G 6 F , G l.s.c. and see that G 6 F ′.

If we assume that G (x) > F ′ (x) for some x ∈ X, we can fix t ∈ ]F ′ (x) , G (x)[. As G is
l.s.c., there is U ∈ N (x) such that G (y) > t for all y ∈ U . Therefore F (y) > G (y) > t
for all y ∈ U and F ′(x) = supU∈N(x) (infy∈U F (y)) > t and this yields a contradiction.

Relaxed functionals can be characterised in an even more explicit way, using sequences,
in the important case of metrisable topologies.

Theorem 1.11 Let X be a metric space. Then,

F (x) = inf
{

lim inf
n→∞

F (xn) : xn ∈ X, xn → x
}

.

Proof. Set G(x) = inf {lim infn→∞ F (xn) : xn ∈ X, xn → x}.
It is sufficient to consider the constant sequence xn = x for all n to conclude that

G(x) 6 F (x). (1.5)

Let us now prove that G is l.s.c. Let be xn → x. Then for each n there exists
{
xk

n

} ⊂ X
such that xk

n → x as k →∞ and lim infk→∞ F
(
xk

n

)
< G (xn) + 1

n
. We can always choose

a subsequence of
{
xk

n

}
, also called

{
xk

n

}
for the sake of simplicity, such that

d(xk
n, xn) <

1

n
∀k and F (xn

n) < G (xn) +
1

n
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Hence we have xn
n → x and

lim inf
n→∞

G (xn) > lim inf
n→∞

(
F (xn

n)− 1

n

)
= lim inf

n→∞
F (xn

n)

> inf
{

lim inf
n→∞

F (yn) : yn ∈ X, yn → x
}

= G (x)

i.e.,
G is l.s.c. (1.6)

and (1.5), (1.6) imply G 6 F .
To attain the thesis we now suppose G (x) < F (x) for some x, and show that this

leads to a contradiction. Indeed, for some ε > 0, we would have F (x) > G(x) + ε and by
Theorem 1.10 we could find U ∈ N (x) such that

F (y) > G(x) + ε ∀y ∈ U.

This implies that for all xn → x the inequality F (xn) > G(x)+ε holds for n large enough.
Then,

G(x) = inf
{

lim inf
n→∞

F (xn) : xn ∈ X, xn → x
}

> G(x) + ε,

which is a contradiction.

Remark 1.12 We can modify our reasoning in Theorem 1.11 and see that for every
x ∈ X, there exists a sequence yn → x such that limn→∞ F (yn) = G(x).

In fact, for each n we can find a sequence xk
n → x as k → ∞ such that for all k the

inequalities

d(xk
n, x) <

1

n
and F

(
xk

n

)
< G (x) +

1

n

hold. Then, xn
n → x, lim infn→∞ F (xn

n) 6 G(x) and for a suitable subsequence {yn} of
{xn

n} we have
lim

n→∞
F (yn) 6 G(x), i.e. lim

n→∞
F (yn) = G(x).

In other words, we have the following result:

Proposition 1.13 If X is a metric space then H = F if and only if for every x ∈ X we
have

(i) xn → x ⇒ H (x) 6 lim infn→∞ F (xn)

(ii) ∃ {xn} ⊂ X such that xn → x and limn→∞ F (xn) = H (x).

Let us now show that the infimum of F and F coincide. As stated at the beginning
of this discussion, this was one of the main requests leading to the relaxation procedure.

Theorem 1.14 Let X be a topological space and F : X →]−∞, +∞]. If F is the relaxed
functional of F , then

inf
x∈X

F (x) = inf
x∈X

F (x) .
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Proof. Obviously, infx∈X F (x) > infx∈X F (x). If the strict inequality holds, then there
exists x0 ∈ X such that

inf
x∈X

F (x) 6 F (x0) < inf
x∈X

F (x)

and then for every neighbourhood U ∈ N (x0) we would have

inf
y∈U

F (x) 6 F (x0) < inf
x∈X

F (x) ,

and this contradicts the definition of F .

Remark 1.15 It is interesting to see how Theorem 1.14 can be used to get a character-
ization of F , in terms of infimum values, by means of a perturbation argument. First,
note that if G : X → R is a continuous functional, then F + G = F + G and therefore

inf
x∈X

(F (x) + G (x)) = inf
x∈X

(
F (x) + G (x)

)

Now, if F and φ are non negative functionals such that φ is l.s.c. and

inf
x∈X

(F (x) + G (x)) = inf
x∈X

(φ (x) + G (x))

for all continuous non negative G, it is possible to prove that φ = F (see [14, Chapter 9]).

We note that
{
F (x) 6 t

} ⊂ {F (x) 6 t} and then we have the following

Proposition 1.16 If F coercive then F is coercive as well.

As a consequence, we obtain:

Theorem 1.17 If F is coercive then there exists minx∈X F (x) = infx∈X F (x). Moreover,
if F is coercive and G is continuous and nonnegative then

min
x∈X

(
F (x) + G (x)

)
= inf

x∈X
(F (x) + G (x)) .

The goals of this section are fulfilled. The relaxation technique has provided us with
a “good” description of the behavior of the minimising sequences of a coercive functional
F , even if it does not have a minimum.

Indeed, in a metric space X, to study the relaxed functional F is equivalent to study
the behavior of the minimising sequences of F , since if F is not l.s.c. and {xn} is such
that F (xn) → infx∈X F (x) it can happen that xn → x but F (x) > lim infn→∞ F (xn). In
the next sections we will solve this problem for some particular cases. Moreover, for some
suitable F we shall find an explicit form for F .
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2 Functionals defined in Sobolev spaces

A classical problem of the Calculus of Variations is to find

min
A





∫

Ω

f (x, u, Du) dx



 where A ⊂ C1(Ω).

There were two main ways to approach the solution of this problem.
Initially, L. Tonelli looked for a strong solution u as the limit of a minimising sequence

{un} such that {un} and {Dun} converge uniformly, that is {un} and {Dun} had to satisfy
a Cauchy condition in the uniform norm. Although he obtained some results, he could
not achieve his goal and, as G. Fichera has said in 1994, that became “a lost struggle” of
Italian Mathematicians.

Taking into account that the problem deals with integral functionals, the second trend
considered integral norms instead of the uniform one, in order to obtain weak solutions.
The following necessary and difficult step, that is to analyse the regularity of these weak
solutions, has his main result in the De Giorgi-Nash-Moser Theorem.

In this section we present some by now classical results on the lower semicontinuity
and relaxation of integral functionals like

F (u) =

∫

Ω

f (x, u, Du) dx

were Ω ⊂ RN is an open bounded set and u belongs to the Sobolev Space W 1,p (Ω) for
some p > 1 depending upon the shape of the integrand f . Existence theorems for a
suitable minimum problem follow at once in several cases, but the cases p = 1 or p > 1
are very different. In this section we discuss the case p > 1, while the next one is devoted
to the case p = 1 which leads to the considerations of BV -functions.

We assume that the reader has a previous knowledge of Sobolev Spaces, for which we
refer to [2], [32] and [6].

We first consider the integral functional

F (u) =

∫

Ω

f (x, u) dx, u ∈ Lp (Ω)

where u is either a scalar or a vectorial function.

Theorem 2.1 Assume that f (·, s) is measurable ∀s ∈ Rn, n > 1, and f (x, ·) is Borel
measurable for all x ∈ Ω, with 1 6 p < ∞. If:

(i) There exists a ∈ L1 (Ω), b ∈ R such that

f (x, s) > a (x) + b |s|p .

(ii) f (x, .) is l.s.c. for almost everywhere x ∈ Ω.

Then
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(a) F (u) =
∫
Ω

f (x, u) dx is strongly l.s.c. in Lp.

(b) If, in addition, f (x, .) is convex then F is weakly l.s.c. in Lp.

Proof. (a) First, notice that by hypothesis (i), for every u ∈ Lp(Ω) the function
x 7→ f(x, u(x)) is measurable, and moreover

∫
f− (x, u) dx < +∞, hence,

F (u) =

∫

Ω

f+ (x, u (x)) dx−
∫

Ω

f− (x, u (x)) dx

is well defined and F (u) ∈ ]−∞, +∞]. We consider (uh) ⊂ Lp such that uh → u in
Lp (Ω), and let F (u) be finite. Then, by hypothesis (ii),

0 6 f (x, u (x))− a (x)− b |u (x)|p
6 lim inf

h→+∞
(f (x, uh (x))− a (x)− b |uh (x)|p) a.e. x ∈ Ω.

We integrate and use the Fatou Lemma in order to obtain

∫

Ω

f (x, u (x))− a (x)− b |u (x)|p dx

6 lim inf
h→+∞




∫

Ω

f (x, uh (x)) dx−
∫

Ω

a (x) dx− b

∫

Ω

|uh (x)|p dx




and by the strong convergence of uh in Lp (Ω), we conclude that

∫

Ω

f (x, u (x)) dx 6 lim inf
h→+∞

∫

Ω

f (x, uh (x)) dx

i.e., the strong l.s.c. of F in Lp (Ω).
(b) If f (x, .) is convex, then

∫
Ω

f (x, u) dx = F (u) is convex. Now, since F is strong l.s.c.
and convex, from Theorem 1.7(i) we infer that F is w-l.s.c. in Lp (Ω).

An easy consequence is the following:

Theorem 2.2 Let 1 < p < ∞, ϕ ∈ W 1,p (Ω), f : Ω×RN → R satisfy hypotheses (i) and
(ii) of the preceding theorem with b > 0 and consider the functional F (u) =

∫
Ω

f (x, Du) dx
for u : Ω → R in the Sobolev space W 1,p (Ω).

If f(x, ·) is convex for a.e. x ∈ Ω, then there exists u0 ∈ W 1,p (Ω) such that

F (u0) = min
{
F (u) : u− ϕ ∈ W 1,p

0 (Ω)
}

.

Proof. By the preceding theorem G (v) =
∫

Ω
f (x, v) dx is w-l.s.c. in Lp (Ω). Since the

differentiation operator D : W 1,p → Lp is weakly continuous, if uh → u weakly in W 1,p

then Duh → Du weakly in Lp. Thus

G (Du) 6 lim inf
h→+∞

G (Duh) ,
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i.e.,
F (u) 6 lim inf

h→+∞
F (uh) ,

that is F is w-l.s.c. in W 1,p.
In order to solve the boundary value problem, let us first consider the case ϕ = 0.

Since by Poincaré inequality the norms ‖u‖W 1,p
0

and ‖Du‖Lp are equivalent, hypothesis

(i) of Theorem 2.1 implies lim
‖u‖W1,p→+∞

F (u) = +∞ and by Theorem 1.7(ii), F is coercive.

Hence, there exists u0 such that F (u0) = min{F (u) : u ∈ W 1,p
0 (Ω)}.

For a general ϕ, if we set v = u − ϕ, arguing in a similar way with the functional
G (v) =

∫
Ω

f (x,Du + Dϕ) dx, we obtain the thesis.

Remark 2.3 The above theorem is false for p = 1. Indeed, we can consider N = 1,
Ω = (−1, 1), ϕ (x) = x and f (x, u′) = (1 + |x|) |u′|. The functional

F (u) =

1∫

−1

(1 + |x|) |u′| dx

satisfies the required hypotheses but does not have a minimum in the class A ={
u ∈ W 1,1 (Ω) : u− ϕ ∈ W 1,1

0

}
because for all u ∈ A the estimate

F (u) =

1∫

−1

(1 + |x|) |u′ (x)| dx >

1∫

−1

|u′ (x)| dx >

∣∣∣∣∣∣

1∫

−1

u′ (x) dx

∣∣∣∣∣∣
= |u (1)− u (−1)| = 2

holds, whereas for

uh (x) =




−1 −1 6 x 6 − 1

h

hx − 1
h

6 x 6 1
h

1 1
h

6 x 6 1

we have

F (uh) =

1∫

−1

(1 + |x|) |u′h| dx

=

1/h∫

−1/h

(1 + |x|) hdx = 2 +
1

h
→ 2 as h → +∞.

This phenomenon is related with the non-reflexivity of W 1,1 and the “bad” behavior of
minimising sequences in W 1,1 which converge to a function of bounded variation rather
than to a Sobolev one. In fact, the “natural” minimiser of F is the function

u(x) =

{ −1 −1 6 x < 0
1 0 < x 6 1

which is BV but does not belong to A.
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Let us slightly restrict the class of integrands f , introducing the class of Carathéodory
integrands, and show that for the corresponding integral functionals a sort of converse of
Theorem 2.1 holds.

Definition 2.4 A function f : Ω × RN → R is a Carathéodory function if f (., ξ) is
measurable and f (x, .) is continuous.

For Carathéodory integrands, the convexity is necessary for the lower semicontinuity.

Theorem 2.5 Let f be a Carathéodory function on an open bounded set Ω ⊂ RN and
assume that for all R > 0 there exists gR ∈ L1 (Ω) such that |f (x, ξ)| 6 gR (x) for all
x ∈ Ω, |ξ| 6 R.

If F (u) =
∫
Ω

f (x,Du) dx is w*-l.s.c. on W 1,∞ (Ω), then f (x, .) is convex for a.e.
x ∈ Ω.

Proof. We must prove that for every ξ1, ξ2 ∈ RN and λ ∈ (0, 1), setting
ξ = λξ1 + (1− λ)ξ2, the inequality

f (x, ξ) 6 λf (x, ξ1) + (1− λ) f (x, ξ2) (2.1)

holds a.e. in Ω. For, we first prove that

∫

Ω

f (x, ξ) dx 6 λ

∫

Ω

f (x, ξ1) dx + (1− λ)

∫

Ω

f (x, ξ2) dx. (2.2)

To obtain it, we exploit the w*-l.s.c. functional F (u) =
∫

Ω
f (x,Du) dx at a function uξ

such that Duξ = ξ (specifically uξ (x) = ξ · x). The idea is to approach uξ by a sequence
uh such that Duh ∈ {ξ1, ξ2} and the two values are assumed in convenient subdomains.

Let us first consider the case N = 1. For each h ∈ N, we consider the following
covering of R:

R =
⋃

k∈Z

([
k

h
,
k + λ

h

]
∪

[
k + λ

h
,
k + 1

h

])
.

Let us define uξ(x) = ξx, and

uh (x) =





k

h
ξ + ξ1

(
x− k

h

)
k

h
6 x 6 k + λ

h

k + 1

h
ξ + ξ2

(
x− k + 1

h

)
k + λ

h
6 x 6 k + 1

h

Then, u′h (x) = ξ1 in Ω1,h and u′h (x) = ξ2 in Ω2,h where

Ω1,h = Ω ∩
[⋃

k∈Z

(
k

h
,
k + λ

h

)]

Ω2,h = Ω ∩
[⋃

k∈Z

(
k + λ

h
,
k + 1

h

)]



Garguichevich - Gariboldi - Marangunic - Pallara, MAT - Serie A, 13 (2006) 15

Moreover, uh → uξ w∗ in W 1,∞(Ω) as h →∞, and for every g ∈ L1(Ω) we have

∫

Ω1,h

g (x) dx −→ λ

∫

Ω

g (x) dx

and ∫

Ω2,h

g (x) dx −→ (1− λ)

∫

Ω

g (x) dx,

since this is true for characteristic functions and they are dense in L1 (Ω).
Therefore,

χΩ1,h
−→ λ and χΩ2,h

−→ (1− λ) w∗ in L∞

and, taking into account that F is w*-W 1,∞ lower semicontinuous,
∫

Ω

f (x, ξ) dx = F (uξ) 6 lim inf
h→∞

F (uh)

= lim inf
h→∞




∫

Ω

f (x, ξ1) χΩ1,h
dx +

∫

Ω

f (x, ξ2) χΩ2,h
dx




= λ

∫

Ω

f (x, ξ1) dx + (1− λ)

∫

Ω

f (x, ξ2) dx.

In the case N > 2 it is possible to proceed in an analogous way, taking into account a
technical difficulty in building a W 1,∞ function whose gradient is ξ1 in a region Ω1 and ξ2

in the complementary region Ω2. This is possible if and only if the common boundary of
Ω1 and Ω2 lies on hyperplanes orthogonal to ξ1−ξ2. Let us now sketch how the procedure
described in R can be used in the higher dimensional case. Let us fix h ∈ N, and cover RN

with a family of strips Sk
h,λ and Sk

h,1−λ of width λ
h

and 1−λ
h

respectively, defined between
hyperplanes orthogonal to the vector ξ1 − ξ2. We define

Ω1,h = Ω ∩
(⋃

k∈N
Sk

h,λ

)
,

Ω2,h = Ω ∩
(⋃

k∈N
Sk

h,1−λ

)
.

As the reader can verify, this allows us to construct a sequence uh such that

Duh = χΩ1,h
ξ1 + χΩ2,h

ξ2 ∀h ∈ N
and uh → uξ uniformly in Ω and weakly∗ in W 1,∞(Ω). At this point, one can proceed
exactly as in the case N = 1.

The final step is to deduce (2.1) from (2.2). The idea is to show that (2.2) holds for
an arbitrary open set A ⊂ Ω instead of Ω. Obviously, if (2.2) is true for every such A,
then the pointwise convexity estimate (2.1) holds too. On the other hand, to prove (2.2)
for all A is not a trivial task because we do not know if F is w∗-l.s.c. in W 1,∞ (A); thus
we shall use a joining argument.
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Let B ⊂⊂ A ⊂⊂ Ω, ϕ ∈ C∞
0 (Ω) with 0 6 ϕ 6 1 and ϕ = 1 in B, ϕ = 0 in Ω \A. We

take vh = ϕuh + (1− ϕ) uξ, where uh and uξ are as before.
Since vh → uξ in L∞(Ω) and

Dvh = ϕDuh + (1− ϕ) ξ + (uh − uξ) Dϕ −→ Duξ in w∗-L∞(Ω)

we obtain
vh → uξ in w∗-W 1,∞(Ω).

Furthermore, vh = uh in B and vh = uξ in Ω \ A, then

F (uξ) =

∫

A

f (x, ξ) dx +

∫

Ω\A

f (x, ξ) dx 6 lim inf
h→∞

∫

Ω

f (x,Dvh) dx

= lim inf
h→∞




∫

B

f (x,Duh) dx +

∫

A\B

f (x, Dvh) dx


 +

∫

Ω\A

f (x, ξ) dx.

If we consider R = 1 + max {|ξ1| , |ξ2|} we have |Dvh| 6 R for h large enough. By
hypothesis

|f (x,Dvh)| 6 gR (x) ∀x ∈ Ω.

Then
∫

A

f (x, ξ) dx 6 λ

∫

B

f (x, ξ1) dx + (1− λ)

∫

B

f (x, ξ2) dx +

∫

A\B

gR (x) dx

for all B ⊂⊂ A. As gR ∈ L1 (Ω), supB⊂⊂A

∫
A\B gR (x) dx = 0 and we have

∫

A

f (x, ξ) dx 6 λ

∫

A

f (x, ξ1) dx + (1− λ)

∫

A

f (x, ξ2) dx ∀A ⊂⊂ Ω.

This allows us to conclude that for every ξ = λξ1 + (1− λ)ξ2 the inequality

f (x) 6 λf (x, ξ1) + (1− λ) f (x, ξ2)

holds for every x ∈ Ω \Mξ1,ξ2,λ, where
∣∣Mξ1,ξ2,λ

∣∣ = 0. To obtain the thesis we must prove
that the last inequality is true for x ∈ Ω\M , where M is a set of measure 0 which depends
only on ξ but not on ξ1, ξ2, λ.

For this purpose, given ξ ∈ QN , we define

M =
⋃ {

Mξ1,ξ2,λ : ξ1, ξ2 ∈ QN , λ ∈ Q∩ [0, 1] , ξ = λξ1 + (1− λ) ξ2

}

then, ∀ξ1, ξ2 ∈ QN , λ ∈ Q∩ [0, 1] such that ξ = λξ1 + (1− λ) ξ2 the inequality

f (x, ξ) 6 λf (x, ξ1) + (1− λ) f (x, ξ2)

holds for all x ∈ Ω \ M , with |M | = 0. Therefore, for all x ∈ Ω \ M the function
ξ → f (x, ξ) is convex in QN .

Finally we deduce the convexity in RN by the continuity of f (x, ·) and a density
argument.
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Remark 2.6 The hypothesis of w∗-W 1,∞ (Ω) l.s.c. can be replaced by the w-W 1,p (Ω)
l.s.c., 1 6 p < ∞, provided that |f (x, ξ)| 6 a (x) + b |ξ|p.

In fact, w-W 1,p (Ω) l.s.c. implies w∗-W 1,∞ (Ω) l.s.c. and the function
gR (x) = a (x) + bRp can be used in Theorem 2.5.

Remark 2.7 Let us compare the weak W 1,p lower semicontinuity with the strong Lp for
p > 1. Obviously, the weak W 1,p topology is stronger than the norm topology in Lp,
hence if F is l.s.c. with respect to the strong Lp convergence, it is so with respect to the
weak W 1,p, too. On the other hand, convergences with respect to the two topologies are
equivalent on norm-bounded subsets of W 1,p, hence both notions of lower semicontinuity
are equivalent for a coercive functional.

We now turn our attention to functionals which depend explicitly upon u, i.e.,

F (u) =

∫

Ω

f (x, u, Du) dx (2.3)

with u ∈ W 1,p, p > 1.
These functionals are a particular case of the more general class

F (u, v) =

∫

Ω

f (x, u, v) dx (2.4)

with u ∈ Lp (Ω) , v ∈ Lq (Ω,Rm), arising in optimal control problems. In this more general
setting, u is the state variable and v is the control variable, and the typical variational
problem is as follows:

min





∫

Ω

f (x, u, v) dx : u ∈ U, v ∈ V, Lu = Bv





where U is the state space and V the control space and the equation Lu = Bv, for suitable
operators L,B, relates the state and control variables. Of course, we get (2.3) taking as
constitutive equation Du = v.

For 1 < p < ∞ we wonder if F in (2.3) is w − W 1,p l.s.c., that is, F is l.s.c. when
uh → u strongly and Duh → Du weakly in Lp. For p = ∞, we ask if F is w∗ − W 1,∞

l.s.c. We shall deal directly with the general case (2.4), and in fact it will be sufficient to
prove that F (u, v) is l.s.c. in the s−L1×w−L1 topology, because any functional of the
type (2.3) which is w −W 1,1 l.s.c. is also w −W 1,p l.s.c.

Theorem 2.8 (De Giorgi) Let Ω ⊂ RN be an open bounded set and f : Ω×Rn×Rm →
[0, +∞] be such that:

(i) f(., s, ξ) is measurable ∀(s, ξ) ∈ Rn × Rm,

(ii) f(x, ., .) is Borel measurable and l.s.c ∀x ∈ Ω,

(iii) f(x, s, .) is convex ∀ (x, s) ∈ Ω× Rn.

Then F (u, v) =
∫
Ω

f(x, u(x), v(x)) dx is s− L1(Ω,Rn)× w − L1(Ω,Rm) l.s.c.
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Proof. The idea is to write f as the supremum of a countable family of functions for
which the property of l.s.c. is easier to verify. In particular, we shall obtain a representa-
tion of the form

f(x, s, ξ) = sup
h∈N

(ah(x, s) · ξ + bh(x, s))

with ah : Ω × Rn → Rm and bh : Ω × Rn → R bounded functions such that ah(·, s) and
bh(·, s) are measurable and ah(x, ·) and bh(x, ·) are Lipschitz continuous.

1stStep: We initially consider f dependent only on the variable ξ andsuperlinear. Let
then be f : Rm → [0,∞] be a convex and l.s.c. function such that

lim
|ξ|→∞

f(ξ)

|ξ| = +∞.

Let A = {(a, b) ∈ Rm × R : a · ξ + b 6 f(ξ),∀ξ ∈ Rm}. Obviously, A 6= ∅. Let us recall
that epi(f) = {(ξ, t) ∈ Rm × R : t > f (ξ)} is a closed and convex set because f is a convex
function. Next, as a consequence of the Hahn-Banach Theorem applied to the epi(f) we
obtain the following representation of f

f(ξ) = sup
(a,b)∈A

(a · ξ + b). (2.5)

Now, we consider the set B = {(a, b) ∈ Qm ×Q : a · ξ + b 6 f(ξ), ∀ξ ∈ Rm}. Let us show
that A can be replaced by B in (2.5), i.e.,

f(ξ) = sup
(a,b)∈B

(a · ξ + b).

This is possible taking into account the superlinearity of the function f. In fact, we may fix
ξ0 ∈ Rm and take t0 ∈ R and ε > 0 such that t0 < f(ξ0)− ε. We apply the Hahn-Banach
Theorem to the superlinear function f − ε and we have that

(f − ε)(ξ) = sup
(a,b)∈A

(a · ξ + b) (2.6)

or equivalently
f(ξ)− ε = sup

(a,b)∈A

(a · ξ + b).

Now, we choose (a0, b0) ∈ Rm × R such that a0 · ξ + b0 6 f(ξ) − ε for all ξ ∈ Rm and
t0 < a0 · ξ0 + b0. Next, because of the superlinearity of f , there exist R > 0 such that

f(ξ) > (|a0|+ 1) |ξ|+ |b0|+ 1 for |ξ| > R.

Taking (a, b) ∈ Qm ×Q sufficiently close to (a0, b0) we have

a · ξ + b 6 f(ξ) for |ξ| > R,

a · ξ + b 6 a0 · ξ + b0 + ε 6 f(ξ) for |ξ| < R,

a · ξ0 + b > t0,

and (2.6) follows.
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2nd Step: We now consider f : Rn × Rm → [0,∞] such that f = f(s, ξ) is a convex
function in Rm and l.s.c. in Rn × Rm. Additionally, we assume that there exists a
superlinear function ψ such that

f(s, ξ) > ψ(ξ), ∀(s, ξ) ∈ Rn × Rm.

For fixed a ∈ Rm and b ∈ R we define the (possibly empty) set

Eab = {s ∈ Rn : a · ξ + b < f(s, ξ) ∀ξ ∈ Rm}

and we prove that Eab is a open set.
Since ψ is a superlinear function, there exist R > 0 such that if |ξ| > R

ψ(ξ) > |a| |ξ|+ |b| .

Consequently
a · ξ + b 6 |a| |ξ|+ |b| < ψ(ξ) 6 f(s, ξ) ∀s ∈ Rn (2.7)

and then

Eab = {s ∈ Rn : a · ξ + b < f(s, ξ) ∀ξ ∈ Rm : |ξ| 6 R}
=

{
s ∈ Rn : min

|ξ|6R
(f(s, ξ)− a · ξ − b) > 0

}
.

We now recall a well-known result:

Let X be a metric space, let K be a compact metric space, G : X ×K → R a
l.s.c. function. Then g defined by g(x) = min

y∈K
G(x, y) is a l.s.c. function in X.

In our case X = Rn, K = {ξ ∈ Rm : |ξ| 6 R} is a compact set and G(s, ξ) = f(s, ξ)−a·ξ−b
is a l.s.c. function in X × K. Therefore, min

ξ∈K
G(s, ξ) is l.s.c., that is ∀t ∈ R the set

{
s ∈ Rn : min

|ξ|6R
(f(s, ξ)− a · ξ − b) > t

}
is open, in particular for t = 0.

We define ∀k ∈ N
Ψk

ab(s) = min {1, k dist(s, Ec
ab)}

where Ec
ab denote the complementary set of Eab. Let us notice that Ψk

ab is a lipschitzian
application with constant k.

Now, we prove that

f(s, ξ) = sup
{
Ψk

ab(s)(a · ξ + b) : a ∈ Qm, b ∈ Q, k∈ N}
.

Indeed, if Ψk
ab(s) = 0, by the hypothesis we obtain that f(s, ξ) > 0. If Ψk

ab(s) 6= 0, then
s ∈ Eab and since Ψk

ab(s) 6 1 and f(s, ξ) > 0 we have

f(s, ξ) > Ψk
ab(s)(a · ξ + b).

Then,
f(s, ξ) > sup

{
Ψk

ab(s)(a · ξ + b) : a ∈ Qm, b ∈ Q, k∈ N}
.
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On the other hand, if we fix (s0, ξ0) ∈ Rn × Rm and choose α < f(s0, ξ0) we can proceed
as in the 1st. step. Then there exists (a, b) ∈ Qm × Q such that α < a · ξ0 + b and
a · ξ + b < f(s0, ξ), ∀ξ ∈ Rm. Therefore s0 ∈ Eab and since Eab is an open set there exists
k0∈ N such that k0dist(s0, E

c
ab) > 1. Then Ψk

ab(s0) = 1, α < Ψk
ab(s0)(a.ξ0 + b) and from

the arbitrariness of α we have the other inequality.

3rd Step: Let f : Ω × Rn × Rm → [0,∞] be a function satisfying the hypothesis of
the theorem, and let us assume that there exists a superlinear function ϕ such that

f(x, s, ξ) > ϕ(ξ) ∀(x, s, ξ) ∈ Ω× Rn × Rm.

We consider the set

Eab(x) = {s ∈ Rn : a · ξ + b < f(x, s, ξ) ∀ξ ∈ Rm}
and the function

Ψk
ab(x, s) = min {1, k dist(s, Ec

ab(x))} .

We deduce from the 2nd step that ∀(x, s, ξ) ∈ Ω× Rn × Rm

f(x, s, ξ) = sup
{
Ψk

ab(x, s)(a · ξ + b) : a ∈ Qm, b ∈ Q, k∈ N}
(2.8)

Now, we note that ∀k∈ N, Ψk
ab(x, s) is a Carathéodory function, that is

(a) Ψk
ab(x, ·) is a continuous function.

(b) Ψk
ab(·, s) is a measurable function.

In fact, dist(s, Ec
ab(x)) is a measurable function for any fixed s, because ∀s ∈ Rn,∀r > 0

the set
G := {x ∈ Ω : dist(s, Ec

ab(x)) < r}
is measurable. Indeed, let Br(s) be the open ball of Rn with radius r and centre s; then

G = {x ∈ Ω : ∃ z ∈ Br(s) ∩ Ec
ab(x)}

= {x ∈ Ω : ∃ z ∈ Br(s) ∃ξ ∈ Rm : f(x, z, ξ) 6 a · ξ + b}
= PΩ {(x, z, ξ) ∈ Ω×Br(s)× Rm : f(x, z, ξ) 6 a · ξ + b} ,

where PΩ : Ω×Rn×Rm → Ω is the projection on Ω. Taking into account the hypothesis
on f , the set

{(x, s, ξ) ∈ Ω× Rn × Rm : f(x, s, ξ) 6 a · ξ + b}
is measurable for all z ∈ Br(s), for fixed ξ ∈ Rm and it is measurable Borel in RN × Rm

and therefore G is measurable as a consequence of the projection theorem.
Now, the expression (2.8) tells us that there are two sequences of bounded Carathéodory

functions (ah) and (bh) such that

f(x, s, ξ) = sup
h∈N

(ah(x, s) · ξ + bh(x, s)). (2.9)

4th Step: We cannot deduce from (2.9) a representation of the functional F in the
form

F (u, v) = sup
h∈N

∫

Ω

(ah(x, u(x)) · v(x) + bh(x, u(x))) dx
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(which would give at once the lower semicontinuity as a consequence of Remark 1.4), but
we may exploit (2.9) in connection with a localization procedure. Indeed, we shall prove
that

F (u, v) = sup
k∈N

sup
Bh

k∑

h=1

∫

Bh

(ah(x, u(x)) · v(x) + bh(x, u(x))) dx

where {B1, . . . , Bk} are all possible disjoint families of measurable sets such that
Ω =

⋃k
h=1 Bh and the functions ah, bh are those in (2.9).

Set
gh(x) = ah(x, u(x)) · v(x) + bh(x, u(x))

and define fk = max {g1(x), g2(x), . . . , gk(x)}. Since (fk) is a monotone sequence that
is a.e. convergent to g = suph gh, we can apply Beppo Levi’s monotone convergence
theorem, so ∫

Ω

g(x)dx = sup
k∈N

∫

Ω

fk(x)dx.

On the other hand, if we consider Fh = {x : fk(x) = gh(x)} , F0 = ∅ and we define
Eh = Fh \ Fh−1, we have

sup
k∈N

∫

Ω

fk(x)dx = sup
k

k∑

h=1

∫

Eh

gh 6 sup
k

sup
{B1,...,Bk}

k∑

h=1

∫

Bh

gh.

Therefore

F (u, v) 6 sup
k∈N

sup
{B1,...,Bk}

k∑

h=1

∫

Bh

ah(x, u(x)) · v(x) + bh(x, u(x))dx.

In order to prove the equality, we consider a measurable set E ⊂ Ω, and we have
∫

E

fk >
∫

E

gh, for h = 1, . . . , k

and ∫

E

g >
∫

E

gh.

Therefore, for all families {B1, . . . , Bk} we have that

∫

Ω

g >
k∑

h=1

∫

Bh

gh

and the equality easily follows.
Now we prove that

G(u, v) =

∫

E

a(x, u(x)) · v(x) + b(x, u(x)) dx
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is a s−L1(E,RN)×w−L1(E,Rm) continuous functional with a and b bounded Carathéodory
functions.

We fix E ⊂ Ω and we consider two sequences (uh)h∈N and (vh)h∈N, such that they
are strongly convergent to u in L1(E,Rn) and weakly convergent to v in L1(E,Rm),
respectively. Since (possibly taking a subsequance) uh → u a.e., we have from Lebesgue’s
dominated convergence theorem

∫

E

b(x, u(x))dx = lim
h→∞

∫

E

b(x, uh(x)) dx.

The sequence gh(x) = a(x, uh(x)) is uniformly bounded in L∞(E,Rm), converges to
g (x) = a (x, u (x)) a.e., so that

lim
h→∞

∫

E

ghvhdx =

∫

E

gv dx.

In fact, ∫

E

ghvh dx−
∫

E

gv dx =

∫

E

(gh − g)vh dx−
∫

E

g(v − vh) dx.

As g is a bounded function and vh is weakly convergent to v in L1(E,Rm) we obtain that
the last integral goes to zero. Now, from the Severini-Egorov theorem, for all ε > 0 there
exists a set Bε with |Bε| < ε, such that gh → g uniformly in E \Bε.

Next ∫

E

(gh − g)vh dx =

∫

E\Bε

(gh − g)vh dx +

∫

Bε

(gh − g)vh dx

from the uniform convergence of the sequence gh and the equintegrability of the sequence
vh we deduce that

∫

E\Bε

|(gh − g)vh| dx 6 sup
h
‖vh‖L1(E\Bε)

‖gh − g‖L∞(E\Bε)

and ∫

Bε

|(gh − g)vh| dx 6 2 ‖g‖L∞(Bε)

∫

Bε

|vh| dx 6 2 ‖g‖L∞(Bε)
.C

with C = const. > 0.
Then, if h →∞ and afterwards ε → 0, both integrals go to 0. At this point, we have

proved the theorem under the special hypothesis that there exists a convex superlinear
function Ψ : Rm → [0,∞) such that

f(x, s, ξ) > Ψ(ξ), ∀(x, s, ξ) ∈ Ω× Rn × Rm.

In the last step we shall remove this restriction.

5th Step: Let uh be strongly convergent to u in L1(Ω,Rn) and vh weakly convergent
to v in L1(Ω,Rm); then vh is a bounded and equintegrable sequence, i.e.,
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(a) for all ε > 0 there exists A ⊂ Ω such that

∫

Ω\A

|gh(x)| dx < ε

for all h ∈ N.

(b) there exists δ > 0 such that if |B| < δ, then

∫

B

|gh(x)| dx < ε

for all h ∈ N.

Therefore, see e.g. [6, Prop. 1.27], there exists a convex and superlinear application Ψ
such that

∫
Ω

Ψ(vh) dx 6 1, ∀h ∈ N. Next, for each ε > 0 we can consider the function
f(x, s, ξ) + εΨ(ξ), which satisfies the previous hypothesis. Then

∫

Ω

f(x, u(x), v(x)) dx + ε

∫

Ω

Ψ(v(x)) dx

6 lim inf
h→∞




∫

Ω

f(x, uh(x), vh(x)) dx + ε

∫

Ω

Ψ(vh(x)) dx




6 lim inf
h→∞

∫

Ω

f(x, uh(x), vh(x)) dx + ε.

As Ψ > 0, we deduce that

∫

Ω

f(x, u(x), v(x)) dx 6 lim inf
h→∞

∫

Ω

f(x, uh(x), vh(x)) dx + ε

and the proof of the theorem is now complete.

The following property is a generalization of the preceding theorem for a non positive
function f .

Theorem 2.9 (Ambrosio, [3]) Let f : Ω×Rn×Rm →]−∞, +∞] be such that f(x, ., .)
is l.s.c in Rn+m and f(x, s, .) is a convex function. If uh → u strongly in L1(Ω),
vh → v weakly in L1(Ω) and lim sup

h→∞

∫
Ω

f(x, uh(x), vh(x)) dx < ∞, then the

sequence gh(x) = f−(x, uh(x), vh(x)) is equintegrable. Moreover, if there exists
(u0, v0) ∈ L1(Ω) × L1(Ω) such that f(x, u0, v0) ∈ L1(Ω) then F (u, v) is l.s.c. in the
s− L1 × w − L1 topology.

Remark 2.10 A convenient coerciveness hypothesis enables us to obtain results about
the existence of a minimum. For instance, if we consider Ψ ∈ W 1,p(Ω) for 1 < p < ∞ and
f such that

a |ξ|p 6 f(x, s, ξ) 6 b |ξ|p
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the existence of

min
u∈W 1,p(Ω)





∫

Ω

f(x, u(x), Du(x)) dx : u− ψ ∈ W 1,p
0 (Ω)





can be easily proved.

Remark 2.11 If the integrand f in (2.3) is a convex function of (s, ξ) then the weakly
l.s.c. in W 1,p(Ω) would follow immediately from Theorem 2.1. But, from Rellich-Kondrachov
compact embedding theorem it follows that the weak convergence of the gradients in Lp(Ω)
implies the strong convergence of the uh and this allows to disregard the convexity of f
with respect to s.

The following result, which we present without proof, extends in some sense Theorem
2.5 to integral functionals whose integrand depends explicitly upon u.

Theorem 2.12 (Olech, [27]) Let Ω ⊂ RN be a open bounded set and f : Ω×Rn×Rm →
[0, +∞] such that

i) f(., s, ξ) is measurable for all (s, ξ) ∈ RN × Rm

ii) f(x, ., .) is Borel measurable

iii) F (u, v) =
∫
Ω

f(x, u(x), v(x))dx is l.s.c. in the s−L1(Ω,Rn)×w−L1(Ω,Rm) topology.

Then f(x, ., .) is l.s.c. for a.e. x ∈ Ω and f(x, s, .) is a convex function for a.e. (x, s) ∈
Ω× Rn.

Another result in the same direction is the following.

Theorem 2.13 (Marcellini-Sbordone, [25]) Let f : Ω×R×Rm → R be a Carathéodory
function, and assume that there exists a function g(x, u, v) increasing with respect to u
and v and such that g(·, u, v) ∈ L1

loc(Ω) for all (u, v) and 0 6 tf(x, s, ξ) 6 g(x, |s|, |ξ|). If
the functional

u 7→ F (u) =

∫

Ω

f(x, u(x), Du(x))dx

is weakly l.s.c. in W 1,p(Ω), 1lqsp 6 ∞, then f(x, s, .) is a convex function.

Remark 2.14 Notice that if F (u, v) =
∫
Ω

f(x, u(x), v(x))dx is l.s.c. in
s − L1(Ω) × w − L1(Ω), with u : Ω → Rn and v : Ω → Rm then Theorem 2.12 says
that f(x, s, .) is a convex function. Analogously, Theorem 2.13 states a similar result in
Sobolev spaces, but only for the case n = 1. We shall later see that this result is no longer
true in the vectorial case.

As before, an existence result easily follows:
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Theorem 2.15 Let Ω ⊂ RN be an open bounded set with Lipschitz boundary and f :
Ω × R × RN → ]−∞, +∞] a Carathéodory function, f(x, s, .) a convex application such
that f(x, s, ξ) > a(x) + b |ξ|p with a ∈ L1(Ω), b > 0 and p > 1. Let ϕ ∈ W 1,p(Ω) be such
that there exists u0 ∈ W 1,p(Ω) with u0 − ϕ ∈ W 1,p

0 (Ω) and
∫

Ω

f(x, u0(x), Du0(x)) dx < ∞.

Then, the minimum

min
u∈W 1,p(Ω)





∫

Ω

f(x, u(x), Du(x))dx : u− ϕ ∈ W 1,p
0 (Ω)





is achieved.

Remark 2.16 If we consider f such that

|f(x, s, ξ)| 6 a(x) + b1(|s|q + |ξ|p)
with q = Np

N−p
for p < N and no condition on q if p > N, then

inf
W 1,p(Ω)

∫

Ω

f(x, u(x), Du(x))dx < ∞.

Note that, in this case, the condition of the preceding theorem: “there exists u0 ∈ W 1,p(Ω)
such that u0 − ϕ ∈ W 1,p

0 (Ω) and
∫
Ω

f(x, u0(x), Du0(x))dx < ∞” can to be omitted.

Remark 2.17 We know that F (u) =
∫
Ω

f(x,Du(x))dx is a convex functional if only if
f(x, .) is a convex function. This result is not true for F (u) =

∫
Ω

f(x, u(x), Du(x)) dx. In
fact, if F is defined by

F (u) =

1∫

0

[
|u′(x)|4 + (u2(x)− 1)2

]
dx

we obtain that F is a weakly l.s.c. functional in W 1,4(Ω) but F is not a convex functional.
Moreover, note that the integrand is a convex function of u′.

Example 2.18 We consider N = 1, Ω = (0, 1) and f(x, s, ξ) = xξ2. We ask if there exists
the following

min
u∈W 1,2(Ω)



F (u) =

1∫

0

x(u′(x))2dx : u(0) = 1, u(1) = 0



 .

If we define the sequence uh by

uh(x) =





1 if 0 6 x 6 1

h
,

− log x

log h
if

1

h
< x 6 1,
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we can see that

F (uh) =

1∫

1
h

x
1

x2 log2 h
dx = − log 1

h

log2 h
=

1

log h
−→ 0 as h →∞

and inf
W 1,2(Ω)

F (uh) > 0, but F (u) = 0, then u′ = 0 a.e. and this is a contradiction. Note

that F is not a coercive functional.

In the case where F (u, v) =
∫
Ω

f (x, u, v) dx is not l.s.c. we follow the ideas of Chapter

I and try to find the relaxed functional F (u, v). In applications, it is very important to
know if the relaxed functional is again an integral functional. This is not always the case
(from a physical point of view, nonlocal effects may appear), but we have the following
rather general result. We present only a sketch of the proof, because there are many
technical difficulties to show that F is an integral functional. A complete proof can be
found in [8].

Theorem 2.19 Let f : Ω × Rn × Rm → [0, +∞] be Borel measurable and
F (u, v) =

∫
Ω

f (x, u, v) dx.
Then there exists g : Ω × Rn × Rm → [0, +∞] such that the s − L1 × w − L1 relaxed

functional is

F (u, v) =

∫

Ω

g (x, u, v) dx.

Moreover, g is the l.s.c. convex hull of f , that is

g (x, s, ξ) = co f = sup {ψ 6 f : ψ l.s.c. in x, s and ψ (x, s, ·) convex} . (2.10)

Sketch of the Proof. It is clear from Olech’s Theorem 2.12 that g (x, s, ·) must be a
convex function and it is natural to try with g = co f .

1stStep: We first localise F by defining

F (u, v, B) =

∫

B

f (x, u, v) dx for each measurable B ⊂ Ω.

Then, we relax with respect to the s−L1×w−L1 sequential topology and we obtain for
each B the l.s.c. envelope

F (u, v, B) = sc F (u, v, B) .

This relaxed localised functional has the following properties:

(a) F (·, ·, B) is sequentially s−L1×w−L1 l.s.c. and hence s−L1× s−L1 l.s.c. (recall
Remark 1.4).

(b) F (u, v, B) is local, that is, if u1 = u2 and v1 = v2 a.e. in B then
F (u1, v1, B) = F (u2, v2, B) .

(c) F (u, v, ·) is additive, that is, for all pairs B1, B2 ⊂ Ω such that B1 ∩ B2 = ∅ the
equality F (u, v, B1 ∪B2) = F (u, v, B1) + F (u, v, B2) holds for all u, v in L1 (Ω).
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Let us notice that (b) and (c) are obvious properties for an integral functional.

2ndStep: It can be proved that F (u, v, ·) is a measure, that is, for each (u, v) there
exists a measure µuv such that

F (u, v, B) = µuv (B) =

∫

B

dµuv ∀ measurable B ⊂ Ω.

This result is a consequence of a De Giorgi-Letta theorem (see e.g.[6, 1.53]) by noting
that F (u, v, ·) is an increasing set function.

3rdStep: Moreover, F (u, v, ·) is an absolutely continuous measure with respect to dx.
This is actually the crucial and hardest step. Then, there exists g : Ω×Rn×Rm → [0, +∞)
such that

• sc F (u, v, B) =
∫

B
g (x, u, v) dx ∀ measurable B ⊂ Ω.

• g (·, s, ξ) is measurable in B.

• g (x, ·, ·) is l.s.c. and, by Olech’s Theorem 2.12.

• g (x, s, ·) is a convex function.

4thStep: We prove that g = co f because of the definition of co f (2.10) and the
properties of g quoted in Step 3.

On the other hand ∫

Ω

co f dx 6
∫

Ω

f dx = F (u, v)

and
∫

Ω
co f dx is l.s.c.

Hence,
∫
Ω

co f dx 6 F (u, v) =
∫
Ω

g (x, u, v) dx, from which, taking into account that
g 6 co f , we have g = co f .

3 The vectorial case

In the preceding Section we have studied functionals of the following types

F (u) =

∫

Ω

f (x, u) dx,

F (u) =

∫

Ω

f (x,Du) dx

F (u) =

∫

Ω

f (x, u, Du) dx

for scalar-valued functions u : Ω → R. We have also considered functionals like

F (u, v) =

∫

Ω

f (x, u, v) dx
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for vector-valued u, v, but in the particular case v = Du much more can be said, besides
what immediately follows from the general case. In particular, as it was pointed out in
Remark 2.14, the hypothesis of convexity with respect to Du is too strong, as the following
example suggests.

Example 3.1 Let Ω be the unit square in the plane, and think of it as the rest config-
uration of an elastic membrane, so that u : Ω → R2 are the deformations. For linear
deformations, it is reasonable to assume that the corresponding energy F is proportional
(for simplicity, say equal) to the increase of area. If u1 maps Ω onto [0, 2]× [0, 1] and u2

maps Ω onto [0, 1]× [0, 2] then of course F (u1) = F (u2) = 1 but

F
(u1 + u2

2

)
=

(3

2

)2

=
5

4
>

1

2
F (u1) +

1

2
F (u2)

and the energy functional is not convex. On the other hand, one expects that physical
energies are lower semicontinuous in some reasonable topology.

Let us then consider the functional

F (u) =

∫

Ω

f (x, u, Du) dx

where f : Ω × Rn × RNn → ]−∞, +∞] , u : Ω ⊂ RN → Rn and Du : Ω → RNn is the
Jacobian matrix.

If f (x, s, ·) is convex ∀ (x, s) ∈ Ω × Rn all the above results hold, but this condition
is not necessary. In 1952, J.B. Morrey discovered an useful condition which turns out to
be necessary and sufficient for the w−W 1,p l.s.c. of F and plays a role analogous to that
of convexity in the vectorial case. Unfortunately, it is not easy to handle, and even its
definition is not algebraic in nature.

Definition 3.2 The function f : RnN → R is quasiconvex if f is Borel measurable,
f ∈ L∞loc

(
RnN

)
and ∫

Ω

f (ξ + Dϕ) dx > |Ω| f (ξ) (3.1)

for all bounded sets Ω ⊂ RN , for all ξ ∈ RnN , for all ϕ ∈ C1
0 (Ω,Rn).

Let us stress the variational character of the notion of quasiconvexity.

Remark 3.3 Note that taking u (x) = ξx + ϕ (x) with ϕ ∈ C1
0 (Ω,Rn) inequality (3.1)

becomes ∫

Ω

f (Du) dx >
∫

Ω

f (ξ) dx,

for all bounded Ω ⊂ RN , ∀ξ ∈ RnN , and for all u ∈ C1 (Ω,Rn) with u|∂Ω = ξx.
This means that f ∈ L∞loc

(
RnN

)
and Borel measurable is quasiconvex if and only if

for all Ω ⊂ RN and for all ξ ∈ RnN

min





∫

Ω

f (Du) dx : u ∈ C1 (Ω,Rn) , u|∂Ω = ξx





is achieved at u0 = ξx.
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It is easily seen that convex functions are quasiconvex.

Remark 3.4 Let f : Rm → R be convex. Then, by Jensen’s inequality,

1

|Ω|
∫

Ω

f(ξ + Dϕ) dx > f
( 1

|Ω|
∫

Ω

ξ + Dϕdx
)

= f(ξ)

for all ϕ ∈ C1
0(Ω). As every finite convex function f is continuous, f is quasiconvex.

On the other hand, there are quasiconvex functions that are not convex.

Example 3.5 An example of a quasiconvex function which is not a convex one is the
function

f (ξ) = | det ξ|,
where ξ is any N × n matrix. In fact, for N = n = 2

∫

Ω

det(Du(x)) dx =

∫

Ω

(
D1u

1(x)D2u
2(x)−D2u

1(x)D1u
2(x)

)
dx

=

∫

Ω

D1

(
u1(x)D2u

2(x)
)−D2

(
u1(x)D1u

2(x)
)

dx

=

∫

∂Ω

u1∂u2

∂τ
ds

where τ is the unit tangent vector to ∂Ω (positevely oriented). Then, the integral∫
Ω

det (Du (x)) dx depends only upon the values of u on ∂Ω and, if we choose
u (x) = ξx + ϕ (x) with ϕ ∈ C2

0 (Ω,R2) we get
∫

Ω

det (ξ + Dϕ (x)) dx =

∫

Ω

det ξ dx = |Ω| det ξ.

This equality is also valid ∀ϕ ∈ C1
0 (Ω,R2) by continuity and as

∫

Ω

|det (ξ + Dϕ (x))| dx >

∣∣∣∣∣∣

∫

Ω

det (ξ + Dϕ (x)) dx

∣∣∣∣∣∣
= |Ω| |det ξ|

we have the thesis.

The above example is a (very particular!) case of polyconvex function, introduced in
[7].

Definition 3.6 A function f : RnN → R is called polyconvex if it is a convex function of
the minors of the variable, thought of as a N × n matrix.

Remark 3.7 Polyconvex functions are quasiconvex. We only sketch the proof of this
statement, which is not difficult but requires some technical preliminaries from linear
algebra. Denoting by M(ξ) the vector of all minors of the matrix ξ, any polyconvex
function f : RNn → R can be written in the form f(ξ) = g (M(ξ)) for some convex
function g. Then the proof can be done in two steps:
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(i) M(ξ) =
1

|Ω|
∫

Ω

M(ξ + Dϕ) dx for all bounded domains Ω and for all functions ϕ ∈

C1
0(Ω). This property hes been proved in Example 3.5 for the determinant, but in

fact holds true for all minors. As for the determinant, all the integrals of the minors
depend only upon the boundary values.

(ii) We may argue as in Remark 3.4. Jensen’s inequality gives

1

|Ω|
∫

Ω

f(ξ + Dϕ) dx =
1

|Ω|
∫

Ω

g (M(ξ + Dϕ)) dx

> g
( 1

|Ω|
∫

Ω

M(ξ + Dϕ) dx
)

= g (M(ξ)) = f(ξ)

The function det is an easy example of polyconvex, but nonconvex, function. It has
been an open problem for a long time to decide if there are quasiconvex functions that
are not polyconvex. This question is very important: on one hand, polyconvexity is an
algebraic condition much more treatable than quasiconvexity; on the other hand, poly-
convex (and non convex) functions have always a superlinear growth, hence the question
was tied with the existence of quasiconvex functions with linear growth. Such functions
exist (see [30]), and are very useful because they play in quasiconvex analysis the same
role that affine functions play in convex analysis (as we have seen in the proof of Theorem
2.8, see (2.5)).

There are some analogies and several differences between the scalar case dealt with
in the preceding section and the vectorial case. In this section, we limit ourselves to list
some key results.

Theorem 3.8 (Morrey) Let f : RnN → [0, +∞] be Borel measurable and f ∈ L∞loc.
Then, the functional

F (u) =

∫

Ω

f (Du) dx

is w∗ −W 1,∞ if and only if f is quasiconvex.

Notice that in order to ensure w−W 1,p lower semicontinuity for some p < ∞ additional
growth conditions must be added to quasiconvexity. In fact, the following result holds:

Theorem 3.9 Let f : RNn → R be quasiconvex and assume that there is c > 0 such that

c(1 + |ξ|q) 6 f(ξ) 6 c(1 + |ξ|p)

for all ξ ∈ RNn, 1 6 q < p. Then for every open bounded set Ω ⊂ RN the functional

F (u) =

∫

Ω

f (Du(x)) dx

is w −W 1,p(Ω,Rn) l.s.c.
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The following theorem is in some sense an optimal generalization of the results valid
in the scalar case. We refer to [1], [24], [22].

Theorem 3.10 Let Ω be an open bounded set in RN with Lipschitz boundary and f :
Ω× Rn × RnN → R a Carathéodory function such that

(i) −c (|ξ|q + |s|r)− h(x) 6 f(x, s, ξ) 6 g(x, s) (1 + |ξ|p), where c > 0, p > 1,
1 6 q < p, and 1 6 r < p∗ = Np

N−p
if p < N , r > 1 if p > N , and h ∈ L1 (Ω), g > 0,

with g Carathéodory.

(ii) f (x, s, ·) is quasiconvex.

Then the functional

F (u) =

∫

Ω

f (x, u, Du) dx

is w −W 1,p l.s.c.

Let us turn our attention to the relaxation problem in the vectorial case. It seems
reasonable to expect that the relaxed functional will admit an integral representation
involving the quasiconvex hull. Indeed, the following result holds.

Theorem 3.11 (Acerbi-Fusco, [1]) Let f : Ω × Rn × RnN → R be such that f(·, s, ξ)
is measurable and f(x, ·, ·) is continuous, and consider the functional

F (u) =

∫

Ω

f (x, u, Du) dx.

If 1 < p < ∞ and there are a ∈ L1
loc(Ω), b > 0 such that

0 6 f (x, ξ) 6 a (x) + b (|s|p + |ξ|p) ,

then the relaxed functional with respect to the w −W 1,p topology is

F (u) =

∫

Ω

g (x, u, Du) dx

where
g(x, u, ξ) = sup {ψ(x, s, ξ) : ψ 6 f, ψ quasiconvex with respect to ξ}

is the quasiconvex hull of f.
If p = ∞ and there are a ∈ L1

loc(Ω), b ∈ L∞loc such that 0 6 f(x, u, ξ) 6 a(x) + b(s, ξ),
then the same result holds with respect to the w∗ −W 1,∞ topology.
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4 Functionals with first order growth and BV func-

tions

As we have seen in Remark 2.3, functionals of first order growth are not coercive on W 1,1.
This is the reason functions with bounded variation play a crucial role.

Definition 4.1 A function u : Ω → R is said of bouded variation if u ∈ L1 (Ω) and for
all i = 1, 2, . . . , N there exists a real measure µi such that

∫

Ω

u Diϕdx =

∫

Ω

ϕdµi

for all ϕ ∈ C∞
0 (Ω). That is, in the sense of distributions,

Diu := −µi.

The total variation of u is defined as the total variation of the (vector valued) measure
Du = (D1u, . . . , DNu):

|Du| (Ω) = sup





∫

Ω

u (div ψ) dx, ψ ∈ C1
0

(
Ω,RN

)
, ‖ψ‖L∞ 6 1



 ,

and BV (Ω) is a Banach Space with the norm

‖u‖BV = ‖u‖L1 + |Du| (Ω) .

Remark 4.2 If u ∈ W 1,1 (Ω) then u ∈ BV (Ω). Moreover, µi = −Diu dx with Diu
considered in the Sobolev sense. Conversely, if u has bounded variation and µi << dx
for all i, then u belongs to W 1,1 (Ω). Of course, for general BV functions we have the
decomposition

Du = ∇udx + Dsu

by the Lebesgue decomposition theorem, where Dsu is singular with respect to dx, and
∇u denotes the Radon-Nikodým derivative of Du with respect to dx.

In the sequel we only list some properties and results related to BV (Ω), and we refer
to [6], [18], [21], [31], [32] for more information on the subject.

Let us now state the main embedding and compactness properties of BV . Notice that
BV is not reflexive, and can be described as a dual space (see e.g. [6, Remark 3.12]).

Theorem 4.3 If Ω is a bounded set in RN with Lipschitz continuous boundary, we have:

(i) if u ∈ BV (Ω), set uΩ = |Ω|−1
∫

Ω
udx, there is c > 0 such that the inequality

∫

Ω

|u− uΩ| dx 6 c|Du|(Ω) (4.1)

holds;
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(ii) the space BV (Ω) is continuously embedded in Lp(Ω) for all 1 6 p < N
N−1

.

(iii) uh → u weakly∗ in BV if |Duh| (Ω) 6 c < ∞ and uh → u in the s−L1 (Ω) topology.

(iv) If (uh) is bounded in BV (Ω), then there exists a subsequence (uhk
) which is conver-

gent in L1 (Ω).

Let us point out why for functionals with linear growth the approach of Section 2,
3, based on Sobolev spaces, fails. If f(x, s, ξ) : Ω × R × RN → R is measurable in x,
continuous in s and convex in ξ and has linear growth, i.e.,

a |ξ| 6 f(x, s, ξ) 6 b |ξ| (4.2)

for some a, b > 0, then the sublevels of the functional

F (u) =

∫

Ω

f(x, u, Du) dx, u ∈ W 1,1(Ω),

are bounded in W 1,1(Ω). Nevertheless, F is not coercive even in the weak topology,
because W 1,1(Ω) is not reflexive and Theorem 1.7(ii) does not apply. On the other hand,
to set the variational problem in BV (Ω) is not an easy task. Let us first consider the
special case in which f does not depend on s and is 1-homogeneous with respect to ξ, i.e.,

f(x, tξ) = tf(x, ξ) ∀ (x, ξ) ∈ Ω× RN , ∀ t > 0.

In this case, we can define the functional F on BV (Ω) setting

F (u) =

∫

Ω

f
(
x,

Du

|Du|
)
|Du|, u ∈ BV (Ω),

where we have used the polar decomposition Du = Du
|Du| |Du| of the measure Du. But,

what can we do if f verifies (4.2), but is not 1-homogeneous? The basic idea is to start a
relaxation procedure from the functional

F (u) =





∫

Ω

f (Du) dx u ∈ W 1,1 (Ω)

+∞ u ∈ L1 (Ω) \W 1,1(Ω)

and look for an explicit expression of the L1-relaxed functional F . The best result would
be to have an integral form of F (u). This can be done, but not with respect to the
Lebesgue measure. The following theorem is proved in [23], [20], [29].

Theorem 4.4 Let f(x, ξ) : Ω×RN → R be measurable in x and convex in ξ and assume
that (4.2) holds. Then

(i) F (u) < +∞ if and only if u ∈ BV (Ω)
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(ii) the following representation of F holds:

F (u) =

∫

Ω

f (x,∇u) dx +

∫

Ω

f∞

(
x,

Dsu

|Dsu|
)
|Dsu|

where

f∞ (x, ξ) = lim
t→+∞

f (x, tξ)

t
(4.3)

is the recession function of f .

Statement (i) in the above theorem says essentially that the natural space where
functionals with linear growth are well-posed is BV .

Let us add a few comments on Theorem 4.4. First of all, we point out the following
properties of the recession function, as a function of ξ:

(a) If f is convex then the limit in (4.3) exists, hence f∞ is well defined.

(b) The recession function f∞ is 1-homogeneous, that is, f∞ (tξ) = tf∞ (ξ) for all t > 0.

Property (a) is essential in order to give a meaning to the integral representation formula,
and property (b) allows to exploit the polar decomposition of Dsu, in agreement with
the preceding discussion. Heuristically, we can say that at points x where Du becomes
singular the modulus of the gradient becomes bigger and bigger and Du itself goes to ∞
along a certain direction, so that the value of the integrand at such points is given by the
(scaled) asymptotic value of f in the direction along which Du diverges. This value is
given precisely by the recession function, evaluated in the mentioned direction.

There is another important qualitative difference between Sobolev and BV functions:
BV functions may be discontinuous along (N − 1)-dimensional surfaces in their domain,
whereas Sobolev functions may not. For this reason, BV functions are suitable in geomet-
ric variational problems. We limit ourselves to mention the free discontinuity problems
introduced in [17], for which we refer also to [6], and to remark that characteristic func-
tions may belong to BV (see Example 4.8 below). If u = χE, and the boundary ∂E
of E is smooth, then Du is concentrated on ∂E, but there are non-smooth sets E with
χE ∈ BV , and in this case DχE is concentrated on a possibly very small portion of the
topological boundary ∂E. We do not discuss such geometric aspects of the theory of
BV functions, but come back to discussing some aspects of the theory related to integral
functionals. We first present the basic example of relaxation, and after we consider more
general classes of functionals.

Example 4.5 Consider the functional

F (u) =

∫

Ω

√
1 + |Du|2 dx,

that for u ∈ C1(Ω) represents the surface measure (in Ω× R) of the graph of u.
It is easy to compute the recession function of f(ξ) =

√
1 + |ξ|2:

f∞ (ξ) = lim
t→+∞

√
1 + t2ξ2

t
= |ξ| .
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Then, for u ∈ BV (Ω) we obtain

F (u) =

∫

Ω

f(∇u) dx +

∫

Ω

f∞
( Dsu

|Dsu|
)
|Dsu|

=

∫

Ω

√
1 + |∇u|2 dx + |Dsu| (Ω) .

As remarked above, BV functions may have some (N − 1)-dimensional discontinuity
surfaces, which correspond to “holes” of the graph. When approximating a BV function
which is not W 1,1 with regular functions, the graphs of the approximating functions must
become “vertical” near these holes, and the area of these almost vertical parts gives, in
the limit, the second term in the relaxation formula above. Let us see two examples.

Let Ω = (0, 1), so that for u ∈ C1 (Ω), F (u) is the length of the graph of u and consider
the two functions:

(1) let

u1 (x) =

{
0 0 6 x < 1

2

1 1
2

< x 6 1

(2) let u2 be the Cantor-Vitali function.

Du1 = δ 1
2
⊥ dx is singular with respect to dx. Then,

F (u1) =

∫

Ω

√
1 + |∇u1|2 dx + |Dsu1| (Ω) = 1 + 1 = 2,

which is the length of the “stitched” graph of u1, i.e., the connected curve obtained by
adding to the graph of u1 the vertical segment {(1/2, y) : 0 6 y 6 1}.

Analogously, u2 ∈ BV (0, 1), as it is continuous in [0, 1] and non decreasing, but the
classical derivative du2

dx
= 0 a.e., then ∇u2 = 0 a.e. and again Du2 ⊥ dx. The singular

term Dsu2 is concentrated on the Cantor set C, and |Du2| (Ω) = 1. Then

F (u2) =

∫

Ω

√
1 + |∇u2|2 dx + |Dsu2| (Ω) = 1 + 1 = 2.

This result can be interpreted in a way analogous to u1; in the present case, the graph of
u2 is a connected curve by itself, but “almost all” the curve is horizontal: in some sense it
consists of a broken line containing long horizontal segments that project on Ω \ C, and
very short vertical segments lying on the points of C, whose total length gives 1, the total
variation of u2.

There are two more important points missing in our discussion on the relaxation the-
ory of linear growth functionals in BV : integrands depending upon u, which are not
covered by Theorem 4.4, and the vectorial case. To deal with these topics, we should en-
ter more deeply the structure of BV functions. In fact, as we have already remarked, BV
functions may be discontinuous along (N −1)-dimensional surfaces, and then when a BV
function u is approximated through regular functions, some energy will concentrate onto
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the discontinuity surfaces, and, in order to give a quantitative estimate of the amount of
energy, both the behavior of u near to the discontinuity set and the geometric properties
of this one must be well understood. Concerning the vectorial case, there is the additional
serious difficulty to deal with the quasiconvex case. In fact, it is necessary to understand
if f∞ is well-defined when f is not a convex function, but just quasiconvex. The recession

function f∞
(

Dsu
|Dsu|

)
(as a limsup) can be defined, but the proof of the integral represen-

tation formula of the relaxed functional relies on deep properties of BV functions. We
recall now the notions necessary to state the main results, but a detailed discussion goes
far beyond the aim of these notes. We refer to [6] for a detailed presentation of the results,
and quote the original papers. The first notion is that of Hausdorff measure. For any
E ⊂ RN we set:

HN−1(E) =
ωN−1

2N−1
sup
δ>0

inf

{ ∞∑

h=0

(diamEh)
N−1 , E ⊂

∞⋃

h=0

Eh, diamEh < δ

}
.

Moreover, for every real function u ∈ BV (Ω) we define the upper and lower approximate
limits of u at x ∈ Ω by

u∨(x) := inf

{
t ∈ [−∞, +∞] : lim

%↓0
%−N |{u > t} ∩B%(x)| = 0

}
,

u∧(x) := sup

{
t ∈ [−∞, +∞] : lim

%↓0
%−N |{u < t} ∩ B%(x)| = 0

}
,

respectively. If u∨(x) = u∧(x) we call their common value, denoted ũ(x), the weak
approximate limit of u at x. We also set Su = {x ∈ Ω : u∧(x) < u∨(x)}. Then, the
following results hold

(a) for HN−1 a.a. x ∈ Su the values u∧(x), u∨(x) can be obtained as one-sided traces
u+(x), u−(x), i.e., a unit vector ν(x) ∈ SN−1 exists such that

lim
%→0

%−N

∫

B+
% (x)

|u(y)− u+(x)| dy = 0

and

lim
%→0

%−N

∫

B−% (x)

|u(y)− u−(x)| dy = 0,

where B+
% (x) = {y ∈ B%(x) : 〈y, νx〉 > 0}, B−

% (x) = {y ∈ B%(x) : 〈y, νx〉 < 0}; of
course, since νx is determined up to the sign, changing νx by −νx entails that the
traces are in turn exchanged.

(b) Dsu splits as DJu+DCu, where DJu(B) = Dsu(B∩Su) and DCu(B) = Dsu(B\Su)
for every Borel set B; the measures DJu, |DJu| are given by

DJu(B) =

∫

B∩Su

(
u+(x)− u−(x)

)
νx dHN−1(x),

|DJu|(B) =

∫

B∩Su

(
u∨(x)− u∧(x)

)
dHN−1(x).
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The measure DCu is also called the “Cantor part” of Du because if u is the classical
Cantor-Vitali function then Du = DCu.

We can now present the relaxation theorem for the general scalar case.

Theorem 4.6 (G. Dal Maso, [12]) Let f(x, s, ξ) : Ω × R × RN → R be measurable
in x, continuous in s and convex in ξ, and assume that (4.2) holds. Then the following
representation of the L1 relaxed integral F holds for every u ∈ BV (Ω):

F (u) =

∫

Ω\Su

f (x, ũ(x),∇u(x)) dx +

∫

Ω\Su

f∞

(
x, ũ(x),

DCu

|DCu|
) ∣∣DCu

∣∣

+

∫

Su

u+(x)∫

u−(x)

f (x, t, ν(x)) dt dHN−1(x),

where ν(x) in chosen is such a way that u−(x) < u+(x).

The above formula should be compared with those in Example 4.5. Again, the graph of
u is stitched vertically between the points (x, u−(x)) and (x, u+(x)) for HN−1 a.e. x ∈ Su,
and the energy that concentrates onto Su is measured by the third integral.

Let us come to the vectorial case: now, for u : Ω → Rn of calls BV , if n > 1 the
definitions of u∨, u∧ do not make sense anymore, but we can still define Su as the union of
the jump sets of the components of u, and obtain triples (u+(x), u−(x), ν(x)) at HN−1-a.a.
points x of Su as above, i.e.,

(a’) for HN−1 a.a. x ∈ Su there are u+(x), u−(x) in Rn and a unit vector ν(x) ∈ SN−1

such that

lim
%→0

%−N

∫

B+
% (x)

|u(y)− u+(x)| dy = 0

and

lim
%→0

%−N

∫

B−% (x)

|u(y)− u−(x)| dy = 0.

(b’) Dsu splits as DJu+DCu, where DJu(B) = Dsu(B∩Su) and DCu(B) = Dsu(B\Su);
the measures DJu, |DJu| are given by

DJu(B) =

∫

B∩Su

(
u+(x)− u−(x)

)⊗ νx dHN−1(x)

|DJu|(B) =

∫

B∩Su

|u+(x)− u−(x)| dHN−1(x)

for all Borel sets B.

The problem of the integral representation of relaxed functionals in the vectorial case
has been studied first in the convex case [5] and subsequently in the quasiconvex case with
f depending only upon ξ in [4], and finally has been settled in as follows in [19]. Notice
that in the quasiconvex case the limit in (4.3) does not exist, in general, and the recession
function must be defined using the limsup. Nevertheless, f∞ is still 1-homogeneous and
quasiconvex.
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Theorem 4.7 Let f : Ω× Rn × RnN → [0,∞) be a continuous function satisfying (4.2)
and the following assumptions:

(i) z → f(x, u, z) is quasiconvex for all (x, u) ∈ Ω× Rn

(ii) for every compact subset K of Ω × Rn there exists a continuous function ωK, with
ωK(0) = 0, such that

|f(x, u, z)− f(y, v, z)| 6 ωK(|x− y|+ |u− v|)(1 + |z|)

for all (x, u, z), (y, v, z) ∈ K × RnN and moreover for every x0 ∈ Ω and any ε > 0
there exists δ > 0 such that if |x− x0| < δ, then

f(x, u, z)− f(x0, u, z) > −ε(1 + |z|) ∀(u, z) ∈ Rn × RnN ;

(iii) there exist α ∈ (0, 1) and C, L > 0 such that if t|z| > L then

∣∣∣∣f∞(x, u, z)− f(x, u, tz)

t

∣∣∣∣ 6 C
|z|1−α

tα
∀(x, u, z) ∈ Ω× Rn × RnN .

Then, there is a continuous function γf : Ω × Rn × Rn × SN−1 → [0,∞) such that the
following representation formula holds for the relaxed functional F :

F (u) =

∫

Ω

f (x, u(x),∇u(x)) dx +

∫

Su

γf

(
x, u+(x), u−(x), ν(x)

)
dHN−1

+

∫

Ω

f∞

(
x, u(x),

DCu

|DCu|
)
|DCu|.

Again, the function γf measures the energy needed to stitch the graph of u between
the asymptotic values u−(x) and u+(x) at x ∈ Su. But now u−(x) and u+(x) are points
in the space, and there is no analogue of the vertical line appearing in the scalar case,
because there are infinitely many curves joining them. Moreover, the function γf cannot
be computed along any curve, but requires a different procedure.

We end these lectures coming back to the isoperimetric problem quoted in the Intro-
duction.

Example 4.8 (The isoperimetric problem) An interesting special class of BV func-
tions is that of characteristic functions u = χE for some measurable set E.

We say that E ⊂ Ω is of finite perimeter in Ω if its perimeter, P (E) := |DχE| (Ω) is
finite.

If Ω is bounded, the condition |DχE|(Ω) < ∞ is equivalent to χE ∈ BV (Ω), thanks

to the embedding BV (Ω) ⊂ L
N

N−1 (Ω).
If Ω = RN , we may use (4.1) with a cube Q%(x) in place of Ω and write

∫

Q(x)

|χE − (χE)Q%(x)| dy 6 γ%|DχE|(Q%(x))
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for a suitable γ > 0 which depends only on N . To see this, let us use simple translation
and scaling arguments to check that the constant c there behaves like c = γ%, γ being the
optimal constant relative to any unit cube. Thus,

2(χE)Q%(x)(1− (χE)Q%(x)) 6 γ
P (E, Q%(x))

%N−1
.

Since (χE)Q%(x) ∈ [0, 1] and min {t, 1− t} 6 2t(1− t) for any t ∈ [0, 1], we obtain

min
{
(χE)Q%(x), 1− (χE)Q%(x)

}
6 γ

P (E, Q%(x))

%N−1
.

Setting α%(x) = |Q%(x) ∩ E|/(2%)N and choosing % = [3γP (E)]1/(N−1) we obtain

α%(x) ∈ [0, 1/2) ∪ (1/2, 1].

By a continuity argument, either α%(x) ∈ [0, 1/2) for any x ∈ RN or α%(x) ∈ (1/2, 1] for
any x ∈ RN . If the first possibility is true, we infer

|E ∩Q%(x)|
(2%)N

= α%(x) 6 γ
P (E, Q%(x))

%N−1
∀x ∈ RN .

Covering almost all of RN by a disjoint family of cubes {Q%(xh)}h∈ZN , eventually we get

|E| =
∑

h∈ZN

|Q%(xh) ∩ E| 6 2Nc%
∑

h∈ZN

P (E, Q%(xh)) 6 2Nγ%P (E,RN).

If α%(x) ∈ (1/2, 1] for all x, then we may exchange E with RN \E and we get an analogous
inquality. Summarising, we have proved the isoperimetric inequality

min{|E|, |RN \ E|} 6 cP (E)
N

N−1 (4.4)

where c is a dimensional constant.
This preparation allows us to formulate in rigorous terms the isoperimetric problem

in the class of sets with finite perimeter in RN :

among all the sets with given perimeter, find that which includes the maximum
volume,

or, equivalently, find the best possible constant c in (4.4) and the set E (if any) for
which (4.4) holds as an equality. Notice that now “volume” means Lebesgue measure, the
measure of the boundary is given by the perimeter, and the class of competitors is very
large, and contains all sets with piecewise smooth boundary.

It is a classical deep result, due in this form to E. De Giorgi (see [15]) that the optimal

constant c in the isoperimetric inequality is
ω

N
N−1
N

N ωN−1
and it is obtained if and only if E = B%.

Therefore, the set of minimum perimeter in RN among all sets of finite perimeter and

fixed area A is any ball of radius % =
(

A
ωN

) 1
N

.
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