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Preface
These notes have been devised as a basic introduction course on fluid mechanics. They are

primarily addressed to Ph.D. students but they can be employed also by students in postgraduate
diploma or master’s degree. They are based on a series of lectures I gave at the University Austral
(Rosario, Argentina) between August and September 2015.

The main purpose is to give the student the basic knowledge on the kinematics and dynamics
of a continuum and to provide a substantial knowledge of the continuum approach adopted in
fluid mechanics. The notes have been purposely structured to maintain a nice balance between
the rigorous mathematics and the physical laws and principles that govern fluid mechanics. This
approach has two aims: avoid to intimidate the students with “too rigorous” mathematics and
present the fundamental concepts of fluid mechanics focussing on the basic principles without
getting lost in peripheral material. Despite these notes constitute a genuinely theoretical intro-
duction to fluid mechanics, in the sense that the main results are obtained within the theoretical
framework of continuum mechanics, they can also be addressed to applied mathematicians and
engineers that are mainly interested in practical applications.

The first Chapter has been devoted to the presentation of standard results in tensor algebra
and calculus, providing the fundamental mathematical tools that will be used in the subsequent
chapters. Chapters 2 and 3 are dedicated to kinematics and dynamics of a generic continuum.
Chapter 4 is devoted to ideal fluids, while Chapter 5 deals with Newtonian fluids. Finally, the
last chapter is devoted to the study of generalized Newtonian fluids.

Keywords: continuum mechanics; kinematics; Dynamics; inviscid fluids; newtonian fluids;
generalized Newtonian fluids;
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Chapter 1

Mathematical preliminaries

This introductory chapter is devoted to the presentation of basic results on vector and tensor
algebra and calculus. The reader not familiar with the material presented here should read this
chapter very carefully for it provides the mathematical background required in the subsequent
sections. Reference books for this section are [1], [5], [6], [12], [13].

1.1 Vector and tensors algebra

The inner product of two vectors u = (u1, u2, u3), v = (v1, v2, v3) is

u · v =
3∑
i=1

uivi.

The norm of a vector u is
|u| = (u · u)1/2.

The inner product can be expressed also as

u · v = |u||v| cos θ,

where θ is the angle between u and v. Two vectors are orthogonal if u · v = 0. A set of vectors
{u1,u2,u3, .....} is called orthonormal if

ui · uj = δij =


0 i 6= j,

1 i = j,

δij being the Kronecker’s delta. The cross (or vector) product of two vectors u, v is denoted by
u × v. The cross product provides a vector normal to u and v with direction specified by the
right-hand rule and a magnitude

|u× v| = |u||v| sin θ,

where θ ∈ (0, π) is the angle between u and v. In a right handed basis {e1, e2, e3} the cross
product can be evaluated through the determinant

u× v =

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣
,

5



6 CHAPTER 1. MATHEMATICAL PRELIMINARIES

that is
u× v = (u2v3 − u3v2) e1 − (u1v3 − u3v1) e2 + (u1v2 − u2v1) e3.

The following properties hold
u× u = 0,

u× v = −v × u,

(1.1) u · (v ×w) = w · (u× v) = v · (w × u).

A second order tensor S is a linear transformation from R3 to R3 that maps the vector u in a
vector v

v = Su.

The tensor S is a 3 × 3 matrix whose components depend on the selected reference basis
{e1, e2, e3}. Hence

vi =
3∑

k=1

Sikuk, i = 1, 2, 3.

The tensor

I =


1 0 0

0 1 0

0 0 1


is called the identity tensor and it is such that u = Iu. The product of two tensors S and T is
a tensor R such that

R = ST Rij =
3∑

k=1

SikTkj .

It is easy to check that
(ST)v = S(Tv).

In general ST 6= TS. The transpose of S is a tensor ST such that STij = Sji. The following
relations hold

(1.2) Su · v = u · (STv),

(S + T)T = ST + TT ,

(ST)T = TTST ,

(ST )T = S.

A tensor is called symmetric if ST = S and skew if ST = −S. Each tensor S can be decomposed
in its symmetric and skew part

Ssym =
1

2

[
S + ST

]
,

Sskew =
1

2

[
S− ST

]
,

so that
S = Ssym + Sskew.
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The dyadic product of two vectors u, v is a second order tensor

(1.3) u⊗ v =


u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 .

A tensor S can be expressed as

S =

3∑
i,j=1

Sij(ei ⊗ ej).

The following properties hold
(u⊗ v)w = (v ·w)u,

(u⊗ v)T = (v ⊗ u),

3∑
i=1

ei ⊗ ei = I.

If n is a unit vector the projection of u in the direction of n is

(1.4) (u · n)n = (n⊗ n)u,

while the projection of u onto the plane perpendicular to n is

(1.5) u− (u · n)n = (I− n⊗ n)u.

The inner product of two tensors is

S ·T =
3∑

i,j=1

SijTij .

The trace of a tensor is

tr S =
3∑
i=1

Sii = S · I.

The following properties hold
tr (ST) = tr (TS),

tr (ST ) = tr (S),

S ·T = tr (STT) = tr (STT ).

If S is a symmetric tensor and W is skew

S ·W = tr (SW) = tr (SWT ) = −tr (SW),

so that S ·W = 0. If

(1.6) S ·W = 0 ∀ W skew,

then S is symmetric. If W is skew then

(1.7) u ·Wu = 0,
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for all vectors u. For any skew tensor

(1.8) W =


0 −γ β

γ 0 −α

−β α 0

 ,

there exists a unique vector ω = (α, β, γ) such that Wu = ω × u for each vector u. The
determinant of a tensor S is the determinant of the matrix associated with the tensor. The
determinant is independent of the basis {e1, e3, e3}. A tensor S is called invertible if there exists
a tensor S−1 such that

SS−1 = S−1S = I.

The following identities hold
det(ST) = det(S) det(T),

det(ST ) = det(S),

(ST)−1 = T−1S−1,

(S−1)T = (ST )−1 =: S−T .

If a tensor S is invertible then det S 6= 0. A tensor S is orthogonal if

SST = STS = I,

or analogously
ST = S−1.

An orthogonal tensor is sometimes called a rotation. A tensor S is positive-definite if

u · Su > 0 ∀ u 6= 0.

A scalar λ is called an eigenvalue of a tensor S if there exists a vector u 6= 0 such that

(1.9) Su = λu.

In that case u is called an eigenvector. If u is an eigenvector then θu is also an eigenvector.
Equation (1.9) can be rewritten as

(S− λI)u = 0.

Hence the eigenvalues of S are found solving

det(S− λI) = 0.

If S is positive definite then the eigenvalues are strictly positive. Indeed, let λ be an eigenvalue
of the positive definite tensor S and let u be the relative eigenvector with |u| = 1. From (1.9)
we have

0 < u · Su = λ|u|2 = λ.

It can be shown that

(1.10) det(S− λI) = −λ3 + i1(S)λ2 − i2(S)λ+ i3(S),
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where

(1.11)



i1(S) = tr S,

i2(S) =
1

2

[
(tr S)2 − tr (S2)

]
,

i3(S) = det S,

are the principal invariants of S. When S is symmetric the eigenvalues λ1, λ2, λ3 ∈ R and
i1(S) = λ1 + λ2 + λ3,

i2(S) = λ1λ2 + λ2λ3 + λ1λ3,

i3(S) = λ1λ2λ3.

The following theorems hold

Theorem 1 (Cayley-Hamilton) Every second order tensor S satisfies

−S3 + i1(S)S2 − i2(S)S + i3(S)I = 0.

Theorem 2 (Spectral) If S is symmetric then there exists an orthonormal basis {e1, e3, e3}
formed by eigenvectors of S. The matrix representation of S in such a basis is diagonal

S =

3∑
i=1

λiei ⊗ ei,

where λi are the eigenvalues of S (see [5] for the proof of the theorem).

Theorem 3 (Polar decomposition) Let S be a symmetric tensor with det S > 0. Then there
exists an orthogonal tensor R and two symmetric tensors U, V such that

S = RU = VR.

(see [12] for a proof of the theorem).

1.2 Vector and tensor calculus

Suppose u : R3 → R3 is a smooth vector field. We write

u(x) = o(x), x→ 0,

when
lim
x→0

u(x)

|x|
= 0.

The function u is said to be differentiable at x if there exists a linear transformation

Du(x) : R3 → R3,

such that
u(x + y) = u(x) + [Du(x)]y + o(|y|).
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Supposing that u is sufficiently smooth we have

(1.12) [Du(x)]y = [∇u(x)]y.

where

∇u(x) =



∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3


,

is the gradient of u (sometimes grad u is used instead of ∇u ). If we consider a scalar field ϕ
relation (1.12) reduces to

[Dϕ(x)]y = ∇ϕ(x) · y,

where
∇ϕ(x) =

(
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
.

The divergence of a vector field u is

div u(x) =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
.

Sometimes ∇ · u is used instead of div u. We have

div u = tr (∇u).

We can also define the divergence of a tensor field in the following way

(div S) · u = div (STu), ∀ u.

In particular div S is a vector with components

(div S)i =

3∑
j=1

∂Sij
∂xj

.

Let ϕ : R3 → R be a smooth scalar field and let u, v : R3 → R3 be smooth vector fields. Further
let S : R3 → R9 be a smooth tensor field. The following relations hold

(1.13) ∇(ϕu) = ϕ∇u + u⊗∇ϕ,

(1.14) ∇(u · v) = (∇v)Tu + (∇u)Tv,

(1.15) div (ϕu) = ϕ div u + u · ∇ϕ,

div (u⊗ v) = u div v + (∇u)v,

(1.16) div (STu) = S · ∇u + u · div (S),

div (ϕS) = ϕ div S + S∇ϕ,

div (∇u) = ∇( div u).
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The proof of these identities can be found in [12]. The curl of a vector u is defined as

(1.17) curl u =

(
∂u3

∂x2
− ∂u2

∂x3

)
e1 +

(
∂u1

∂x3
− ∂u3

∂x1

)
e2 +

(
∂u2

∂x1
− ∂u1

∂x2

)
e3.

The curl can be evaluated by means of

curl u = det


e1 e2 e3

∂

∂x1

∂

∂x2

∂

∂x3

u1 u2 u3

 .

The vector field curlv is also denoted by ∇× v. The Laplacian of a scalar field ϕ is

∆ϕ = div (∇ϕ).

When ∆ϕ = 0 the function ϕ is called harmonic. The Laplacian of a vector field u is given by

(1.18) ∆u = ∆u1e1 + ∆u2e2 + ∆u3e3.

When ∆u = 0 the vector field u is called harmonic. A vector field u for which

div u = 0, curl u = 0

is harmonic. If ϕ is a smooth scalar field and u, v are smooth vector fields the following identities
hold

(1.19) curl (ϕu) = ϕ curl u +∇ϕ× u.

div (u× v) = v · curl u− u · curl v,

(1.20) curl (u× v) = (∇u)v − (∇v)u + u div v − v div u,

(1.21) ∆u = ∇ (div u)− curl (curl u).

Moreover

(1.22) div (curl u) = 0,

(1.23) curl (∇ϕ) = 0.

A vector field u is said to be conservative if u = ∇ϕ for some scalar field ϕ. A curl free vector
field defined on a simply connected domain is conservative. Proofs of identities (1.19)-(1.23) can
be found in [1].
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1.3 The divergence theorem and the Stokes’ theorem

In this section we present two important theorems widely used in continuum mechanics: the
divergence theorem and the Stokes’ theorem. These results are classical so we do not provide any
proof, referring the interested reader to [13], [1].

Theorem 4 (divergence) Let P be a bounded smooth region in R3 with smooth boundary ∂P
with outward unit normal n. Let ϕ : P → R, u : P → R3, S : P → R9 be a scalar, vector and
tensor field respectively. Then ∫

∂P
ϕn dσ =

∫
P
∇ϕ dx,

(1.24)
∫
∂P

u · n dσ =

∫
P

div u dx,

(1.25)
∫
∂P

Sn dσ =

∫
P

div S dx,

From (1.16) we have ∫
P

u · div S dx =

∫
P
div (STu) dx−

∫
P

S · ∇u dx

Applying the divergence theorem (1.24) and recalling (1.2) we get

(1.26)
∫
P

u · div S dx =

∫
∂P

Sn · u dσ −
∫
P

S · ∇u dx.

Relation (1.26) is called Gauss-Green formula.

Theorem 5 (Stokes) Let S be a smooth surface in R3 with normal n and smooth boundary ∂S.
Let u be a C1 vector field on S. Then

(1.27)
∫
S

curl u · n dS =

∫
∂S

u · d`

Figure 1.1: Divergence and Stokes’ theorems.
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1.4 Cylindrical polar coordinates

In a Cartesian coordinate system a point in space is specified by its position

x = x1e1 + x2e2 + x3e3.

When using a Cylindrical polar coordinate system (see [14]) the position is specified by the polar
coordinates (r, θ, z) such that

x1 = r cos θ,

x2 = r sin θ,

x3 = z



r =
√
x2

1 + x2
2,

θ = arctan

(
x1

x2

)
,

z = x3

In cylindrical coordinates vectors are specified as components in the {er, eθ, ez} basis where

er = cos θe1 + sin θe2 =
∂x

∂r

∣∣∣∣∂x

∂r

∣∣∣∣−1

eθ = − sin θe1 + cos θe2 =
∂x

∂θ

∣∣∣∣∂x

∂θ

∣∣∣∣−1

ez = e3 =
∂x

∂z

∣∣∣∣∂x

∂z

∣∣∣∣−1

Given a vector in Cartesian coordinates

a = a1e1 + a2e2 + a3e3,

we can convert it into cylindrical coordinates

a = arer + aθeθ + azez,

by means of 
a1

a2

a3

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1



ar

aθ

az

 ,
or conversely 

ar

aθ

az

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1



a1

a2

a3

 .
Notice that the matrices above are orthogonal, i.e. QQT = I. The basis {e1, e2, e3} can be thus
transformed into {er, eθ, ez} by means of

er = cos θe1 + sin θe2,

eθ = − sin θe1 + cos θe2,

ez = e3,
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and conversely 
e1 = cos θe1 − sin θe2,

e2 = sin θe1 + cos θe2,

e3 = ez.

The basis {er, eθ, ez} is orthonormal and tensors can be expressed in this basis. Hence

S =


Srr Srθ Srz

Sθr Sθθ Sθz

Szr Szθ Szz

 .

Tensors can be converted from the Cartesian system to the cylindrical system by means of

(1.28)


S11 S12 S13

S21 S22 S23

S31 S32 S33

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1



Srr Srθ Srz

Sθr Sθθ Sθz

Szr Szθ Szz




cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 ,

(1.29)


Srr Srθ Srz

Sθr Sθθ Sθz

Szr Szθ Szz

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1



S11 S12 S13

S21 S22 S23

S31 S32 S33




cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .

Calculating the derivatives of scalar, vector and tensor functions in cylindrical coordinate can
be complicated, since the vectors forming the basis are function of position. Without giving
the detailed derivation we introduce some basic differential operators in cylindrical coordinates.
Suppose ϕ = ϕ(r, θ, z) is a scalar function. Then

∇ϕ =
∂ϕ

∂r
er +

(
1

r

∂ϕ

∂θ

)
er +

∂ϕ

∂z
ez.

while

∆ϕ =
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2
+
∂2ϕ

∂z2
.

If u = (ur, uθ, uz) is a vector function

∇u =



∂ur
∂r

(
1

r

∂ur
∂θ
− uθ

r

)
∂ur
∂z

∂uθ
∂r

(
1

r

∂uθ
∂θ

+
ur
r

)
∂uθ
∂z

∂uz
∂r

(
1

r

∂uz
∂θ

)
∂uz
∂z


.
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The divergence of u is

(1.30) div u =
∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

.

The Laplacian of u is

∆u =



∂2ur
∂r2

+
1

r2

∂2ur
∂θ2

+
∂2ur
∂z2

+
1

r

∂ur
∂r
− 2

r2

∂uθ
∂θ
− ur
r2

∂2uθ
∂r2

+
1

r2

∂2uθ
∂θ2

+
∂2uθ
∂z2

+
1

r

∂uθ
∂r

+
2

r2

∂ur
∂θ
− uθ
r2

∂2uz
∂r2

+
1

r2

∂2uz
∂θ2

+
1

r

∂uz
∂r

+
∂2uz
∂z2


where the three components are the components of the {er, eθ, ez} basis. If S is a tensor in
cylindrical coordinates, the divergence of S is

div S =



∂Srr
∂r

+
Srr
r

+
1

r

∂Sθr
∂θ

+
∂Szr
∂z
− Sθθ

r

1

r

∂Sθθ
∂θ

+
∂Srθ
∂r

+
Srθ
r

+
Sθr
r

+
∂Szθ
∂z

∂Szz
∂z

+
∂Srz
∂r

+
Srz
r

+
1

r

∂Sθz
∂θ


.

1.5 Spherical polar coordinates

In spherical coordinates the position of vector

x = x1e1 + x2e2 + x3e3,

is specified by (r, θ, φ) such that (see [14])

(1.31)


x1 = r sin θ cosφ,

x2 = r sin θ sinφ,

x3 = r cos θ



r =
√
x2

1 + x2
2 + x2

3,

θ = arccos
(x3

r

)
,

z = arctan

(
x2

x1

)
.

Vectors are specified as components in the basis {er, eθ, eφ}

er = sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3 =
∂x

∂r

∣∣∣∣∂x

∂r

∣∣∣∣−1

eθ = cos θ cosφ e1 + cos θ sinφ e2 − sin θ e3 =
∂x

∂θ

∣∣∣∣∂x

∂θ

∣∣∣∣−1

eφ = − sinφ e1 + cosφ e2 =
∂x

∂φ

∣∣∣∣∂x

∂φ

∣∣∣∣−1
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Given a vector in Cartesian coordinates

a = a1e1 + a2e2 + a3e3,

we can convert it into spherical coordinates

a = arer + aθeθ + aφeφ,

by means of 
ar

aθ

az

 =


sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0



a1

a2

a3

 ,
or conversely 

a1

a2

a3

 =


sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0



ar

aθ

aφ

 .
Notice that the matrices above are orthogonal, i.e. QQT = I. The basis {e1, e2, e3} can be thus
transformed into {er, eθ, eφ} by means of

er = sin θ cosφe1 + sin θ sinφe2 + cos θe3

eθ = cos θ cosφe1 + cos θ sinφe2 − sin θe3

eφ = − sinφe1 + cosφe2,

and conversely

(1.32)


e1 = sin θ cosφer + cos θ cosφeθ − sinφeφ

e2 = sin θ sinφer + cos θ sinφeθ + cosφeφ

e3 = cos θer − sin θeθ.

The basis {er, eθ, eφ} is orthonormal and tensors can be expressed in this basis.

S =


Srr Srθ Srφ

Sθr Sθθ Sθφ

Sφr Sφθ Sφφ

 .
Tensors can be converted from the Cartesian system to the cylindrical system by means of

S11 S12 S13

S21 S22 S23

S31 S32 S33

 =


sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 ·
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·


Srr Srθ Srφ

Sθr Sθθ Sθφ

Sφr Sφθ Sφφ




sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0

 ,
and 

Srr Srθ Srφ

Sθr Sθθ Sθφ

Sφr Sφθ Sφφ

 =


sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0

 ·

·


S11 S12 S13

S21 S22 S23

S31 S32 S33




sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

 .
We also define the following differential operators in spherical coordinates. Let ζ = ζ(r, θ, φ) be
a scalar function. Then the gradient of ζ is

(1.33) ∇ζ =
∂ζ

∂r
er +

1

r

∂ζ

∂θ
eθ +

1

r sin θ

∂ζ

∂φ
eφ.

The Laplacian of ζ is

∆ζ =
1

r2

∂

∂r

(
r2∂ζ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ζ

∂θ

)
+

1

r2 sin2 θ

∂2ζ

∂φ2
.

Given a vector function u = (ur, uθ, uφ) the gradient of u is

∇u =



∂ur
∂r

(
1

r

∂ur
∂θ
− uθ

r

) (
1

r sin θ

∂ur
∂φ
−
uφ
r

)
∂uθ
∂r

(
1

r

∂uθ
∂θ

+
ur
r

) (
1

r sin θ

∂uθ
∂φ
− cot θ

uφ
r

)
∂uφ
∂r

(
1

r

∂uφ
∂θ

) (
1

r sin θ

∂uφ
∂φ

+ cot θ
uθ
r

+
ur
r

)


.

The divergence of u is

(1.34) div u =
∂ur
∂r

+ 2
ur
r

+
1

r

∂uθ
∂θ

+
1

r sin θ

∂uφ
∂φ

+ cot θ
uθ
r
.

Finally we write the divergence of a tensor

div S =



∂Srr
∂r

+ 2
Srr
r

+
1

r

∂Sθr
∂θ

+ cot θ
Sθr
r

+
1

r sin θ

∂Sφr
∂φ
−
Sθθ + Sφφ

r

∂Srθ
∂r

+ 2
Srθ
r

+
1

r

∂Sθθ
∂θ

+ cot θ
Sθθ
r

+
1

r sin θ

∂Sφθ
∂φ

+
Sθr
r
− cot θ

∂Sφφ
∂r

∂Srφ
∂r

+ 2
Srφ
r

+
sin θ

r

∂Sθφ
∂θ

+ cos θ
Sθφ
r

+
1

r sin θ

∂Sφφ
∂φ

+
Sφr + Sφθ

r


.
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1.6 Isotropic functions

Suppose that ϕ, u and S are a scalar, vector and tensor valued functions of a tensor T. Then
ϕ, u and S are isotropic if

ϕ(QTQT ) = ϕ(T),

u(QTQT ) = Qu(T),

S(QTQT ) = QS(T)QT ,

where Q is any othogonal tensor. It is easy to check that the determinant and the trace of
a tensor are isotropic functions. More in general, the invariants of a tensor are all isotropic
functions. We state (the interest reader can find the proof in [12]) the following theorems:

Theorem 6 (Isotropic functions) Any isotropic tensor-valued function S(T) can be written
as

(1.35) S(T) = αI + βT + γT2,

where α, β, γ are functions of the invariants of T.

Theorem 7 (Isotropic linear functions) Any linear isotropic tensor-valued function S(T)
can be written as

(1.36) S(T) = 2µT + λ(tr T)I,

for some scalar λ, µ.



Chapter 2

Kinematics

Continuum mechanics can be seen as a combination of mathematical and physical laws that
describe the macroscopic behavior of a body subjected to mechanical load. For those familiar
with particle dynamics, we can say that continuum mechanics is a generalization of that theory
based on the same physical assumptions. The evolution of a continuum is described in a three
dimensional Euclidean space endowed with a metric

d =

√√√√ 3∑
i=0

(xi − yi)2,

which establishes the distance between points. Vectors are expressed as components in a basis
of mutually perpendicular unit vectors, while physical quantities such as force, displacement,
velocity, acceleration are expressed as vectors in this space. A Cartesian coordinate system is
composed by a fixed point together with a basis {O, e1, e2, e3}.

One of the principal assumption of continuum mechanics is that matter can be idealized as
a continuum that is infinitely divisible and locally homogeneous. In practice we can subdivide
the medium as many times as we wish and find identical properties (e.g. mass density) at each
subdivision. A continuum body can be thought of as an infinite set of sufficiently small particles
connected together. In a continuum system mass distribution is described through a density
function %(x, t) (whose dimensions are mass over a volume [m`−3]) such that the mass of each
measurable portion D of the system is given by

(2.1) M(D) =

∫
D
%(x, t)dx.

The euristic procedure leading to the definition of density originates from the definition of average
mass density of a representative volume ∆V centered at some point x. We consider

%m =
∆m

∆V
,

as the ratio between the mass ∆m contained in the cell and the volume ∆V of the cell. Reducing
the diameter of the cell, the quantity %m hovers around a value which can be representative of the
macroscopic density (meaning it contains a sufficiently high number of molecules). This is what
we call density at point x at time t. A continuum body can be 3D, 2D or 1D depending on the
particular system considered (e.g. a membrane is a 2D continuum, a string is a 1D continuum).
Accordingly the dimensions of the density will be [m`−3], [m`−2] or [m`−1].

The material presented in this chapter and in the next one is mainly based on the approach
developed in the monumental work [25] by Truesdell and Noll on which the books [12], [24] are
also based. The interested reader can refer to these books for a more rigorous and detailed
treatment on the kinematics and dynamics of continua.

19
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2.1 Bodies, configurations and motion

The aim of continuum mechanics is to describe the evolution of a body with respect to a reference
frame {O, e1, e2, e3}. Consider a body B that at time t = 0 occupies a reference configuration
κR ⊂ R3 and let X represent a point of κR, as depicted in Fig. 2.1. Every possible configuration
that can be attained by the body is defined through the map

(2.2) x = χ(X, t),

which is supposed continuous in time, globally invertible (ensuring the body does not intersect
itself) and orientation-preserving, so that reflections are not possible. In particular we assume
that the map χ is twice continuously differentiable to ensure that the differential equations
describing the dynamics may actually be formulated. The motion of the body B is described

Figure 2.1: Reference and actual configuration.

by the differentiable map (2.2) where x is the position occupied at time t by the particle that
at time t = 0 was in X. The coordinates X and x are called the Lagrangian and Eulerian
coordinates respectively. The coordinates are intended with respect to the orthogonal reference
frame {O, e1, e2, e3}. The map χ represents the material description of the motion, since the
domain of χ consists of all the material particles that form the body. We denote by κt the spatial
domain occupied by B at time t, i.e. the actual configuration.

A material volume P is any subset of particles of B that evolves according to (2.2). Hence at
time t the volume P occupies the position Pt = χ(P, t) and the boundary ∂P is mapped in ∂Pt.
A material volume is formed by the same set of particles at any time. A non material volume Q
is a set of particles whose evolution is not governed by (2.2), so that in general Qt 6= χ(Q, t). A
non material volume may contain different particles at different times.

The notion of Lagrangian and Eulerian coordinates illustrates two equivalent ways for investi-
gating the kinematics of a continuum. The first is based on the description of physical quantities
along the motion of a single particle (Lagrangian or material description). The second simply
takes note of the variation of such quantities as they change in time at a fixed point (Eulerian
or local description). For a given quantity G we have the Lagrangian expression

(2.3) G = G`(X, t),

and the Eluerian expression

(2.4) G = Ge(x, t),
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To switch from (2.3) to (2.4) and vice-versa we make use of (2.2), i.e.

G`(X, t) = Ge(χ(X, t), t).

As a consequence

(2.5)
∂G`
∂t

=
∂Ge
∂t

+∇Ge ·
∂χ

∂t
,

where ∇ indicates spatial gradient w.r.t. Eulerian coordinates. The first term on the r.h.s. of
(2.5) is called local time derivative and corresponds to the rate of change of G at a fixed x. The
second term on the r.h.s. is called the convective rate of change of G. The velocity and the
acceleration of a particle X are

(2.6) v(x, t) =
∂χ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

,

a(x, t) =
∂2χ(X, t)

∂t2

∣∣∣∣
X=χ−1(x,t)

.

The material time derivative (time derivative along a particle path) for a scalar quantity Ge(x, t)
is

(2.7) Ġe =
dGe
dt

=
∂Ge
∂t

+∇Ge · v.

The material time derivative for a vector field w(x, t) is

(2.8) ẇ =
dw

dt
=
∂w

∂t
+ (∇w)v,

where

(2.9) [(∇w)v]i =

3∑
j=1

∂wi
∂xj

vj , i = 1, 2, 3.

Sometimes the term (∇w)v is denoted by (w · ∇)w. It is useful to consider the so-called
streamlines, i.e. the curves that are instantaneously tangent to the velocity field. When the
velocity field is locally constant the motion is called steady and

(2.10)
∂v

∂t
(x, t) = 0.

Steady flows are characterized by streamlines that do not depend on time. If Ge(x, t) is a scalar
quantity in a steady motion, then

(2.11)
∂Ge
∂t

(x, t) = 0.

For a given flow we can define the vorticity

ω = curl v

When curl v = 0 the flow is called irrotational (or curl-free). In this case we speak of potential
flow since v can be derived (in a simply connected domain, see [1]) from a potential ϕ(x, t)

∇ϕ(x, t) = v(x, t).



22 CHAPTER 2. KINEMATICS

2.2 Deformation and measures of deformation

For simplicity here we investigate the deformation of a body from a reference configuration κR to
a final configuration κF without specifying how κf is obtained. In practice we neglect the time
dependence in (2.2), so that x = χ(X). Minor changes allow one to consider also the dependence
on time. The displacement of a particle at time t is

(2.12) u = χ(X)−X.

The gradient of the map χ is a second order tensor called the deformation gradient1

(2.13) F(X) = gradχ(X), Fij =
∂χi
∂Xj

The deformation gradient quantifies the change in shape of infinitesimal line elements

dx = F(X)dX,

as shown in Fig.2.2. The tensor F provides local information on the deformation x = χ(X).

Figure 2.2: Deformation gradient

Indeed, given Y ∈ B we can use Taylor expansion and write

(2.14) χ(X) = χ(Y) + F(Y)(X−Y) +O(|X−Y|2).

When F is constant the deformation is called homogeneous and (2.14) reduces to

χ(X) = χ(Y) + F(X−Y).

A homogeneous deformation is called a translation if

χ(X) = X + c,

where c is a constant vector. A homogeneous deformation has a fixed point Y if

χ(X) = Y + F(X−Y).

1“grad” is intended w.r.t. Lagrangian coordinates.
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A homogeneous deformation is called a rotation around a fixed point Y if

χ(X) = Y + R(X−Y),

where RRT = I. A homogeneous deformation is called a stretch with a fixed point Y if

χ(X) = Y + U(X−Y),

with U symmetric and positive definite tensor. Recalling the polar decomposition theorem we
know that the tensor F can be decomposed in F = RU, F = VR, where U, V are positive
definite and symmetric tensors called the right and left stretch tensors respectively and where R
is a rotation. A particular type of homogeneous deformations is the one in which

(2.15) det F = 1.

Such a deformation is called isochoric or volume-preserving. When (2.15) holds the volume of a
part P of the body does not change from the reference to the final state. A rigid deformation is
a homogeneous deformation in which

|χ(X)− χ(Y)| = |X−Y|.

We can prove that a rigid transformation is given by

χ(X) = χ(Y) + R(X−Y),

where R is a rotation. The tensors

(2.16) C = U2 = FTF, B = V2 = FFT ,

are called the left Cauchy-Green and right Cauchy-Green strain tensors respectively.
Let P be a part of the body B and let χ(P ) be its deformed state. If ϕ is a continuous scalar

field defined on χ(P ) then ∫
χ(P )

ϕ(x)dx =

∫
P
ϕ(χ(X)) det F(X)dX.

As a consequence, when det F = 1 we have

Vol (χ(P )) =

∫
χ(P )

dx =

∫
P
dX = Vol (P ).

proving that deformations for which det F = 1 are volume preserving.

2.3 Infinitesimal strain theory

From (2.12) we see that
F = I + gradu.

Hence from (2.13), (2.16) it is trivial to show that

C = I + 2E + (gradu)T (gradu),

B = I + 2E + (gradu)(gradu)T ,



24 CHAPTER 2. KINEMATICS

where

(2.17) E =
1

2

[
(gradu) + (gradu)T

]
,

is the infinitesimal strain. It is easy to show that a deformation is rigid when C = B = I. When
|gradu| = O(ε) we speak of small deformations and

2E = C− I + o(ε) = B− I + o(ε),

meaning that, within an error of o(ε), the tensors C− I, B− I and 2E coincide. Moreover, when
the infinitesimal deformation is rigid

(gradu) = −(gradu)T + o(ε),

so that, within an error of o(ε), the displacement gradient corresponding to a rigid deformation
is skew. We recall that every tensor can be decomposed in a symmetric and anti-symmetric part

(gradu)sym =
1

2

[
(gradu) + (gradu)T

]
,

(gradu)skew =
1

2

[
(gradu)− (gradu)T

]
.

Hence, since
u(X, t) = u(Y, t) + grad u(Y)(X−Y),

we have that an infinitesimal rigid displacement is a vector field u admitting the representation

u(X, t) = u(Y, t) + (gradu)skew(X−Y),

Recalling (1.8) one can easily show that

u(X, t) = u(Y, t) + ω × (X−Y),

where
ω =

1

2
curl u.

The vector ω is sometimes called the axial vector.

2.4 Local description of the velocity field

Let v(x, t) be the Eulerian description of the velocity field given in (2.6). From Taylor expansion

(2.18) v(x, t) = v(y, t) +∇v(y, t)(x− y) +O(|x− y|2).

The velocity gradient is
L(x, t) = ∇v(x, t).

The symmetric part and the skew part of L are

(2.19) D =
1

2

[
L + LT

]
,

W =
1

2

[
L− LT

]
.
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The tensor D is called the rate of deformation tensor, while W is called the vorticity(or spin)tensor.
We can easily check that

tr D = div v

where div is the divergence operator w.r.t. Eulerian coordinates. Recalling that

Fij =
∂χi
∂Xj

=⇒ Ḟij =
∂vi
∂Xj

=
3∑

k=1

∂vi
∂xk

∂xk
∂Xj

,

we get Ḟ = (∇v)F and

(2.20) L(x, t) = ḞF−1
∣∣∣
X=χ−1(x,t)

Given a material point X, the function s(t) = χ(X, t) is called a path line. The path line clearly
satisfies the differential equation ṡ(t) = v(s(t), t). Conversely the streamlines at time t are the
maximal solutions of ṡ(τ) = v(s(τ), t). When (2.10) holds and the motion is steady, every path
line is a streamline and vice-versa.

Proposition 1 Let Pt be the configuration occupied by a generic subset of B at time t and let
v be C1. If D ≡ 0 then there exist vectors vo and ω such that

v = vo + ω × x,

i.e. a rigid motion.

Proof. Let D ≡ 0, i.e. W = L. We prove that W is spatially homogeneous. Suppose Pt is a
ball and let x,y ∈ Pt. The line connecting x,y is

c(s) = x + s(y − x), s ∈ [0, 1].

We have

v(y, t)− v(x, t) =

∫
c

L(z, t)dz =

∫ 1

0
W(c(s), t)c

′
(s)ds,

so that

(2.21) v(y, t)− v(x, t) =

∫ 1

0
W(c(s), t)(y − x)ds.

Multiplying (2.21) by (y − x) and recalling (1.7) we get

(2.22)
[
v(y, t)− v(x, t)

]
· (y − x) = 0.

Now recall (1.14) and take the gradient of (2.22) w.r.t. y

(2.23) WT (y, t)(y − x) + v(y, t)− v(x, t) = 0,

and then take the gradient of (2.23) w.r.t. x

−WT (y, t)−W(x, t) = 0,

so that W(y, t) = W(x, t), implying W constant in space. From the arbitrariness of Pt we get
the thesis. �
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Proposition 1 implies that in a rigid motion the tensor L is skew and the spatial velocity has the
representation

v(x, t) = v(y, t) + W(t)(x− y),

or equivalently
v(x, t) = v(y, t) + ω(t)× (x− y).

It is easy to see that, in general, the vector ω associated with the skew part of the velocity
gradient W is

ω =
1

2
curl v,

so that

(2.24) W(y, t)u =
1

2
curl v(y, t)× u

for all vectors u. Hence, from (2.18), we find that

(2.25) v(x, t) = v(y, t) +
1

2
curl v(y, t)× (x− y) + D(y, t)(x− y) +O(|x− y|2)

In the case of irrotational flow

(2.26) v(x, t) = v(y, t) + D(y, t)(x− y) +O(|x− y|2)

The acceleration is
a =

dv

dt
=
∂v

∂t
+ (∇v)v

or equivalently

(2.27) a =
∂v

∂t
+

1

2
∇(|v|2) + curl v × v.

Suppose ` is a smooth closed curve. The circulation on ` is

(2.28) C` =

∮
`
v · d`.

From Stokes’ theorem (1.27) we notice that irrotational flows are such that C` = 0 on every
closed curve `.

2.5 Euler’s formula

The Jacobian
J(X, t) = det F(X, t)

gives a measure of the volume change produced by the deformation. When the infinitesimal
volume dVo is mapped into dV we have

dV

dVo
= det F = J.

We will prove that

(2.29)
∂J

∂t
(X, t) = J(X, t) div v(x, t)

∣∣∣∣
x=χ(X,t)

,

where we recall that the divergence is made w.r.t. Eulerian coordinates x. Formula (2.29) is also
known as Euler’s formula. To prove (2.29) we need the following
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Lemma 1 Given a matrix A

(2.30) det(I + εA) = 1 + ε tr A + o(ε).

Proof. From (1.10) we know that

det(εA− λI) = −λ3 + i1(εA)λ2 − i2(εA)λ+ i3(εA),

where ik are the principal invariants and where ik(εA) = εkik(A). Setting λ = −1 we obtain
(2.30). �

To prove (2.29) we consider the Taylor expansion of F around t

F(X, t+ ε) = F(X, t) + ε
∂F

∂t
+ o(ε).

From (2.20) we have
∂F

∂t
= LF,

where L = L(χ(X, t), t). Hence

(2.31) F(X, t+ ε) = [I + εL + o(ε)] F(X, t).

Applying the det operator to both sides of (2.31) we get

J(X, t+ ε) = J(X, t) det [I + εL + o(ε)] ,

or equivalently
J(X, t+ ε) = J(X, t) [1 + εtr L + o(ε)] ,

Dividing by ε and taking the limit ε→ 0 we get (2.29).

2.6 The Reynolds transport theorem

Suppose to take a part P ⊂ B and define Pt = χ(P, t), so that Pt represents the current
configuration of P . The volume of Pt is

Vol (Pt) =

∫
Pt

dx =

∫
P
J(X, t) dX,

and

(2.32)
dVol (Pt)

dt
=

∫
P

∂J(X, t)

∂t
dX.

Recalling (2.29) we have

(2.33)
dVol (Pt)

dt
=

∫
Pt

div v dx.

Hence a motion is volume-preserving (isochoric) when div v = 0. Obviously rigid motions are
isochoric. Relation (2.33) can be generalized to a generic scalar field Ge(x, t) providing the
so-called Reynolds transport theorem.
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Theorem 8 (Reynolds) Suppose that Pt is a part of the actual configuration κt and Ge is the
Eulerian description of some scalar quantity. Then

(2.34)
d

dt

∫
Pt

Ge dx =

∫
Pt

[
∂Ge
∂t

+ div (Gev)

]
dx.

The theorem holds also for a generic vector field w

(2.35)
d

dt

∫
Pt

w dx =

∫
Pt

[
∂w

∂t
+ div (w ⊗ v

]
dx,

where ⊗ is the dyadic product defined in (1.3).

Proof. We prove only relation (2.34), since (2.35) is a direct consequence. We have

d

dt

∫
Pt

Ge dx =
d

dt

∫
P
G`J dX =

∫
P

[
∂G`
∂t

J +
∂J

∂t
G`

]
dX.

From (2.29)

(2.36)
d

dt

∫
Pt

Ge dx =

∫
P
J

[
∂G`
∂t

+G` div v

]
dX.

Recalling (2.5) we get [
∂G`
∂t

+G` div v

]
=
∂Ge
∂t

+∇Ge · v +Ge div v,

or equivalently, recalling (1.15)

(2.37)
∂G`
∂t

+G` divv =
∂Ge
∂t

+ div (Gev).

Inserting (2.37) into (2.36) we get (2.34). �

Remark 1 Using the divergence theorem relations (2.34), (2.35) can be rewritten as

d

dt

∫
Pt

Ge dx =

∫
Pt

∂Ge
∂t

dx +

∫
∂Pt

Ge (v · n) dσ,

d

dt

∫
Pt

w dx =

∫
Pt

∂w

∂t
dx +

∫
∂Pt

w (v · n) dσ.

Remark 2 The Reynolds theorem can be actually written in a more general form for an evolving
non material volume V (t)

(2.38)
d

dt

∫
V (t)

w dx =

∫
V (t)

∂w

∂t
+

∫
∂V (t)

w(U · n) dσ

where U is the velocity of ∂V (t) and n the outward normal to ∂V (t) (see [20] for the proof of
(2.38)).
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2.7 Simple shear

A motion commonly encountered in continuum mechanics is the so-called simple shear. This
motion is steady, with uni-directional fully developed velocity. In a Cartesian reference frame
the simple shear is described by

x1 = X1 + γ̇tX2,

x2 = X2,

x3 = X3.

As a consequence

F =

 1 γ̇t 0
0 1 0
0 0 1

 , E =


0

γ̇

2
t 0

γ̇

2
t 0 0

0 0 0

 .
Moreover

v1 = γ̇x2,

v2 = 0,

v3 = 0.

so that

D =


0

γ̇

2
0

γ̇

2
0 0

0 0 0

 , W =


0

γ̇

2
0

− γ̇
2

0 0

0 0 0

 .
We can easily check that the simple shear is an isochoric motion. Simple shear can be generated
by parallel plates separated by a distance h, where the upper plate is moving with constant
velocity V and the bottom plate is fixed (see Fig. 2.3). In this case γ̇ = V/h. Simple shear is
sometimes called lineal Couette flow.

2.8 Uniaxial extension

Another important simple motion, which is of particular interest in viscoelasticity, is uniaxial
extension. This motion has the form

x1 = X1e
γ̇t,

x2 = X2e
− γ̇

2
t,

x3 = X3e
− γ̇

2
t.

The deformation along x2, x3 is the same. We get

F =

 eγ̇t 0 0

0 e−
γ̇
2
t 0

0 0 e−
γ̇
2
t

 , E =

 eγ̇t − 1 0 0

e−
γ̇
2
t − 1 0

0 0 e−
γ̇
2
t − 1

 .
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Figure 2.3: Simple shear.

Moreover

v1 = γ̇x1,

v2 = − γ̇
2
x2,

v3 = − γ̇
2
x3.

so that

D =

 γ̇ 0 0

0 − γ̇
2 0

0 0 − γ̇
2

 , W =

 0 0 0
0 0 0
0 0 0

 .
2.9 Boundary conditions

Let Pt = χ(P, t) be the actual configuration of a subset P of the body B. As observed earlier
∂Pt = χ(∂P, t), that is the particle belonging to the boundary of P will also belong to the
evolution of such boundary (∂P is a material surface). We have

Proposition 2 Let us consider a material volume P with boundary ∂P and let us consider its
evolution Pt = χ(P, t). Suppose also that at each time t the boundary ∂Pt can be written as

(2.39) F (x, t) = 0,

where F is a C1 function. Then

(2.40)
dF

dt
= 0,

for each x ∈ ∂Pt and t > 0.

Proof. We have F (χ(X, t), t) = 0, so that

(2.41)
dF

dt
=
∂F

∂t
+∇F · v = 0.
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�

Suppose that F (x, t) describes the boundary of B and denote by n the outward normal of B.
From (2.41)

n =
∇F
|∇F |

vn = v(x, t) · n = v(x, t) · ∇F
|∇F |

= − 1

|∇F |
∂F

∂t
.

2.10 General balance law

Suppose that G represents some quantity defined on Pt. The rate of change of G is given by

(2.42)
dG
dt

= −F + S,

where F represents the outflow of G through the boundary of Pt and S represents the sup-
ply/removal of G in Pt. When G, F , S are defined through density functions we write

G =

∫
Pt

g(x, t)dx, F =

∫
∂Pt

Φ · ndσ, S =

∫
Pt

s(x, t)dx,

where Φ is the flux across ∂Pt. Equation (2.42) can be rewritten as

(2.43)
d

dt

[∫
Pt

g(x, t)dx

]
= −

∫
∂Pt

Φ · ndσ +

∫
Pt

s(x, t)dx.

Exploiting Reynolds transport theorem and the divergence theorem∫
Pt

[
∂g

∂t
+ div (gv + Φ)− s

]
dx = 0,

that, because of the arbitrariness of Pt, yields

(2.44)
∂g

∂t
+ div (gv + Φ)− s = 0.

Equation (2.44) represents the local form of a generic balance law for the density g.

2.11 Jump conditions

When deriving (2.34), (2.35) we are tacitly assuming that the scalar and vector fields under
the integral sign are sufficiently smooth on Pt. The latter assumption may be actually relaxed,
allowing possible jumps on a singular surface contained in Pt.

Suppose, for instance, that Σ is a non-material surface contained in Pt, with velocity U and
normal ν, as depicted in Fig. 2.4. Denote with n the outward unit normal to Pt and write

Pt = P+
t ∪ P

−
t , ∂Pt = ∂P+

t ∪ ∂P
−
t ,

where + stands for the part of Pt that contains ν and − for the part containing −ν. Considered
a scalar quantity G which is defined on Pt through a density function g. Suppose also that

JgK
∣∣∣
Σ

= g+ − g− 6= 0,
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Figure 2.4: Jump conditions and singular surfaces.

that is Σ is a singular surface for g. The Reynolds transport theorem applied to the non-material
domains P+

t , P−t yields

d

dt

[∫
P+
t

gdx

]
=

∫
P+
t

∂g

∂t
dx +

∫
∂P+

t

g(v · n)dσ −
∫

Σ
g+(U · ν)dσ,

d

dt

[∫
P−t

gdx

]
=

∫
P−t

∂g

∂t
dx +

∫
∂P−t

g(v · n)dσ +

∫
Σ
g−(U · ν)dσ.

Summing up we find

(2.45)
d

dt

[∫
Pt

gdx

]
=

∫
Pt

∂g

∂t
dx +

∫
∂Pt

g(v · n)dσ −
∫

Σ
JgK(U · ν)dσ,

which is the generalization of the Reynolds transport theorem in the presence of a singular
surface. If the case of a vector field w we get

d

dt

[∫
Pt

wdx

]
=

∫
Pt

∂w

∂t
dx +

∫
∂Pt

w(v · n)dσ −
∫

Σ
JwK(U · ν)dσ.

2.12 Rankine-Hugoniot conditions

Let us consider the integral balance law (2.43) and suppose that g experiences a jump across the
non material surface Σ. Then, recalling (2.45)

(2.46)
∫
Pt

∂g

∂t
dx +

∫
∂Pt

g(v · n)dσ −
∫

Σ
JgK(U · ν)dσ = −

∫
∂Pt

Φ · ndσ +

∫
Pt

sdx.

Looking at Fig. 2.5, we consider the ball B centered in x ∈ Σ and define

S = Σ ∩ B.
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Figure 2.5: Rankine-Hugoniot conditions.

Suppose now to squeeze the two emispheres of B on S. The volume integrals in (2.46) vanish
(provided that the integrands are bounded). Hence we are left with∫

S
JgK(v · ν)dσ −

∫
S
JgK(U · ν)dσ = −

∫
S
JΦK · νdσ.

Once again, because of the arbitrariness of S

(2.47) Jg(v · ν) + Φ · νK = JgK(U · ν).

The jump relation (2.47) is called Rankine-Hugoniot condition.

2.13 Mass balance

The mass of a part P of the body is

M(P ) =

∫
P
%`(X)dX,

where we denote by %`(X) the Lagrangian description of density function in the reference config-
uration. Since the mass cannot be altered by any deformation the quantityM(P ) is independent
of χ(X, t). Hence ∫

P
%`(X)dX =

∫
χ(P,t)

%e(x, t)dx.

We have ∫
P
%`(X)dX =

∫
P
J(X, t)%e(χ(X, t), t)dX.

which provides
%`(X) = J(X, t)%e(x, t)|x=χ(X,t) .

Let us drop the subscript e in the local description of the density. The mass of a part Pt ⊂ κt is

m(Pt) =

∫
Pt

%(x, t) dx.
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Conservation of mass yields ṁ(Pt) = 0. Hence, recalling Reynolds transport theorem (2.34)

(2.48)
∂%

∂t
+ div (% v) = 0,

or equivalently

(2.49)
d%

dt
+ % div v = 0.

In an isochoric motion
%̇ =

d%

dt
= 0.

For any given scalar field G

d

dt

∫
Pt

%Gdx =

∫
Pt

[%G div v + %̇G︸ ︷︷ ︸
=0

+Ġ%]dx.

Therefore

(2.50)
d

dt

∫
Pt

%Gdx =

∫
Pt

%
dG

dt
d x.

Recalling Section 1.4, 1.5 we can write mass balance in cylindrical and in spherical coordinates.
In cylindrical coordinates mass balance is expressed by

(2.51)
∂%

∂t
+

1

r

∂(%rvr)

∂r
+

1

r

∂(%vθ)

∂θ
+
∂(%vz)

∂z
= 0,

where v = vrer + vθeθ + vzez. In spherical coordinates mass balance is expressed by

(2.52)
∂%

∂t
+

1

r2

∂(%r2vr)

∂r
+

1

r sin θ

∂(%vθ sin θ)

∂θ
+

1

r sin θ

∂(%vφ)

∂φ
= 0,

where v = vrer + vθeθ + vφeφ.



Chapter 3

Dynamics

In this chapter we investigate the dynamics of a continuum, that is the action of externally
applied forces that produce motion. Reference books on the topics presented here are [12], [24],
[25].

3.1 Forces in a continuum

The forces exerted on a portion Pt of a continuum are of two types:

• surface (or contact) forces: forces exerted by the portion of the body that surrounds Pt
acting on the bounding surface ∂Pt ;

• body forces: forces originating outside the body acting on the volume (or mass) of the body
(e.g. gravitational or electro-magnetical).

Body forces are expressed through a density function b(x, t) (force per unit mass) so that the
total body force acting on Pt is ∫

Pt

%(x, t)b(x, t)dx.

Regarding the contact forces we assume the existence of a force density

(3.1) t(x, t; n)

representing the force per unit surface acting of any surface S that contains x with normal n. We
assume that t is a smooth function of its arguments. The existence of (3.1) and the assumption
that t depends on S only through n is called the Cauchy’s postulate. Exploiting the third law of
mechanics we write

t(x, t;−n) = −t(x, t; n).

The total contact force acting on P is thus∫
∂Pt

t(x, t; n)dσ,

where n represents the outward unit normal to ∂Pt.

35
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3.2 Balance of linear momentum and Cauchy’s theorem

The balance of linear momentum (or Newton’s second law) is given by

d

dt

∫
Pt

%vdx︸ ︷︷ ︸
linear momentum

=

∫
∂Pt

tdσ +

∫
Pt

%bdx︸ ︷︷ ︸
Total force acting on Pt

.

Recalling (2.50) we can rewrite the above as

(3.2)
∫
Pt

%
dv

dt
dx =

∫
∂Pt

tdσ +

∫
Pt

%bdx.

The equilibrium equation is

(3.3)
∫
∂Pt

tdσ +

∫
Pt

%bdx = 0.

The dependence of t on n is determined by the following

Theorem 9 (Cauchy) For each (x, t) the vector field t(x, t; n) is linear in n, so that there
exists a second order tensor T(x, t) such that

t(x, t; n) = T(x, t)n.

The tensor T(x, t) is called the Cauchy stress tensor.

Proof. Consider the infinitesimal tetrahedron depicted in Fig. 3.1. The tetrahedron has three
faces perpendicular to the coordinate axes and one face normal to a unit vector n. Suppose that

Figure 3.1: Cauchy’s tetrahedron.

dσ is the area of the surface normal to n and that dσi is the area of the surface normal to ei.
The area dσi can be found projecting dσ onto the face perpendicular to ei

dσi = (n · ei)dσ = nidσ,
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where
n = n1e1 + n2e2 + n3e3.

The equilibrium equation (3.3) for the infinitesimal tetrahedron is

%(x, t)b(x, t)dx +

3∑
i=1

t(x, t;−ei)dσi + t(x, t; n)dσ = 0,

or equivalently

(3.4) %(x, t)b(x, t)dx +

3∑
i=1

t(x, t;−ei)nidσ + t(x, t; n)dσ = 0.

We have
dx

dσ
→ 0 dσ → 0,

so that, dividing (3.4) by dσ and letting dσ → 0, we get

t(x, t; n) =

3∑
i=1

t(x, t; ei)ni.

If we define the Cauchy stress tensor T(x, t) as the tensor whose columns are the vectors t(x, t; ei)
we find

t(x, t; n) = T(x, t)n.

Hence
Tij(x, t) = t(x, t; ei) · ej .

�

The immediate consequence of Cauchy’s theorem is that the momentum balance (3.2) can be
rewritten as ∫

Pt

%
dv

dt
dx =

∫
∂Pt

Tndσ +

∫
Pt

%bdx.

Recalling the divergence theorem we get∫
Pt

%
dv

dt
dx =

∫
Pt

div Tdx +

∫
Pt

%bdx.

Because of the arbitrariness of Pt we get the local form of the motion equation

(3.5) %
dv

dt
= %b + div T,

or

(3.6) %a = %b + div T.

Recalling (2.8), equation (3.5) can be rewritten as

(3.7) %

[
∂v

∂t
+ (∇v)v

]
= %b + div T.



38 CHAPTER 3. DYNAMICS

3.3 Balance of angular momentum

The balance of angular momentum states that the rate of change of angular momentum for any
region Pt of the actual configuration equals the moment of all external forces acting on this part.
Hence we write

(3.8)
d

dt

∫
Pt

%x× v dx︸ ︷︷ ︸
angular momentum

=

∫
∂Pt

x× t dσ +

∫
Pt

%x× b dx︸ ︷︷ ︸
Total external forces moment acting on Pt

.

We prove the following

Theorem 10 Equation (3.8) implies that the Cauchy stress tensor T is symmetric.

Proof. Let ω be a vector and let W be the skew tensor associated to ω defined in (1.8). Cross
multiply equation (3.5) by x, integrate on Pt and multiply by ω

(3.9) ω ·
∫
Pt

%x× dv

dt
dx = ω ·

∫
Pt

%x× b dx + ω ·
∫
Pt

x× div T dx.

From (1.1) we see that

ω · (x× div T) = (ω × x) · div T = Wx · div T,

so that
ω ·
∫
Pt

x× div T dx =

∫
Pt

Wx · div T dx.

Applying Green formula (1.26) we get∫
Pt

Wx · div T dx =

∫
∂Pt

Tn ·Wx dσ −
∫
Pt

T · ∇(Wx) dx.

Now we observe that∫
∂Pt

Tn ·Wx dσ =

∫
∂Pt

t · (ω × x) dσ = ω ·
∫
∂Pt

x× t dσ.

In conclusion
ω ·
∫
Pt

x× div T dx = ω ·
∫
∂Pt

x× t dσ −
∫
Pt

T ·W dx,

since ∇(Wx) = W. Recalling (2.50)

ω ·
∫
Pt

%x× dv

dt
dx = ω · d

dt

∫
Pt

%x× vdx.

In conclusion (3.9) can be rewritten as

ω ·
[
d

dt

∫
Pt

%x× vdx−
∫
Pt

%x× b dx−
∫
∂Pt

x× t dσ

]
︸ ︷︷ ︸

=0 because of (3.8)

= −
∫
Pt

T ·W dx.

Recalling that Pt is an arbitrary portion of the actual configuration and that W is a generic
skew tensor,

T ·W = 0,

meaning that T is symmetric, as shown in (1.6).
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3.4 The theorem of mechanical energy balance

We define the kinetic energy

K =
1

2

∫
Pt

% (v · v) dx,

and prove the following

Theorem 11 (Power expended) Assuming the validity of balance of mass (2.48), balance of
linear momentum (3.5) and balance of angular momentum (3.8), the following formula holds

(3.10)
dK

dt
=

∫
Pt

% b · v dx +

∫
∂Pt

Tn · v dσ −
∫
Pt

T ·D dx.

Proof. From (2.50)
dK

dt
=

∫
Pt

%v · dv
dt

dx.

Hence, recalling (3.5)
dK

dt
=

∫
Pt

%v · b dx +

∫
Pt

v · ( div T) dx.

From Green fromula (1.26), we get∫
Pt

v · ( div T) dx =

∫
∂Pt

Tn · vdσ −
∫
Pt

T · ∇v dx.

Recalling that
T · L = T · (D + W) = T ·D,

we get the thesis of the theorem. The term∫
Pt

T ·D dx,

is called the stress power. �

Formula (3.10) can be interpreted in the following way: the power expended by the body forces
and surface forces equals the rate of change of the kinetic energy plus the stress power.

3.5 Energy balance: first law of thermodynamics

We define the internal energy of a portion Pt as

E =

∫
Pt

%εdx,

where ε(x, t) is the density of internal energy. Suppose that adjacent parts of the continuum
may exchange heath through their common boundary and define q as the heath flux flowing from
one part to the other. Suppose also that heath may be generated (or absorbed) by means of
heat sources (or sinks) whose density is denoted by r. The first law of thermodynamics states
that the rate of change of total energy equals the sum of mechanical power and heat adsorbed.
Therefore we write the integral formulation of the energy balance

(3.11)
d

dt

(
K + E

)
=

∫
Pt

% b · v dx +

∫
∂Pt

t · vdσ +

∫
Pt

%rdx−
∫
∂Pt

q · ndσ.
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Combining (3.11) with (3.10) we get

dE

dt
=

∫
Pt

%rdx−
∫
∂Pt

q · ndσ +

∫
Pt

T ·D dx.

Applying the divergence’s theorem we get the local formulation of the energy balance

(3.12) %
dε

dt
= %r − div q + T ·D.

3.6 The second principle of thermodynamics

The second law of thermodynamics can be expressed by

Q

θ
6
dS

dt
,

where Q denotes the heating rate, θ the absolute temperature and where S is entropy. The supply
of entropy to a part Pt of the current configuration is due to two sources: i) bulk rate of entropy
generated in Pt; ii) rate of entropy flux through ∂Pt. Hence the total rate at which entropy is
provided to Pt is ∫

Pt

%r

θ
dx−

∫
∂Pt

q · n
θ

dσ

Now suppose entropy S is defined through a density function η so that

S =

∫
Pt

%ηdx.

The second principle of thermodynamics states that the total rate at which entropy is supplied
to Pt cannot exceed the rate of increase of entropy of Pt∫

Pt

%r

θ
dx−

∫
∂Pt

q · n
θ

dσ 6
dS

dt
,

or equivalently we can state that the net rate of entropy production

Γ =
d

dt

∫
Pt

%ηdx−
∫
Pt

%r

θ
dx +

∫
∂Pt

q · n
θ

dσ > 0.

Introducing the density γ of net entropy production rate we get

Γ =

∫
Pt

%γdx,

so that

(3.13) %γ = %
dη

dt
− %r

θ
+ div

(q

θ

)
> 0.

Inequality (3.13) is called the Clausius-Duhem inequality and represents the local form of the
second principle of thermodynamics.
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3.7 Helmholtz free energy and dissipation function

From (3.12) we have

(3.14) −%r
θ

+
1

θ
div q = −%

θ

dε

dt
+

1

θ
T ·D,

while (3.13) can be rewritten as

(3.15) %
dη

dt
− %r

θ
+

1

θ
div q− 1

θ2
∇θ · q > 0.

Coupling (3.14 and (3.15) we find

(3.16) %θ
dη

dt
− %dε

dt
+ T ·D− 1

θ
∇θ · q > 0.

Let introduce the Helmholtz free energy

Ψ = ε− θη.

We have

(3.17) %θ
dη

dt
− %dε

dt
= −%dΨ

dt
− %ηdθ

dt
.

Substitution into (3.16) yields

(3.18) ξ = T ·D− %dΨ

dt
− %ηdθ

dt
− 1

θ
∇θ · q > 0,

where ξ is called the rate of dissipation. When the process is isothermal we get

ξ = T ·D− %dΨ

dt
− > 0.

3.8 Constitutive equations

The fundamental equations of continuum mechanics are

(3.19)



d%

dt
+ %∇ · v = 0,

%
dv

dt
= %b +∇ ·T,

Tij = Tji,

The system (3.19) has to be solved with suitable initial and boundary conditions. We notice that
the differential equations in (3.19) are not sufficient to determine the motion (or the equilibrium)
of a continuum. Indeed the number of equations is smaller than the number of unknowns.

System (3.19) does not contain any information on the intrinsic mechanical nature of the
system and holds for any type of material. To distinguish between various kind of continua we
must provide supplementary equations (called constitutive equations) that correlate the stress
state to the deformations of the system. In the next chapters we will limit ourselves to study
fluid systems.
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3.9 Balance of linear momentum in polar coordinates

Equation (3.5) can be expressed in the polar coordinates systems introduced in Sections 1.4, 1.5.
In particular, in the case of cylindrical coordinates we have

%

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
−
v2
θ

r
+ vz

∂vr
∂z

)
=[

1

r

∂(rTrr)

∂r
+

1

r

∂Tθr
∂θ
− Tθθ

r
+
∂Tzr
∂z

]
+ %br,

%

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vθvr
r

+ vz
∂vθ
∂z

)
=[

1

r2

∂(r2Trθ)

∂r
+

1

r

∂Tθθ
∂θ

+
∂Tzθ
∂z

]
+ %bθ,

%

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
=[

1

r

∂(rTrz)

∂r
+

1

r

∂Tθz
∂θ

+
∂Tzz
∂z

]
+ %bz,

where

v = vrer + vθeθ + vzez b = brer + bθeθ + bzez, T =


Trr Trθ Trz

Tθr Tθθ Tθz

Tzr Tzθ Tzz

 .
In the case of spherical coordinates we have

%

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+
vφ

r sin θ

∂vr
∂φ
−
v2
θ + v2

φ

r

)
=

[
1

r2

∂(r2Trr)

∂r
+

1

r sin θ

∂(Tθr sin θ)

∂θ
+

1

r sin θ

∂Tφr
∂φ
−
Tθθ + Tφφ

r

]
+ %br,

%

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vφ

r sin θ

∂vθ
∂φ

+
vrvθ
r
−
v2
φ cot θ

r

)
=

[
1

r3

∂(r3Trθ)

∂r
+

1

r sin θ

∂(Tθθ sin θ)

∂θ
+

1

r sin θ

∂Tφθ
∂φ

+
Tθr − Trθ

r
−
Tφφ cot θ

r

]
+ %bθ,

%

(
∂vφ
∂t

+ vr
∂vφ
∂r

+
vθ
r

∂vφ
∂θ

+
vφ

r sin θ

∂vφ
∂φ

+
vrvφ
r

+
vφvθ cot θ

r

)
=[

1

r3

∂(r3Trφ)

∂r
+

1

r sin θ

∂(Tθφ sin θ)

∂θ
+

1

r sin θ

∂Tφφ
∂φ

+
Tφr − Trφ

r
+
Tφθ cot θ

r

]
+ %bφ,

where

v = vrer + vθeθ + vφeφ, b = brer + bθeθ + bzeφ, T =


Trr Trθ Trφ

Tθr Tθθ Tθφ

Tφr Tφθ Tφφ

 .
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3.10 Frame indifference

The principle of frame indifference states that any quantitative description of a physical phe-
nomenon must be invariant under a change of observer. This means that the measured quantity
must be objective and do non depend on the particular observer that records it. Suppose that
(x, t) and (z, t + τ) are two events in the Euclidean space R3, as recorded by an observer O.
Suppose that (x∗, t∗) and (z∗, t∗ + τ∗) are the same events as recorded by another observer O∗.
The events are clearly related by an orthogonal time-dependent map Q(t) such that

(3.20) x∗ − z∗ = Q(t)(x− z),

or equivalently

(3.21) x∗ = q(t) + Q(t)x,

where
q(t) = z∗ −Q(t)z,

and where t∗−t is the time shift. The one to one mapping defined by (3.21) is called an Euclidean
transformation. Of course the displacement is a physical quantity that must be invariant under
Euclidean transformation. Indeed, by (3.20)

|z∗ − x∗| = |z− x|,

since Q is orthogonal. If we now consider velocity

v =
d

dt

[
QT (x∗ − q)

]
= Q̇T (x∗ − q) + QT (v∗ − q̇),

so that
v∗ = Qv +

[
q̇ + Ω(x∗ − q)

]
,

where
Ω = −QQ̇T = Q̇QT ,

is a skew tensor representing the angular velocity or spin of the observer O relative to O∗. As a
consequence velocity is not objective unless

(3.22) q̇−QQ̇T (x∗ − q) = 0.

Time independent transformations

(3.23) x∗ = qo + Qox,

satisfies (3.22). Acceleration is given by

a∗ = Q̇v + Qa + q̈ + Ω̇(x∗ − q) + Ω(x∗ − q̇),

Therefore a is non objective as well. When the transformation is (3.23) we have a∗ = Qa and
acceleration becomes objective. In general we can state that a scalar a, a vector u and a tensor
S are objective when they meet the following requirements

a∗ = a,

u∗ = Qu,

S∗ = QSQT .
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The deformation gradient F is not an objective tensor. Indeed from (3.21)

F∗ = QF.

The Cauchy stress tensor is objective. Indeed the stress is given by t = Tn, where t, n are
objective vectors. The observer O∗ sees the stress as t∗ = T∗n∗, whence

t∗ = Qt = QTn = T∗n∗ = T∗Qn,

implying
T∗ = QTQT ,

that is T is objective. From (2.16) we see that the left and right Cauchy-Green tensors

C∗ = F∗
T
F∗ = FTQTQF = C,

B∗ = F∗F∗
T

= QFFTQT = QBQT ,

are objective.

3.11 Objective time derivatives

We have seen that an objective displacement does not automatically imply an objective velocity.
This fact seems to indicate that objective vectors (or objective tensors) do not conserve their
objectivity when differentiating with respect to time. Objective time derivatives are material
time derivatives that allows for objective time differentiation. Recall that

L = ḞF−1.

Under the Euclidean transformation (3.21)

L∗ = Ḟ∗F∗
−1

= (Q̇F + QḞ)(QF)−1.

After some algebra we find
L∗ = QLQT + Ω.

Substituting L = D + W in the above and separating the symmetric and skew part we find

D∗ = QDQT , (objective)

W∗ = QWQT + Ω, (non objective).

In general an objective displacement u is such that the material time derivative is not objective.
If we define the co-rotational time derivative (also called Jaumann rate)

◦
u= u̇−Wu,

we find that this type of differentiation is objective. Indeed since

Ω = Q̇QT = W∗ −QWQT ,

we find

(3.24) Q̇ = W∗Q−QW.
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Hence u∗ = Qu yields
u̇∗ = Q̇u + Qu̇ = W∗Qu−QWu + Qu̇,

and
u̇∗ = W∗Qu + Q(u̇−Wu) = W∗u∗ + Q

◦
u .

In conclusion
◦
u
∗
= u̇∗ −W∗u∗ = Q

◦
u .

As for vectors, we may modify rates of spatial tensors to obtain objective time derivatives.
Indeed, consider an objective tensor S∗ = QSQT and take the material time derivative

(3.25) Ṡ∗ = QṠQT + Q̇SQT + QSQ̇T ,

which is clearly non objective. Using (3.24) we can rearrange (3.25) to get

Ṡ∗ + (S∗W∗ −W∗S∗) = Q(SW −WS)QT ,

which shows that the Jaumann rate
◦
S= Ṡ− SW −WS,

is objective. Other objective rates can be constructed in a similar manner. For instance the
upper convected time derivative (also known as Oldroyd derivative)

O
S= Ṡ− SL− LTS

is frame indifferent.

3.12 Objective functions

A scalar function ϕ of a tensor A is objective if

ϕ∗(A) = ϕ(A) = ϕ(A∗).

A vector-valued function is objective if

v∗(A) = Qv(A).

A tensor-valued function is objective if

S∗(A) = QS(A)QT .

A function ϕ of the deformation gradient F is objective if

ϕ(F) = ϕ(QF).

Recalling the decomposition F = RU and choosing Q = RT we find

ϕ(F) = ϕ(RU) = ϕ(U).

Hence the scalar function ϕ is objective only if it is independent of the rotational part of F, that
is if it depends on the stretching part only. In an analogous fashion a tensor-valued fucntion f is
objective if

f∗ = Qf(F)QT = f(F∗) = f(QF).
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Using once again the decomposition Q = RT we find

f(U) = RT f(RU)R,

or equivalently
f(F) = Rf(U)RT .

If, for instance, we consider f(F) = α(FFT )2 = αB2, with α scalar

f(QF) = α
[
(QF)(QF)T

]2
= Qα(FFT )2QT = Qf(F)Q,.

so that objectivity is satisfied.



Chapter 4

Ideal fluids

In this chapter we study a very simple class of fluids called ideal (or inviscid) fluids. Classical
reference books on this topic are [15], [21], [23]. Recalling (1.4), (1.5) we decompose the stress
Tn in its normal and shear components, as shown in Fig. 4.1

Tn = (Tn · n)n︸ ︷︷ ︸
Normal

+ [Tn− (Tn · n)n]︸ ︷︷ ︸
Shear

.

Equivalently we may write

Figure 4.1: Tensor Tn decomposition.

Tn = (n⊗ n)Tn︸ ︷︷ ︸
Normal

+ [I− (n⊗ n)]Tn︸ ︷︷ ︸
Shear

.

Ideal fluids are characterized by a null shear component even in dynamical conditions, so that
the vector Tn is always oriented along the direction of n. As a consequence

Tn = (Tn · n)n,

meaning that each vector n is an eigenvector of T. This implies Tei = λiei and T is diagonal in
the canonical base {e1, e2, e3}. Moreover

T(e1 + e2 + e3) = λ(e1 + e2 + e3) = λ1e1 + λ2e2 + λ3e3.

47
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Therefore λ = λi and we can write

(4.1) T(x, t) = −p(x, t)I,

where p is called pressure and it is assumed to be positive. Substituting (4.1) into (3.5) we get
the Euler’s equation for inviscid fluids

(4.2) %
dv

dt
= %b−∇p.

Equation (4.2) must be coupled with mass balance

(4.3)
d%

dt
+ % div v = 0.

4.1 Barotropic fluids

A fluid is called barotropic if density can be expressed as a function of the pressure

(4.4) % = f(p)

with f(p) positive and C1. Introducing

P (p) =

∫
dp

%
,

we get

∇P =
∇p
%
,

and Euler’s equation becomes

(4.5)
dv

dt
= b−∇P.

In case body forces are conservative b = ∇B and

(4.6) a = ∇(B − P ),

so that curl a = 0. Therefore barotropic fluids under the action of conservative body forces are
irrotational. Recalling (2.27) and setting ω = curl v we get

∂ω

∂t
= curl (v × ω),

in which neither pressure nor density appears.

4.2 Incompressible fluids

A fluid is called incompressible if % is constant. Mass balance for an incompressible fluid yields

div v = 0.

A barotropic incompressible fluid is such that

∇P =
∇p
%
,

and Euler’s equation becomes

a = b−∇
(
p

%

)
.
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4.3 Boundary conditions for ideal fluids

Equations (4.2), (4.3) form a system of first order nonlinear partial differential equations for the
unknowns %(x, t), p(x, t), v(x, t). Hence, to solve the problem, we must add initial and boundary
conditions (in the barotropic case the relation between p and % is given). The boundary conditions
establish a relation between the fluid and the walls of the medium that contain the fluid.

When a portion of the boundary is free, conditions (2.39) and (2.40) hold. When the fluid is
in touch with the walls the absence of shear stress entails that the fluid can freely move along
the boundary but cannot penetrate it, so that we write

(4.7) v(x, t) · n(x, t) = V(x, t) · n(x, t)

where V(x, t) is the velocity of the wall and n its normal. When the wall is fixed we get

(4.8) v(x, t) · n(x, t) = 0.

4.4 Equilibrium of a barotropic fluid

From Euler’s equation (4.5) the equilibrium of a barotropic fluid is given by

b = ∇P.

We have

Proposition 3 Necessary condition for the equilibrium of a barotropic fluid is that b is conser-
vative.

Proof. Let b = ∇B. Then

(4.9) P (p(x))−B(x) = C,

where the constant C can be determined from the knowledge of B, P (p) and from the knowledge
the value of the pressure at some point x̄. The equilibrium is found solving (4.9) for p(x), which
is possible because P is invertible, since dP/dp = %−1 > 0. �

Example 1 (Incompressible barotropic fluid under the action of gravity) In this case

P =
p

%
B = −gx3,

where g is gravity and x3 is the vertical axis. Assume that p = po at x3 = 0, so that from (4.9)

p

%
+ gx3 =

po
%
,

that is

(4.10) p− po = −%gx3,

where %g is the specific weight. Equation (4.10) is also known as Stevin’s law. �
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Example 2 (Isothermal gas under the action of gravity) In this case % = kp, k being a
constant. We have

P =
ln p

k
B = −gx3,

Assuming again p = po at x3 = 0 we get

ln p

k
+ gx3 =

ln po
k

,

so that

(4.11) p = po exp(−kgx3).

�

Theorem 12 (Archimedes’ principle) When an object is immersed in a fluid, there is an
upward buoyant force equal to the weight of the volume of fluid displaced by the object.

Proof. Consider an object occupying a volume Ω. Equilibrium yields

∇p = −%ge3.

The resultant force exerted by the fluid on the object is

R = −
∫
∂Ω

pn dσ = −
∫

Ω
∇p dx

Hence
R =

∫
Ω
%ge3dx.

where the r.h.s. is the weight of the fluid displaced by the object. �

4.5 Dynamics of ideal fluids

Theorem 13 (Bernoulli) In the steady flow of an ideal barotropic fluid under the action of
conservative body forces b = ∇B the quantity

Γ =
1

2
|v|2 −B + P

is constant at each point of the fluid.

Proof. The motion equation for a ideal barotropic fluid is

(4.12) a = ∇(B − P ).

Recalling property (2.11) of steady motion we find

d

dt

[
B − P

]
=

∂

∂t

[
B − P

]
︸ ︷︷ ︸

=0

+∇(B − P ) · v.
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Hence, multiplying (4.12) by v, we get

1

2

d

dt
|v|2 =

d

dt

[
B − P

]
,

that is
dΓ

dt
= 0.

�

The quantity Γ can be interpreted as total energy per unit mass. For a barotropic fluid in a
conservative force field, Euler’s equation (4.6) can be rewritten as (recall (2.27))

∂v

∂t
+

1

2
∇(|v|2) + curl v × v = ∇(B − P ).

so that
∂v

∂t
+ curl v × v = −∇Γ.

When the flow is irrotational there exists a function ϕ, called kinetic potential, such that

(4.13) ∇ϕ = v.

As a consequence

(4.14) ∇
(

Γ +
∂ϕ

∂t

)
= 0,

and
Γ +

∂ϕ

∂t
= c(t).

Theorem 14 Consider the steady flow of a barotropic ideal fluid under the action of conservative
body forces. The surfaces Γ = const are such that v and curl v are tangent at each point of
Γ = cosnt, see Fig. 4.2. Moreover, if the flow is irrotational the specific energy Γ is spatially
homogeneous.

Figure 4.2: Isoenergetic surface B = const

Proof. From the hypothesis of steady motion

curl v × v = −∇Γ.
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Since ∇Γ is normal to Γ = const, the latter is tangent to both v and curl v. If curl v = 0 then
Γ is spatially homogeneous. �

Example 3 When B = −gx3 and the fluid is incompressible we have

Γ =
1

2
|v|2 + gx3 +

p

%
,

which can be expressed also as

(4.15)
|v|2

2g
+ x3 +

p

γ
= const.

where γ = %g is the specific weight and

h = x3 +
p

γ

is called the piezometric (or hydraulic) head.

Example 4 (Torricelli’s law) This law states that the speed of a fluid at an efflux placed at the
bottom of container filled to a depth h of liquid is equal to the speed of a body falling freely from
a height h, that is

√
2gh. This is true under the assumption of steady motion and irrotational

flow. The result can be proved using Bernoulli’s theorem. Indeed, since curl v = 0, the quantity
Γ is constant. On x3 = 0 the constant appearing in (4.15) becomes

po
γ

= const,

while on x3 = −h we get
po
γ
− h+

v2
3

2g
= const.

Coupling the two relations we find that the velocity at the efflux is v3 =
√

2gh.

Example 5 (Venturi effect) Suppose to have an incompressible ideal fluid is flowing in a pipe
with different sections A1 and A2. Suppose also that the velocity of the fluid is normal to the
cross sections of the pipe, see Fig. 4.3. Balance of mass implies that the discharge is constant

Figure 4.3: Venturi effect

through any cross section, so that
v1A1 = v2A2.
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If we assume that the flow is irrotational and that we may neglect body forces, Bernoulli’s theorem
yields

p1

%
+
v2

1

2
=
p2

%
+
v2

2

2
,

so that
p2 = p1 +

%

2

(
v2

1 − v2
2

)
,

or equivalently

p2 = p1 +
%

2

(
A2

2 −A2
1

A2
2

)
v2

1.

We observe that pressure is smaller where the tube shrinks, while velocity increases as the cross
section reduces. This phenomenon is known as Venturi effect.

4.6 Vorticity

From (2.27), setting ω = curl v, we get

curl a =
∂ω

∂t
+ curl (ω × v).

Recalling relation (1.20) we find

curl a =
∂ω

∂t
+ (∇ω)v︸ ︷︷ ︸
=
dω

dt

−(∇v)ω + ω div v − v div ω︸ ︷︷ ︸
=0

.

Therefore
curl a =

dω

dt
− (∇v)ω + ω div v

From mass balance (2.49)

div v = −1

%

d%

dt
,

and

(4.16)
curl a

%
=

1

%

dω

dt
− (∇v)

ω

%
− ω

%2

d%

dt
.

Recalling that ∇v = D + W and that Wω = ω × ω = 0 we find

(4.17)
d

dt

(
ω

%

)
=

Dω

%
+

curl a

%
,

which is called Beltrami or vorticity equation. An inviscid barotropic fluid subjected to conser-
vatives forces is such that curl a = 0 so that (4.17) becomes

(4.18)
d

dt

(
ω

%

)
=

Dω

%
,

called Helmoltz equation. In a planar flow v = (v1, v2, 0) and

ω = curl v =

(
∂v2

∂x1
− ∂v1

∂x2

)
e3.
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Moreover

D =



∂v1

∂x1

1

2

(
∂v1

∂x2
+
∂v2

∂x1

)
0

1

2

(
∂v1

∂x2
+
∂v2

∂x1

)
∂v2

∂x2
0

0 0 0


implying Dω = 0. Therefore

ω

%
= const.

When the fluid is incompressible the Heltmoltz equation reduces to
dω

dt
= Dω.

Hence, in an incompressible planar flow, the vorticity ω is constant along pathlines.

4.7 Circulation

Suppose that ` is a closed smooth curve contained in Pt. The circulation along ` is (see (2.28))

(4.19) C` =

∮
`
v · d`.

Let us parametrize ` with
x(t; s) : [0, 1]→ Pt

such that x(t; 0) = x(t; 1). We have

d

dt

[∮
`
v · d`

]
=

d

dt

[∫ 1

0
v · dx

ds
ds

]
=

∫ 1

0

[
a · dx

ds
+ v · dv

ds

]
ds.

Hence

(4.20)
d

dt

[∮
`
v · d`

]
=

∮
`
a · d`+

∮
`
v · dv.

The last integral of (4.20) is the differential of |v|2/2 and hence is null on a closed curve. As a
consequence we have the following

Theorem 15 (Kelvin) In an inviscid barotropic fluid subjected to conservatives forces the cir-
culation of v on a closed curve does not change with time.

Proof. The proof comes from Stokes’ theorem (1.27). Indeed

d

dt

[∮
`
v · d`

]
=

∮
`
a · d` =

∫
S

curl a · ndσ = 0,

where S is any smooth open surface with boundary `. �

Theorem 16 (Lagrange) An inviscid barotropic fluid subjected to conservatives forces that is
initially irrotational will remain such for all times.

Proof. Let S be a smooth open surface with boundary `. By Kelvin’s theorem the circulation
is constant in time along `. Since the motion is initially irrotational, circulation is null and by
Stokes’ theorem

0 =

∮
`
v · d` =

∫
S

curl v · n dσ.

From the arbitrariness of S we get the thesis �
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4.8 Shallow water gravity waves

Suppose to have an inviscid fluid flowing in a rectangular channel under the action of gravity, as
depicted in Fig. 4.4. Suppose that the velocity field is given by

v = v1(x1, x3, t)e1 + v3(x1, x3, t)e3.

and pressure

Figure 4.4: Gravity waves in a channel.

p = p(x1, x3, t).

Assume that acceleration in the e3 direction is negligible and that on the free surface x3 = h(x1, t)
pressure is null (atmospheric pressure rescaled to zero). Notice that the free surface h is a material
surface. Assume that v3 = 0 on the bottom of the channel x3 = −H. Euler’s equation (4.2)
becomes

(4.21)


dv1

dt
= −1

%

∂p

∂x1
,

0 = −g − 1

%

∂p

∂x3
.

Pressure is thus given by
p = %g

[
h(x1, t)− x3

]
,

and v1 = v1(x1, t) does not depend on x3 since

dv1

dt
= −g ∂h

∂x1
,

or equivalently

(4.22)
∂v1

∂t
+ v1

∂v1

∂x1
= −g ∂h

∂x1
.

Linearizing equation (4.22) (i.e. assuming that the inertial terms are negligible) we get

(4.23)
∂v1

∂t
= −g ∂h

∂x1
.
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Balance of mass yields
∂v1

∂x1︸︷︷︸
depending on (x1,t)

+
∂v3

∂x3
= 0,

so that
v3 = −∂v1

∂x1
(H + x3),

where we have exploited the fact that v3 = 0 on x3 = −H. We write the free surface profile as

F (x1, x3, t) = x3 − h(x1, t) = 0.

Recalling (2.40)
dF

dt

∣∣∣∣
(x1,h,t)

= 0.

Hence, on x3 = h

v3 −
∂h

∂x1
v1 −

∂h

∂t
= 0.

so that
∂h

∂t
+

∂

∂x1

[
v1(H + h)

]
= 0.

If we now suppose h � H, that is the oscillation of the free surface is much smaller than the
depth of the channel, the above reduces to

(4.24)
∂h

∂t
+H

∂v1

∂x1
= 0.

Coupling (4.23) with (4.24) we get 
∂v1

∂t
+ g

∂h

∂x1
= 0,

∂h

∂t
+H

∂v1

∂x1
= 0,

so that
∂2v1

∂t2
− gH ∂2v1

∂x2
1

= 0,

or
∂2h

∂t2
− gH ∂2h

∂x2
1

= 0.

In conclusion both h and v1 satisfy the one dimensional wave equation whose solution can be
determined by means of d’Alembert formula. Notice that the wave velocity is given by

(4.25) c2 = gH.

4.9 Deep water gravity waves

Consider, once again, a channel flow of an incompressible inviscid fluid as the one depicted in
Fig. 4.4. Suppose that velocity and pressure do not depend on x2 and assume that the flow is
irrotational so that v = ∇ϕ and

(4.26) ∆ϕ = 0,
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because of incompressibility. From Bernoulli’s theorem

∂ϕ

∂t
+
|v|2

2
+
p

%
+ gx3 = 0,

where we have selected an appropriate kinetic potential so ϕt + Γ = 0. Supposing that |v|2 can
be neglected, the above reduce to

∂ϕ

∂t
+
p

%
+ gx3 = 0,

On the free surface x3 = h(x1, t) we have (recall that atmospheric pressure is rescaled to zero)

(4.27)
∂ϕ

∂t

∣∣∣∣
h

+ gh = 0.

The free surface equation is still
∂h

∂t
+

∂h

∂x1
v1 − v3 = 0.

Linearizing (i.e. neglecting the inertial terms) we find

(4.28)
∂h

∂t
= v3

∣∣∣
h

=
∂ϕ

∂x3

∣∣∣
h
.

Differentiating (4.27) w.r.t. time and neglecting inertial terms once again, we get

∂2ϕ

∂t2

∣∣∣
h

+ g
∂h

∂t
= 0,

which, recalling (4.28) becomes

(4.29)
∂2ϕ

∂t2

∣∣∣
h

+ g
∂ϕ

∂x3

∣∣∣
h

= 0,

Regarding the boundary conditions on the bottom of the channel we consider two different cases:
i) the bottom is at a fixed depth x3 = −H so that

(4.30)
∂ϕ

∂x3

∣∣∣
−H

= 0,

ii) the channel has infinite depth and

(4.31) lim
x3→−∞

∂ϕ

∂x3
= 0.

We look for solutions that can be expressed in the form

ϕ = ξ(x3)ζ
[
k(x1 − ct)

]
.

Substitution into ∆ϕ = 0 yields
ξ
′′
ζ + ξζ

′′
= 0,

which, by separation of variables, leads to

ϕ =
[
Aekx3 +Be−kx3

]
︸ ︷︷ ︸

=ξ(x3)

cos
[
k(x1 − ct)

]
︸ ︷︷ ︸

=ζ

[
k(x1−ct)

] ,
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where k = 2π/λ is the wave number and λ is the wavelength. When considering the boundary
condition (4.30), we find

∂ϕ

∂x3

∣∣∣∣
−H

=
[
Ake−kH −BkekH

]
cos
[
k(x1 − ct)

]
= 0,

implying
Q

2
:= Ae−kH = BekH .

Hence

(4.32) ϕ = Q cosh
[
k(x3 +H)

]
cos
[
k(x1 − ct)

]
.

As a consequence
∂2ϕ

∂t2
= −Qc2k2 cosh

[
k(x3 +H)

]
cos
[
k(x1 − ct)

]
,

∂ϕ

∂x3
= Qk sinh

[
k(x3 +H)

]
cos
[
k(x1 − ct)

]
,

Imposing (4.29) we find

−c2k cosh
[
k(h+H)

]
+ g sinh

[
k(h+H)

]
= 0.

Supposing h� H we get
c2 =

g

k
tanh

[
kH
]
,

or equivalently

(4.33) c2 =
gλ

2π
tanh

[
2πH

λ

]
,

which proves that the wave velocity increases with the wave length. From (4.27) we can also
derive the free surface profile. Indeed, recalling that h+H ∼ H we get

h = −1

g

∂ϕ

∂t

∣∣∣∣
h

= −Qkc
g

cosh
[
kH
]

sin
[
k(x1 − ct)

]
.

Therefore h has the sinusoidal profile

h = F(k) sin
[
k(x1 − ct)

]
,

where

F(k) = −Qk
g

cosh
[
kH
]√g

k
tanh

[
kH
]
.

When we consider the channel with infinite depth we get

ϕ = Aekx3 cos
[
k(x1 − ct)

]
.

Imposing, once again, the free surface condition we find

(4.34) c2 =
g

k
=
gλ

2π
.

This result can be found also taking the limit H →∞ in (4.33). When we consider finite depth
and suppose H � 1, from the relation tanh kH ∼ kH, we see that c2 = gH which is exactly the
wave velocity in shallow waters (4.25).
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4.10 Flow past obstacles

Consider the steady motion of an incompressible, irrotational, inviscid fluid in a domain in which
an undeformable bounded object Ω has been placed. Assume that the domain of the fluid is
R3/Ω and that

(4.35) lim
|x|→∞

v(x) = v∞.

From (4.13) and from the incompressibility constraint div v = 0 we get

(4.36) ∆ϕ = 0.

Condition (4.35) can be rewritten as

(4.37) lim
|x|→∞

ϕ(x)− v∞x1 = 0,

where we have chosen e1 parallel to v∞. Assuming that the fluid cannot penetrate Ω the velocity
v must be tangent to ∂Ω and the surfaces ϕ = const must be perpendicular to ∂Ω so that

(4.38) ∇ϕ · n =
∂ϕ

∂n
= 0 on ∂Ω,

where n is the outward unit normal to ∂Ω. The set of equations (4.36)-(4.38) form the elliptic
problem that must be solved to describe the motion of the fluid. In general this problem is quite
complex and must be solved numerically. Anyway, we can write a formula for the drag force
exerted by the fluid on the object. This force is given by the difference between the force exerted
on Ω in dynamical condition and the force exerted on Ω in static condition, namely

R = −
∫
∂Ω

(p− po)ndσ.

From (4.14) we have
1

2
|v|2 −B +

p

%
+
∂ϕ

∂t
= −B +

po
%
,

so that
−(p− po) = %

(
∂ϕ

∂t
+

1

2
|v|2

)
.

In the stationary case ϕt = 0 and R reduces to

(4.39) R =
1

2
%

∫
∂Ω
|v|2ndσ.

4.11 Steady planar flow

We consider here the dynamics of planar incompressible fluids. Planar flows are characterized by
the following property: the velocity field is identical in all planes perpendicular to a given vector,
so that they can be studied in a representative plane. We assume that this plane is x3 = 0.
Considering steady motion the velocity field is given by

v = v1(x1, x2)e1 + v2(x1, x2)e2,

while vorticity

ω = curl v =

(
∂v2

∂x1
− ∂v1

∂x2

)
e3
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is always normal to x3 = 0. Mass balance yields

∂v1

∂x1
+
∂v2

∂x2
= 0.

The vector field
w = −v2(x1, x2)e1 + v1(x1, x2)e2,

is such that

curl w =

(
∂v1

∂x1
+
∂v2

∂x2

)
e3 =

(
div v

)
e3 = 0.

So, in a simply connected domain there exists a function ψ such that ∇ψ = w, i.e

(4.40)
∂ψ

∂x1
= −v2

∂ψ

∂x2
= v1.

Recall that, in irrotational flows, the kinematic potential ϕ is such that

(4.41)
∂ϕ

∂x1
= v1

∂ϕ

∂x2
= v2.

Equation (4.40), (4.41) are called Cauchy-Riemann conditions (see [17])

(4.42)


∂ϕ

∂x1
=

∂ψ

∂x2
,

∂ϕ

∂x2
= − ∂ψ

∂x1
.

Notice that (4.42) imply ∇ϕ ·∇ψ = 0, meaning that ϕ = const and ψ = const are perpendicular.
Conditions (4.42) are sufficient and necessary conditions for the complex function

f(z) = ϕ(x1, x2) + iψ(x1, x2), z = x1 + ix2

to be analytic (holomorphic). In practice, if (4.42) holds, there exists the limit

f
′
(z) = lim

δ→0

f(z + δ)− f(z)

δ
δ ∈ C.

When δ is real

f
′
(z) =

∂ϕ

∂x1
+ i

∂ψ

∂x1
= v1 − iv2.

The function f(z) is called the complex potential while

V (z) = f
′
(z) = v1 − iv2,

is called complex velocity. We have

Re
[
zV
]

= Re
[
(x1 + ix2)(v1 − iv2)

]
= v · x,

Im
[
zV
]

= Im
[
(x1 + ix2)(v1 − iv2)

]
= w · x,
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4.12 Planar flow around obstacles

Consider a planar steady motion past a bounded object Ω with smooth boundary ∂Ω. Suppose
that velocity satisfies (4.37). From (4.42)

(4.43) ∆ψ = 0 in R2/Ω,

with

(4.44) lim
|x|→∞

ψ(x1, x2)− v∞x2 = 0.

Since velocity is tangent to ψ = const, we conclude that ψ must be constant on the object profile.
Therefore we can select a potential such that

(4.45) ψ
∣∣∣
∂Ω

= 0,

which is a Dirichlet boundary condition. The problem for ψ is as complex as the one for ϕ but
when Ω is a circle of radius R, we can easily determine the complex potential. Indeed if Ω is a
circle then v · x = 0 on the circle and hence

Re
[
zV
]

= 0,

on |z| = R. Moreover
lim
|z|→∞

f
′
(z) = v∞.

If we take

f(z) = v∞

[
z +

R2

z

]
,

we get

(4.46) V (z) = f
′
(z) = v∞

[
1−

(
R

z

)2
]
.

The function f(z) is called the Jukowski potential. We have

(4.47) ϕ(x1, x2) = v∞x1

(
1 +

R2

x2
1 + x2

2

)
,

(4.48) ψ(x1, x2) = v∞x2

(
1− R2

x2
1 + x2

2

)
.

It is easy to verify that (4.48) satisfies (4.43)-(4.45).

4.13 Drag force and D’Alembert paradox

Recall the definition of drag force R for a steady flow given in (4.39) and assume that v is a
planar steady motion around the obstacle Ω. Following Fig. 4.5 we can write

n = (cosφ, sinφ), t = (− sinφ, cosφ),

and
d` cosφ = dx2, d` sinφ = −dx1.
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Figure 4.5: Drag force on Ω

The drag force (4.39) can be rewritten as

R =
( 1

2
%

∮
∂Ω
|v|2dx2︸ ︷︷ ︸
R1

,−1

2
%

∮
∂Ω
|v|2dx1︸ ︷︷ ︸

R2

)
.

We introduce
R = R2 + iR1 = −1

2
%

∮
∂Ω
|v|2(dx1 − idx2).

Recalling that the conjugate z of a complex number z = x1 + ix2 is z = x1 − ix2 we get

|v|2 = (v1 + iv2)(v1 − iv2) = V (z)V (z),

and
dz = dx1 − idx2.

Hence we write
R = −1

2
%

∮
∂Ω
V (z)V (z)dz.

Now
V (z)dz = (v1dx1 + v2dx2)− i (v1dx2 − v2dx1)︸ ︷︷ ︸

=dx·w=0

meaning that V (z)dz is a real number and V (z)dz = V (z)dz. In conclusion

(4.49) R = −1

2
%

∮
∂Ω

[V (z)]2dz,

called Blausius formula. In case the object Ω is a circle, from (4.46) we get

V 2 = v2
∞

[
1 +

(
R

z

)4

− 2

(
R

z

)2
]
.

Recalling that for each n 6= −1 (see [17])∮
|z|=R

zndz = 0,
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we find that R = 0. This result can be extended to the case of an object with a generic profile
exploiting Cauchy’s integral theorem for holomorphic functions (see [17]), which states that the
integral ∮

γ
g(z)dz

is invariant for any closed curve γ defined in the domain in which the function is holomorphic.
We have thus proved the following

Theorem 17 (D’Alembert paradox) The drag force exerted on an object by an inviscid, in-
compressible fluid in a steady irrotational flow is null.

It is important to notice that Theorem 17 can be extended to the three dimensional case (see
[7]), where not only can there be no drag, there can be no lift either.

4.14 Magnus effect

Following the results of the previous section we want to investigate whether the theory of inviscid
fluids can actually predict some kind of dynamical effect on solid objects. Looking at Blausius
formula (4.49), we observe that only a z−1 term in the expansion of V 2 can lead to a non null
dynamical action exerted on the object. If , for instance, the complex velocity V (z) is derived
from a logarithmic potential

f(z) =
C

2πi
ln
( z
R

)
,

then
V (z) =

C

2πiz
,

implying

(4.50) v1 = − Cx2

2π(x2
1 + x2

2)
, v2 =

Cx1

2π(x2
1 + x2

2)
.

In this case the streamlines are concentric circles and velocity goes to zero as |x| → ∞. The
constant C is therefore the circulation (2.28) on each streamline. Indeed

1

2πi

∮
|z|=const

dz

z
= 1.

If we consider the complex velocity

V = v∞

[
1−

(
R

z

)2
]

+
C

2πiz
,

we get

R = −1

2
%

∮
∂Ω

[
v∞

[
1−

(
R

z

)2
]

+
C

2πiz

]2

dz.

Recalling that the only term with non null contribution to the integral is z−1, we find

R = −1

2
%

∮
∂Ω

Cv∞
πiz

dz,

which leads to
R = −%Cv∞,
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or equivalently

(4.51) R = −%Cv∞e2.

The dynamical effect (4.51), which is transversal to the asymptotic velocity, is called Magnus
effect. The velocity (4.50) can be generated by the presence of friction between the fluid and the
obstacle when the latter is rotating with angular velocity ω = C(2πR)−1 .

4.15 Subsonic and supersonic flow

Consider the flow of an inviscid barotropic fluid in which % = %(p) is a strictly increasing function
(incompressible fluids are therefore excluded). The function % is invertible and we can define

c2(%) =
dp(%)

d%
> 0,

where c(%) is the speed of sound. Differentiating p(%) w.r.t the spatial coordinates we get

∇p(%) = c2(%)∇%.

Euler’s equation (4.2) becomes

(4.52)
dv

dt
= b− c2(%)

%
∇%,

while mass balance is expressed by

(4.53)
d%

dt
+ % div v = 0.

We define the Mach number
M(x, t) =

|v(x, t)|

c
(
%(x, t)

) ,
which characterize subsonic motion (M < 1), sonic motions (M = 1) and supersonic motions
(M > 1). We prove the following

Proposition 4 A steady solution of (4.52), (4.53) with b = 0 is such that

(4.54)
d

dt

(
%|v|

)
= %
(

1−M2
)d|v|
dt

Proof. From the the hypothesis of steady motion we get

(4.55)
d

dt

(
%|v|

)
= |v|

(
∇% · v

)
+ %
(
∇|v| · v

)
,

and

(4.56)
d|v|
dt

= ∇|v| · v.

Observing that
∇|v| = (∇v)T

v

|v|
,
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we find

∇|v| · v =
[
(∇v)v

]
︸ ︷︷ ︸

=
dv

dt

· v

|v|
=
dv

dt
· v

|v|
= −c

2(%)∇%
%

· v

|v|
.

Therefore

(4.57) ∇% · v = − %|v|
c2(%)

[
∇|v| · v

]
.

Substituting (4.57) into (4.55) we get

d

dt

(
%|v|

)
=

(
−%|v|

2

c2(%)
+ %

)[
∇|v| · v

]
= %
(

1−M2
)d|v|
dt

.

�

The proposition above shows a very interesting feature of supersonic/subsonic motions. Consider
a streamline s passing trough x with v(x) 6= 0 and consider the surface Σ normal to s in x. The
unit normal n to S in x is

n =
v

|v|
,

so that
%(x)v(x) · n = %(x)|v(x)|.

Hence %|v| represents the flux of linear momentum through the surface Σ. Formula (4.54) shows
that such a flux increases or decreases depending on |v| andM . In the subsonic case (M < 1) the
flux increases as |v| increases. In the supersonic case (M > 1) the flux decreases as |v| increases.
Therefore in the supersonic regime the decrease of the density is faster than the increase of
velocity.

Figure 4.6: Surface Σ.
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4.16 Critical velocity in ideal gases

For an ideal gas, an isoentropic flow obeys the equation

p = k%γ ,

where k, γ are positive constants with γ > 1. In this case

c2 =
dp

d%
= kγ%γ−1,

while

P (p) =

∫
dp

%
=

∫
kγ%γ−2d% =

kγ%γ−1

γ − 1
=

c2

γ − 1
.

Assuming steady motion and b = 0, from Bernoulli’s theorem, we get

P +
|v|2

2
=

c2

γ − 1
+
|v|2

2
= const

on streamlines. Therefore we can write

2c2

γ − 1
+ |v|2 = V 2,

where V 2 is a constant related to the specific streamline considered. We conclude that

|v| < c ⇐⇒ |v| <
√
γ − 1

γ + 1
V,

|v| > c ⇐⇒ |v| >
√
γ − 1

γ + 1
V,

The quantity

ccrit =

√
γ − 1

γ + 1
V,

is called critical velocity and it is a constant that depends on the streamline. To determine
whether a motion is subsonic or supersonic it is sufficient to compare the modulus |v| with ccrit.
The advantage of comparing |v| with ccrit intead of c lies in the fact that ccrit does not depend
on the position. In particular, if at some point of a fixed streamline the velocity |v| equals the
critical velocity, then the motion is sonic at that specific point.

4.17 Shear flow of an inviscid fluid

Consider an incompressible inviscid fluid flowing between parallel planes x2 = 0 and x2 = h, as
shown in Fig. 4.7. Suppose velocity and pressure are of the form

v = v1(x1, x2, t)e1,

p = p(x1, x2, t).

Suppose that the boundary conditions for the pressure are pin = p(0, x2, t), pout = p(L, x2, t)
and define

∆P = pout − pin.

Mass balance implies
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Figure 4.7: Shear flow of an inviscid fluid.

∂v1

∂x1
= 0,

so that v1 = v1(x2, t). Euler’s equation is

(4.58)


∂v1

∂t
= −1

%

∂p

∂x1
,

∂p

∂x2
= 0.

and so p = p(x1, t). Differentiating (4.58)1 w.r.t. x1 we find

∂2p

∂x2
1

= 0,

so that, recalling the boundary conditions for p, we get

p(x1) =
∆p

L
x1 + pin.

As a consequence

v1 = −
(

∆p

%L

)
t+ vo1(x2),

where vo1(x2) is the initial profile for v1. We notice that velocity is an unbounded function of time,
which is physically inconsistent. This is another paradox that originates from the assumption of
inviscid flow. As we shall see later on, when we take into account viscosity, the paradox can be
overcome.

4.18 Energy

When considering a compressible fluid the thermodynamical variables η (entropy), θ temperature
and % (density) satisfy the following relation

θ
dη

dt
=
dε

dt
+ p

d

dt

(
1

%

)
,
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or equivalently

θ
dη

dt
=
dε

dt
− p

%2

d%

dt
=
dε

dt
+
p

%
div v.

Hence, from (3.12)

θ
dη

dt
= r − 1

%
div q +

1

%
T ·D +

p

%
div v,

so that
%θ
dη

dt
= %r − div q + (T + pI) ·D.

As a consequence, from (3.15)

Φ = (T + pI) ·D > 1

θ
∇θ · div v,

where the function Φ is called the dissipation function. In the case of an isothermal system

(4.59) Φ = (T + pI) ·D > 0.

For an ideal fluid Φ = 0 and the entropy production is not due to deformation.



Chapter 5

Newtonian fluids

Even though the assumption of inviscid fluid (4.1), which led to Euler’s equation, can be use-
ful in many practical applications, it presents limitations due to the hypothesis of null shear
components of the stress. To overcome these limitations - that produce inconsistencies such as
the D’Alembert paradox - we need to consider constitutive equations in which shear effects in
dynamical conditions are taken into account. Suggested readings on the topics presented here
are [3], [16], [18], [22].

5.1 Stokesian fluids

Suppose to modify the constitutive equation (4.1) with

(5.1) T = −pI + V,

where V(D) is an isotropic function (see Section 1.6) such that V(0) = 0. Recalling Theorem 6
the function V(D) can be rewritten in the following form

(5.2) V = αI + βD + γD2

where α, β, γ are functions of the principal invariants of D only. Fluids with a stress tensor
of the form (5.1) are called Stokesian. Stokesian fluids present null shear components in static
conditions.

5.2 Newtonian fluids

We consider here a particular class of Stokesian fluids where

(5.3) T =
(
− p+ λ div v

)
I + 2µD.

Relation (5.3) is called the Cauchy-Poisson constitutive equation. The coefficients λ, µ, p do not
depend on the kinematical variables but may depend on the thermodynamical variables. The
coefficients λ, µ are called the viscosity coefficients. Fluids with constitutive equation (5.3) are
called Newtonian fluids. When the fluid is incompressible, equation (5.3) becomes

T = −pI + 2µD.

Recalling the definition of dissipation function in isothermal condition (4.59), we have

Φ =
(
T + pI

)
·D > 0,

69
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so that
Φ = λ (div v)2 + 2µD ·D > 0.

Recalling that tr D = div v and D ·D = tr (D2) are invariants of the tensor D we find

tr D = d1 + d2 + d3,

D ·D = d2
1 + d2

2 + d2
3,

where di ∈ R are the eigenvalues of D. We can easily check that 1

3Φ = (3λ+ 2µ)(d1 + d2 + d3)2 + 2µ
[
(d1 − d2)2 + (d2 − d3)2 + (d3 − d1)2

]
.

Since D is a generic symmetric tensor we may select d1 = d2 = d3 so that

3λ+ 2µ > 0,

or
d1 + d2 = −d3,

so that
µ > 0.

In particular, when the fluid is incompressible the viscosity coefficient µ must be positive.

5.3 Navier-Stokes equations

If we substitute (5.3) into (3.5) we find

(5.4)


%
dv

dt
= %b−∇p+∇(λ div v) + 2 div (µD),

d%

dt
+ % div v = 0,

to which one may add thermodynamical relations or, in case the fluid is barotropic, equation
(4.4). If the fluid is incompressible (5.4) reduces to

(5.5)


%
dv

dt
= %b−∇p+ 2 div (µD),

div v = 0.

Recall that
div D =

1

2
div

[
∇v +∇vT

]
=

1

2

[
∆v +∇( div v)

]
.

Therefore, when λ and µ are constant (5.4) becomes

(5.6)


%
dv

dt
= %b−∇p+ (λ+ µ)∇( div v) + µ∆v.

d%

dt
+ % div v = 0.

1Recall the identity 3(d21 + d22 + d23) = (d1 + d2 + d3)
2 + (d1 − d2)

2 + (d1 − d3)
2 + (d2 − d3)

2.
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Equation (5.6) is the famous Navier-Stokes system for compressible Newtonian fluids. When the
fluid is incompressible (5.6) reduces to

(5.7)


dv

dt
= b− ∇p

%
+ ν∆v.

div v = 0,

where
ν =

µ

%

is the so-called kinematic viscosity.

5.4 Navier Stokes equation in cylindrical coordinates

Recalling the results of Section 1.4 we can write the Navier-Stokes equation (5.7) in cylindrical
coordinates. The stress tensor of a viscous incompressible Newtonian fluid expressed in cylindrical
coordinates is given by the following

T =


Trr Trθ Trz

Trθ Tθθ Tθz

Trz Tθz Tzz

 .
where

Trr = −p+ 2µ
∂vr
∂r

Trθ = µ

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)

Trz = µ

(
∂vz
∂r

+
∂vr
∂z

)

Tθθ = −p+ 2µ

(
1

r

∂vθ
∂θ

+
vr
r

)

Tθz = µ

(
∂vθ
∂z

+
1

r

∂vz
∂θ

)
Tzz = −p+ 2µ

∂vz
∂z

.

Therefore the motion equation becomes

%

[
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
−
v2
θ

r
+ vz

∂vr
∂z

]
=

(5.8) = br −
∂p

∂r
+ µ

[
∂

∂r

(
1

r

∂(rvr)

∂r

)
+

1

r2

∂2vr
∂θ2

− 2

r2

∂vθ
∂θ

+
∂2vr
∂z2

]
,

%

[
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

+ vz
∂vθ
∂z

]
=
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(5.9) = bθ −
1

r

∂p

∂θ
+ µ

[
∂

∂r

(
1

r

∂(rvθ)

∂r

)
+

1

r2

∂2vθ
∂θ2

+
2

r2

∂vr
∂θ

+
∂2vθ
∂z2

]
,

%

[
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

]
=

(5.10) = bz −
∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2

∂2vz
∂θ2

+
∂2vz
∂z2

]
,

where b = (br, bθ, bz) is the body force vector in cylindrical coordinates. We recall that mass
balance for incompressible fluids in cylindrical coordinates is given by (2.51).

5.5 Navier Stokes equation in spherical coordinates

The stress tensor of a viscous incompressible Newtonian fluid expressed in spherical polar coor-
dinates is given by the following

(5.11) T =


Trr Trθ Trφ

Trθ Tθθ Tθφ

Trφ Tθφ Tφφ

 .
where

Trr =

(
−p+ 2µ

∂vr
∂r

)

Trθ = µ

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)

Trφ = µ

(
∂vφ
∂r

+
1

r sin θ

∂vr
∂φ
−
vφ
r

)

Tθθ = −p+ 2µ

(
1

r

∂vθ
∂θ

+
vr
r

)

Tθφ = µ

(
1

r sin θ

∂vθ
∂φ

+
1

r

∂vφ
∂θ
−
vφ
r

cos θ

sin θ

)

Tφφ = −p+ 2µ

(
1

r sin θ

∂vφ
∂φ

+
vr
r

+
vθ
r

cos θ

sin θ

)
Therefore the Navier Stokes equation in spherical coordinates is given by

%

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+
vφ

r sin θ

∂vr
∂φ
−
v2
θ + v2

φ

r

)
= −∂p

∂r
+ µ

[
∂

∂r

(
1

r2

∂(r2vr)

∂r

)
+

+
1

r2 sin θ

∂

∂θ

(
sin θ

∂vr
∂θ

)
+

1

r2 sin2 θ

∂2vr
∂φ2

− 2

r2 sin θ

∂(vθ sin θ)

∂θ
− 2

r2 sin θ

∂vφ
∂φ

]
+ %br,

%

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vφ

r sin θ

∂vθ
∂φ

+
vrvθ
r
−
v2
φ cot θ

r

)
= −1

r

∂p

∂θ
+ µ

[
∂

∂r

(
1

r2

∂(r2vθ)

∂r

)
+
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+
1

r2

∂

∂θ

(
1

sin θ

∂(vθ sin θ)

∂θ

)
+

1

r2 sin2 θ

∂2vθ
∂φ2

+
2

r2

∂vr
∂θ
− 2 cot θ

r2 sin θ

∂vφ
∂φ

]
+ %bθ,

%

(
∂vφ
∂t

+ vr
∂vφ
∂r

+
vθ
r

∂vφ
∂θ

+
vφ

r sin θ

∂vφ
∂φ

+
vrvφ
r

+
vφvθ cot θ

r

)
= − 1

r sin θ

∂p

∂φ
+

µ

[
∂

∂r

(
1

r2

∂(r2vφ)

∂r

)
+ +

1

r2

∂

∂θ

(
1

sin θ

∂(vφ sin θ)

∂θ

)
+

1

r2 sin2 θ

∂2vφ
∂φ2

+

+
2

r2 sin θ

∂vr
∂φ

+
2 cot θ

r2 sin θ

∂vθ
∂φ

]
+ %bφ,

where b = (br, bθ, bφ) is the body force vector in spherical coordinates. We recall that mass
balance for incompressible fluids in cylindrical coordinates is given by (2.52).

5.6 Boundary conditions

The boundary conditions for ideal fluids (4.7), (4.8) represent impenetrability of the boundary.
For Newtonian fluids these conditions are no longer sufficient, because the Navier-Stokes equation
is of second order. The presence of viscosity, and hence of shear stresses, suggests to impose the
so-called no-slip conditions

(5.12) v(x, t) = V(x, t),

where we recall that V(x, t) represents the velocity of the wall. When the wall does not move

(5.13) v(x, t) = 0.

Conditions (5.12), (5.13) are stronger than (4.7), (4.8), since they impose a constraint on both
the normal and tangent component of the velocity.

5.7 Circulation and vorticity in Newtonian incmpressible fluids

We begin by recalling, from (1.21), that

∆v = ∇(div v)− curl (curl v).

Hence in the incompressible case (5.7)1 can be rewritten as

dv

dt
= b− ∇p

%
− ν curl ω,

where we recall that ω = curl v. Therefore, when the flow is irrotational, the Navier-Stokes
equation coincides with Euler’s equation. This does not mean that viscous irrotational flows
reduce to ideal flows, since the boundary conditions are different. Moreover, irrotational viscous
flows do not maintain their irrotational character for all times. Indeed consider an incompressible
Newtonian fluid. The curl of the acceleration is

curl a = curl b + ν curl (∆v).

Since curl (∆v) = ∆( curl v), in the case of conservative body force

(5.14) curl a = ν∆ω.
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so that acceleration is not irrotational, as for inviscid fluids. In particular Beltrami’s equation
(4.17) (with % constant) becomes

dω

dt
= Dω + ν∆ω.

In the planar case Dω = 0, so that
dω

dt
= ν∆ω,

and vorticity is no longer constant on streamlines. From Stokes’ theorem and (5.14) we find that∮
`
a · d` =

∫
S

curl a · ndσ =

∫
S
ν∆ω · ndσ = ν

∮
`
∆v · d`.

Hence, recalling (4.20)

d

dt

[∮
`
v · d`

]
= ν

∮
`
∆v · d`,

implying that circulation is not conserved.

5.8 Transport and energy dissipation

Consider the Navier-Stokes system (5.7) and neglect body forces. Recalling (2.27), equation
(5.7)1 can be rewritten as

(5.15)
∂v

∂t
+ curl v × v = −∇

(
1

2
|v|2 +

p

%

)
+ ν∆v.

Multiply (5.15) by v so that

(5.16) v · ∂v

∂t
= −v · ∇

(
1

2
|v|2 +

p

%

)
+ νv ·∆v.

Recall, from (1.15), that

v · ∇
(

1

2
|v|2 +

p

%

)
= div

[
v

(
1

2
|v|2 +

p

%

)]
−
(

1

2
|v|2 +

p

%

)
div v︸ ︷︷ ︸

=0

,

so that (5.16) becomes

(5.17)
∂

∂t

(
1

2
|v|2

)
= −div

[
v

(
1

2
|v|2 +

p

%

)]
+ νv ·∆v.

We notice that
div

(
2D
)

= div
(
∇v
)

+ div
(
∇vT

)
,

and that the ith component of div (∇vT ) is

[
div (∇vT )

]
i

=
3∑
j=1

∂

∂xj

(
∂vj
∂xi

)
=

∂

∂xi

(
div v

)
︸ ︷︷ ︸

=0

.

Therefore
div

(
∇v
)

= div
(

2D
)
.
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From (1.16)

v ·∆v = v · div
(
∇v
)

= v · div
(

2D
)

= div
(

2Dv
)
− 2D · ∇v,

so that (5.17) becomes

(5.18)
∂

∂t

(
1

2
|v|2

)
+ div

[
v

(
1

2
|v|2 +

p

%

)
− 2νDv

]
= −2νD · ∇v.

Recalling that T = −pI + 2µD we find

2νD =

(
1

%
T +

p

%
I

)
,

so that
2νDv =

1

%
Tv +

p

%
v,

and
2νD · ∇v =

1

%
T · L =

1

%
T ·D.

Hence (5.18) can be rewritten as

(5.19)
∂

∂t

(%
2
|v|2

)
+ div

[
%v

(
1

2
|v|2

)
−Tv

]
= −T ·D,

where the term on the r.h.s. is the stress power. Notice that when the fluid is inviscid (ν = 0)
the stress reduces to T = −pI and (5.19) becomes

(5.20)
∂

∂t

(
1

2
|v|2

)
+ div

[
v

(
1

2
|v|2 +

p

%

)]
= 0,

meaning that ideal fluids do not dissipate energy.

5.9 Scaling of the Navier-Stokes equation

Let us consider system (5.7) and suppose that the body force is zero. We introduce the following
non dimensional variables

x = x̃L, v = ṽV, t = t̃

(
L

V

)
, p = p̃P.

Substituting into (5.7) we find

(5.21)
dṽ

dt̃
= −

(
P

%V 2

)
∇p̃+

(
µ

%V L

)
∆ṽ,

where the differential operators are intended with respect to the non dimensional variables. We
introduce the Reynolds number

Re =
%V L

µ
,

so that (5.21) becomes

(5.22)
dṽ

dt̃
= −

(
P

%V 2

)
∇p̃+

1

Re
∆ṽ.
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There is no natural selection for the characteristic pressure and we have to distinguish between
two different situations:

(A) (dynamic effects are dominant) P = %V 2,

(B) (viscous effects are dominant) P =
µV

L
.

Case (A) occurs, for instance, when the velocity of the flow is quite large and viscous effects are
negligible. In this case Re� 1 and the motion equation can be approximated with

(5.23)
∂ṽ

∂t̃
+ (∇ṽ)ṽ = −∇p̃,

which is nothing but Euler’s equation. On the other hand, in case (B), viscous effects are
dominant so that velocities are not large. Hence Re � 1 and equation (5.21) becomes the
well-known Stokes equation

(5.24) −∇p̃+ ∆ṽ = 0.

5.10 Plane Poiseuille flow

We investigate here the shear flow of an incompressible Newtonian fluid. In practice we study
the problem introduced in Section 4.17 for an incompressible Newtonian fluid. Here we assume
also that the upper surface moves with uniform velocity u = Ue1 and we limit ourselves to the
stationary case, see Fig. 5.1. The velocity field is v = v1(x2)e1 and satisfies the continuity

Figure 5.1: Shear flow of a viscous fluid.

equation
∂v1

∂x1
= 0.

Navier-Stokes equation becomes

(5.25)


− ∂p

∂x1
+ µ

∂2v1

∂x2
2

= 0,

∂p

∂x2
= 0,
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entailing

p(x1) =
∆P

L
x1 + pin,

where ∆P , L, pin, pout, are as in Section 4.17. Assuming no-slip on the upper and lower planes,
from (5.25)1

v1(x2) =
1

2µ

(
∆P

L

)(
x2

2 − hx2

)
+
Ux2

h
.

When the upper plane is fixed

v1(x2) =
1

2µ

(
∆P

L

)(
x2

2 − hx2

)
,

and the velocity profile is symmetric w.r.t. x2 = h/2. When the upper plane is moving, regions
where velocity is null may exist. Indeed, setting v1(x2) = 0 we find

x2 = h− 2µUL

h∆P
,

which belongs to (0, h) if
U∆P

L
> 0,

and

−h
2

2µ

∣∣∣∣∆PL
∣∣∣∣ < U <

h2

2µ

∣∣∣∣∆PL
∣∣∣∣ .

The mass flow rate is given by

Figure 5.2: Shear flow of an inviscid fluid.

Q = %

∫ h

0
v1dx2 = %

[
Uh

2
− ∆Ph3

12µL

]
.

5.11 Hagen-Poiseuille flow in a cylindrical duct

Consider the steady motion of an incompressible Newtonian fluid in a cylindrical duct of radius
R and length L, as shown in Fig. 5.3. We make use of cylindrical polar coordinates described in
Section 1.4. We suppose that the velocity field is of the form

v = vz(r)ez.

Recalling (2.51) we find that mass balance is satisfied, since

∂vz
∂z

= 0.
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Figure 5.3: Hagen-Poiseuille flow.

Neglecting body forces, Navier-Stokes equation (5.8)-(5.10) reduces to

∇p =
µ

r

∂

∂r

(
r
∂vz
∂r

)
ez.

As a consequence p = Az +B, with A and B specified by the boundary conditions

p(0) = pin p(L) = pout.

We find
p(z) =

∆P

L
z + pin,

where ∆P = pout − pin. Hence
∆P

µL
=

1

r

∂

∂r

(
r
∂vz
∂r

)
If we now impose no-slip on r = R

vz(R) = 0,

and symmetry on r = 0
∂vz
∂r

∣∣∣∣
r=0

= 0,

we find
vz(r) =

∆P

4µL
(r2 −R2).

In this case the mass flow rate is

(5.26) Q = 2π%

∫ R

0
vzrdr = −π∆PR4

8νL
.
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Formula (5.26) is called Poiseuille formula. It allows us to calculate the viscosity of the fluid
through mass flow rate measurements. Recalling that

vr = vθ =
∂

∂z
=

∂

∂θ
= 0,

we can easily find the expression of the Cauchy tensor in cylindrical coordinates

T =



−p 0
∆Pr

2L

0 −p 0

∆Pr

2L
0 −p


.

5.12 Couette flow between co-axial cylinders

Let us consider the steady motion of an incompressible Newtonian fluid placed between two co-
axial cylinders rotating with uniform velocity. Denote by R1 < R2 the radii of the cylinders and
by ω1, ω2 the respective angular velocities. Suppose that the velocity field and pressure depend
only on the radial coordinate r, so that

v = vr(r)er + vθ(r)eθ + vz(r)ez,

and p = p(r). On the rotating cylinders we have

(5.27) v
∣∣∣
R1

= ω1R1eθ, v
∣∣∣
R2

= ω2R2eθ.

Mass balance (2.51) yields
∂

∂r

(
rvr

)
= 0,

so that vr ≡ 0 because of (5.27). The Navier-Stokes equations (5.8)-(5.10) reduces to

(5.28)



∂p

∂r
=
%v2
θ

r
,

∂

∂r

[
1

r

∂

∂r

(
rvθ

)]
= 0,

∂

∂r

[
r
∂vz
∂r

]
= 0.

From (5.28)3
∂vz
∂r

=
A

r
vz = A ln r +B.

Recalling that vz(R1) = vz(R2) = 0 we get A = B = 0, so that vz ≡ 0. From (5.28)2 we get

∂

∂r

(
rvθ

)
= Cr,

so that
vθ =

D

r
+
Cr

2
.
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Imposing (5.27) we find

D =
R2

1R
2
2

R2
2 −R2

1

(
ω1 − ω2

)
, C =

2
(
ω2R

2
2 − ω1R

2
1

)
R2

2 −R2
1

.

Therefore

vθ(r) =
R2

1R
2
2

R2
2 −R2

1

(
ω1 − ω2

)1

r
+

(
ω2R

2
2 − ω1R

2
1

)
R2

2 −R2
1

r

From (5.28)1 we can eventually find the pressure. We notice that, when ω1 = ω2 = ω

vθ(r) = ωr,

that is a rigid motion. When R2 →∞, imposing ω2 = 0, we find

vθ(r) =
ω1R

2
1

r
.

When R2 <∞ and ω2 = 0

vθ(r) =
ω1R

2
1r

R2
2 −R2

1

[(
R2

r

)2

− 1

]
.

Exploiting the results of section 5.4, we find that the tangential stress is

Trθ = µ

(
∂vθ
∂r
− vθ

r

)
,

so that the tangential stress on the inner cylinder (when ω2 = 0) is

(5.29) Trθ

∣∣∣
R1

= − 2µR2
2ω1

R2
2 −R2

1

.

To maintain the velocity of the inner cylinder constant we must apply a torque equal to 2πR2
1|Trθ|h,

where h is the height of the cylinder. The measurement of this torque allows one to deduce the
viscosity by means of (5.29). The device used to this aim is called the rotating viscometer.

5.13 Stokes first problem

Let us consider an incompressible Newtonian fluid occupying the domain x3 > 0 as depicted in
Fig. 5.4. Let us assume that the boundary x3 = 0 is fixed for t < 0 and moves with constant
velocity V e1 for t > 0 (impulsive start). We also suppose that the fluid is at rest for x3 =∞.
We write 

limx3→∞ v = 0,

vp = H(t)V e1,

where vp is the velocity of the surface x3 = 0 and where H is the Heaviside function

H(t) =


0 t < 0,

1 t > 0,

We suppose that the velocity and the pressure of the fluid have the following form

v = v1(x1, x3, t)e1,

p = p(x1, x3, t).
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Figure 5.4: Stokes first problem.

Mass balance implies
∂v1

∂x1
= 0,

so that v1 = v1(x3, t). Moreover the third component of the Navier-Stokes equation yields

∂p

∂x3
= 0,

so that p = p(x1, t). It is reasonable to require

lim
x3→∞

p(x1, t) = const,

so that p is constant everywhere in the fluid. From the first component of the Navier-Stokes
equation we get

(5.30)
∂v1

∂t
= ν

∂2v1

∂x2
3

,

with boundary conditions

(5.31)


limx3→∞ v1(x3, t) = 0,

v1(0, t) = H(t)V.

Now we look for a solution of the form

v1(x3, t) = f(η) η =
x3√
t
, .

so that
∂v1

∂t
= − η

2t
f
′
(η)

∂2v1

∂x2
3

=
1

t
f
′′
(η).

Substituting into (5.30) we find
2νf

′′
+ ηf

′
= 0,
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which yields

f
′
(η) = c exp

{
− η

2

4ν

}
.

To determine the function f(η) we introduce the error function

erf (η) =
2√
π

∫ η

0
exp{−ξ2}dξ,

with the property
lim
η→∞

erf (η) = 1.

We get

f(η) = c
√
νπ erf

(
η

2
√
ν

)
+ d.

As a consequence

v1(x3, t) = c
√
νπ erf

(
x3

2
√
νt

)
+ d.

Imposing (5.31) we find the solution to our problem

v1(x3, t) =

[
1− erf

(
x3

2
√
νt

)]
H(t)V.

It is easy to check when
x3

2
√
νt
≈ 1.8,

we get

[1− erf (1.8)] ≈ 1

100
,

meaning that at a distance xb ≈ 3.6
√
νt from x3 = 0, the velocity has reduced by a factor 10−2.

Therefore it is reasonable to consider the fluid at rest for x > xb. The strip [0, xb] is thus a time-
dependent boundary layer. Outside this boundary layer the effects of the boundary conditions
are clearly negligible.

5.14 Stokes flow past a sphere

Let us consider the steady flow of a viscous incompressible fluid around a sphere of radius R,
with asymptotic velocity v∞ = v∞e1. Suppose Re � 1 (creeping flow), so that the motion is
governed by Stokes equation

(5.32) −∇p+ µ∆v = 0.

Recalling (1.21) we can write the above as

(5.33) ∇
(p− po

µ

)
= − curl ( curl v),

where po is the pressure in static condition. Applying the divergence operator to (5.33) we find

(5.34) ∆
(p− po

µ

)
= 0.

Moreover, recalling that curl(∇p) = 0, from (5.32)

(5.35) ∆(curl v) = 0.
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It is easy to check that a solution of (5.34), (5.35) is given by

(5.36)
p− po
µ

= −λv∞
x · e1

r3
,

(5.37) curl v = λv∞
x× e1

r3
,

where
r =

√
x2

1 + x2
2 + x2

3,

and where λ is a constant to be specified. As a consequence, the functions defined in (5.36), (5.37)
are harmonic. The velocity field must be determined from (5.37) and from the incompressibility
constraint div v = 0, assuming no-slip on the sphere

v = 0, on r = R.

Because of the particular symmetry of the problem (see Fig 5.5) the velocity field can be expressed
in the following form

Figure 5.5: Stokes flow pasta a sphere.

(5.38)
v

v∞
= a(r)e1 + x1b(r)er,

where a(r) and b(r) are unknown at this stage and where er is the radial unit vector in spherical
coordinate (see Section 1.5). In practice we are assuming that the velocity field is directed along
e1 on x1 = 0. Applying the curl operator to (5.38) we find

curl v = v∞ curl (ae1) + v∞ curl (x1ber).

Now we observe that curl (e1) = curl (er) = 0. Hence, from (1.19)

curl v = v∞[∇a× e1] + v∞[∇(x1b)× er].

Recalling (1.33)
∇a = a

′
(r)er,

∇(x1b) = b(r)e1 + x1b
′
(r)er.
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As a consequence

(5.39) curl v = v∞[a
′
(r)− b(r)]er × e1.

Since x = rer, coupling (5.37) with (5.39) we find

v∞(a
′ − b)er × e1 =

λv∞
r2

er × e1,

so that

(5.40) a
′ − b =

λ

r2
.

Recalling (1.34) we see that

div er =
2

r
,

so that, from (5.38) and div v = 0, we get

0 =
div v

v∞
= ∇a · e1 +∇(x1b) · er +

2x1b

r
,

which yield

0 = a
′
er · e1 + be1 · er + x1b

′
er · er +

2x1b

r
.

Now, observing that x1 = re1 · er, we get

a
′
x1

r
+
bx1

r
+ x1b

′
+

2x1b

r
= 0.

Exploiting (5.40) we find

4b+ b
′
r +

λ

r2
= 0,

whose integration leads to

b(r) =
C

r4
− λ

2r2
.

As a consequence

a
′

=
λ

2r2
+
C

r4
,

and
a(r) = − λ

2r
− C

3r3
+K.

Imposing the asymptotic velocity v∞ = v∞e1 we have

lim
r→∞

a(r) = 1, lim
r→∞

b(r) = 0.

The first implies K = 1, while the second is satisfied for all C ∈ R. Finally we impose no-slip on
the sphere

a(R) = b(R) = 0.

The above yields

C =
3R3

4
, λ =

3R

2
.

Therefore

(5.41) a(r) = 1− 3

4

(
R

r

)
− 1

4

(
R

r

)3

,
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(5.42) b(r) =
3

4

(
R

r2

)[(
R

r

)2

− 1

]
.

We conclude that velocity field is given by (5.38) with a(r), b(r) given by (5.41), (5.42). From
(5.36) we find that pressure is

(5.43) p− po = −3Rv∞µ

2

x1

r3
.

The velocity field in the spherical coordinate system is

vr = v∞ sin θ cosφ(a+ rb), vθ = v∞a cos θ cosφ, vφ = −v∞a sinφ.

As a consequence, recalling the form of the stress tensor in spherical coordinates (5.11), the stress
on the sphere r = R is given by

T =



−p 3µv∞
2R

cos θ cosφ −3µv∞
2R

sinφ

3µv∞
2R

cos θ cosφ −p 0

−3µv∞
2R

sinφ 0 −p


.

The normal stress acting on the sphere is

Φ = Ter = −per +

(
3µv∞

2R
cos θ cosφ

)
eθ −

(
3µv∞

2R
sinφ

)
eφ.

The drag force due to the motion is obtained replacing p in the above expression with p − po
obtained in (5.43). We get

Φ =

(
3µv∞

2R

)
[sin θ cosφer + cos θ cosφeθ − sinφeφ] ,

that is
Φ =

(
3µ

2R

)
v∞.

This means that the stress exerted by the fluid is constant everywhere on the sphere. In particular
the stress is directed along the the asymptotic motion. In conclusion the net drag in the x1

direction is given by

R =

∫
r=R

Φ · e1dσ = 6πµRv∞,

which is the celebrated Stokes formula. Notice that the Stokes formula allows to determine the
sedimentation rate vs of a sphere of density %s falling in a viscous fluid of density % and viscosity
µ. Indeed equating the drag and the buoyant force, we find

6πRµvs︸ ︷︷ ︸
Drag

=
4

3
πR3g

(
%s − %

)
︸ ︷︷ ︸

Buoyant force

,

that is

vs =
2R2g

9µ

(
%s − %

)
.
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5.15 Prandtl’s boundary layer theory

The failure of potential flow theory to predict drag over an object can be overcome using Prandtl’s
boundary layer theory which is based on the following assumption: when a viscous fluid flows
past an object at high Reynolds number, the flow can be divided in a thin region close to the rigid
surface in which viscous effects cannot be neglected and a region away from the object where
viscous effects are negligible and potential flow can be used. The former domain is referred to
as Prandtl’s boundary layer (BL), or more simply boundary layer.

Figure 5.6: Prandtl’s boundary layer.

To determine the thickness of the BL we proceed as follows. We consider the planar steady flow
of an incompressible Newtonian fluid with velocity given by

v = v1(x1, x2)e1 + v2(x1, x2)e2.

Following Fig. 5.6 we suppose that the boundary layer thickness δ is a function of x1 and it is
small when compared to the characteristic length L of the domain. We write the steady form of
the Navier-Stokes equation and the mass balance

∂v1

∂x1
+
∂v2

∂x2
= 0,

v1
∂v1

∂x1
+ v2

∂v1

∂x2
= −1

%

∂p

∂x1
+ ν

(
∂2v1

∂x2
1

+
∂2v1

∂x2
2

)
,

v1
∂v2

∂x1
+ v2

∂v2

∂x2
= −1

%

∂p

∂x2
+ ν

(
∂2v2

∂x2
1

+
∂2v2

∂x2
2

)
.

Away from the boundary layer we may rescale the problem with the following

v1 = V∞ṽ1, v2 = V∞ṽ2, p = %V 2
∞p̃, x = Lx̃, y = Lỹ.
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where V∞ is the asymptotic velocity. Omitting the tildas, we find

∂v1

∂x1
+
∂v2

∂x2
= 0,

v1
∂v1

∂x1
+ v2

∂v1

∂x2
= − ∂p

∂x1
+

1

Re

(
∂2v1

∂x2
1

+
∂2v1

∂x2
2

)
,

v1
∂v2

∂x1
+ v2

∂v2

∂x2
= − ∂p

∂x2
+

1

Re

(
∂2v2

∂x2
1

+
∂2v2

∂x2
2

)
,

where
Re =

V∞L

ν
,

is the Reynolds number. When Re� 1 the system reduces to steady Euler’s equation for planar
incompressible flows. Within the boundary layer y can no longer be rescaled with L, since the
characteristic thickness of the boundary layer is given by some D � L. Hence we set

ε =
D

L
,

and we use the following scaling

v1 = V∞ṽ1, v2 = V∞εṽ2, p = %V 2
∞p̃, x1 = Lx̃1, x2 = Lεx̃2.

Omitting once again the tildas we find

∂v1

∂x1
+
∂v2

∂x2
= 0,

v1
∂v1

∂x1
+ v2

∂v1

∂x2
= − ∂p

∂x1
+

1

ε2Re

(
ε2∂

2v1

∂x2
1

+
∂2v1

∂x2
2

)
,

ε2

(
v1
∂v2

∂x1
+ v2

∂v2

∂x2

)
= − ∂p

∂x2
+

1

Re

(
ε2∂

2v2

∂x2
1

+
∂2v2

∂x2
2

)
.

Assuming that in the boundary layer the viscous and inertial effects are of the same order we
write

ε2Re = O(1).

At the leading order (i.e. neglecting the terms containing ε) we get

(5.44)



∂v1

∂x1
+
∂v2

∂x2
= 0,

v1
∂v1

∂x1
+ v2

∂v1

∂x2
= − ∂p

∂x1
+ α

∂2v1

∂x2
2

,

− ∂p

∂x2
= 0,

where
α =

1

ε2Re
= O(1).
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The boundary conditions are

(5.45)


v1(x1, 0) = v2(x1, 0) = 0, (No-slip), x1 > 0,

limx2→+∞ v1(x1, x2) = 1, x1 > 0

limx2→+∞ p(x1, x2) = po, x1 > 0

From (5.44)3 and (5.45)3 we find p = po (constant), so that ∂p/∂x1 = 0. We look for a solution
in the form

v1(x1, x2) = f
′
(s), s =

x2√
αx1

,

where we write f ′(s) instead of f(s) because the corresponding differential equation is simpler
with this selection. The boundary conditions are

(5.46) f
′
(0) = 0, lim

s→+∞
f
′
(s) = 1.

We have

(5.47)
∂v1

∂x1
= − s

2x1
f
′′
(s),

∂v1

∂x2
=

1
√
αx1

f
′′
(s),

∂2v1

∂x2
2

=
1

αx1
f
′′′

(s),
∂v2

∂x2
=

s

2x1
f
′′
(s).

Moreover
∂v2

∂s
=
∂v2

∂x2

∂x2

∂s
=
f
′′
(s)sα

2
√
αx1

,

so that

(5.48) v2 =
α

2
√
αx1

∫
f
′′
(s)sds =

α

2
√
αx1

[
sf
′
(s)− f(s)

]
.

Recalling (5.45)1, (5.46) we observe that f(0) = 0. Substitution of (5.47)-(5.48) into (5.44)2
leads to

(5.49)



f
′′′

(s) +
1

2
f(s)f

′
(s) = 0,

f(0) = f
′
(0) = 0,

lims→∞ f
′
(s) = 1.

Equation (5.49)1 is the so-called Blasius equation. It is a third order autonomous nonlinear ODE,
which can be only solved numerically. In particular it can be shown that f ′(5) = 0.99, meaning
that for s > 5 the longitudinal dimensional velocity is essentially equal to V∞ (see Fig. 5.7).
The thickness of the boundary layer δ(x1) is conventionally obtained setting s = 5. Hence, going
back to dimensional variables

5 =

(
δ

D

)
√

x1

ε2Re
L

,

so that
δ(x) = 5

√
νx

V∞
.

For y > δ(x) the influence of the boundary conditions can be safely neglected.
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Figure 5.7: Solution of the Blasius equation.



Chapter 6

Non-Newtonian fluids

In the previous chapter we have defined Newtonian fluids as continua where the viscous stress is
linearly proportional to the local strain rate, the constitutive equation being (5.3).

Newtonian fluid is the simplest mathematical model in which viscosity is taken into account.
Though no real fluid fits the definition perfectly, a vast number of real fluids (or gases) can be
adequately described by Newtonian constitutive equation (5.3). A non-Newtonian fluid is any

Figure 6.1: Shear-strain relation of some non-Newtonian fluids.

fluid that departs from the linear behavior between stress and strain rate. Not all non-Newtonian
fluids behave in the same way when the stress is applied. Some, for instance, become more rigid
when the stress increases, others become more fluid. Some react depending on the length of time
in which the stress is applied. Molten polymers, toothpaste, paints, blood, foams, lubricants,
inks, drilling muds, oils, colloidal suspensions, etc. exhibit non-Newtonian behavior. A sketch of
some stress-strain relation of common non-Newtonian fluids is displayed in Fig. 6.1.

In shear-thickening fluids, for instance, viscosity increases with the applied stress, while

90
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in shear thinning fluids viscosity decreases with the applied stress. In Bingham plastics and
Bingham pseudo-plastics a finite yield stress must be overcome before the fluid begins to flow.
There are also fluids in which the apparent viscosity decreases with the duration of the stress
(thixotropic fluids).

In this chapter we present some models for non-Newtonian fluids, analyzing their behavior
in several important flow fields such as steady flow in straight channel and pipes, steady cone
and plate flow, steady flow between concentric cylinders. Reference books on this topic are [2],
[4], [25], [26].

6.1 Reiner-Rivlin fluids

We begin by considering fluids whose constitutive relation is

T = T
(
%,L

)
,

where the current state of the stress depends on the velocity gradient and not on any previous
deformation the fluid might have undergone. From the requirement of stress invariance and
isotropy, the most general form of T is the one of stokesian fluids

(6.1) T = αI + βD + γD2,

where α, β, γ depend on % and on the principal invariants of D. When the fluid is incompressible
equation (6.1) reduces to the following

(6.2) T = −pI + φ1D + φ2D
2,

where −p(x, t) is the Lagrange multiplier due to the incompressibility constraint and where now
φ1 and φ2 depend only on the second and third invariant of D, since trD = 0. Fluids of type (6.2)
are commonly known as Reiner-Rivlin (see [26]) fluids. Incompressible Newtonian fluids are a
special subclass with φ2 = 0 and φ1 constant. Recalling (4.59) and recalling the incompressibility
constraint we get

(T + pI) ·D = T ·D =
(
φ1D + φ2D

2
)
·D = tr

(
φ1D

2 + φ2D
3
)
> 0.

Exploiting Theorem 1, we get
D3 = −i2(D)D + i3(D)I,

so that

(6.3) T ·D = tr
(
φ1D

2 + φ2i3(D)I
)

= φ1tr D2 + 3φ2 det D > 0.

It is then clear that some restrictions must be imposed on the coefficients φ1 and φ2 in order to
satisfy (6.3). To determine the dependence of φ1 and φ2 on the stress invariants i2(D), i3(D)
we consider the simple shear motion considered in Section 2.7. For this flow the velocity field is
given by

v = γ̇x2e1,

where γ̇ = V/h and V is the velocity of the upper plate that drives the motion. We get

D =


0 γ̇

2 0

γ̇
2 0 0

0 0 0

 , D2 =


γ̇2

4 0 0

0 γ̇2

4 0

0 0 0

 ,



92 CHAPTER 6. NON-NEWTONIAN FLUIDS

so that 

i1(D) = tr D = 0,

i2(D) =
1

2

[
(tr D)2 − tr (D2)

]
= − γ̇

2

4
,

i3(D) = det D = 0.

We get

T =


−p+ φ2

γ̇2

4 φ1
γ̇
2 0

φ1
γ̇
2 −p+ φ2

γ̇2

4 0

0 0 −p

 ,
where φ1 and φ2 are even functions of γ̇. The components

T12 = φ1
γ̇

2
,

T11 − T22 = 0,

T22 − T33 = φ2
γ̇2

4
,

are called the shear stress, the first normal stress and the second normal stress. From experi-
mental results on real fluids (see [2]) there is no evidence that fluids exhibiting a zero value for
the first normal stress has a non zero second normal stress. Hence we confine ourselves to fluids
in which φ2 = 0. Moreover, since for the vast majority of viscometric flows (i.e. the class of flows
we are interested in) the quantity det D is identically zero, we get

(6.4) T = −pI + φ1

(
−1

2
tr D2

)
D.

From thermodynamics condition (6.3), we get φ1 > 0. Fluids of type (6.4) are called generalized
Newtonian fluids.

6.2 Some example of generalized Newtonian fluids

Generalized Newtonian fluids are characterized by constitutive equation (6.4) in which the shear
stress is a nonlinear function of the shear rate. We may rewrite the constitutive equation in the
following form

(6.5) T = −pI + 2µ(γ̇)D,

where the function µ(γ̇) is called the apparent viscosity and

γ̇ =

√
1

2
D ·D.

Power-law. These fluids are characterized by an apparent viscosity of the form

µ(γ̇) = kγ̇n−1,
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Figure 6.2

and a constitutive equation of the type

T = −pI + 2kγ̇n−1D,

where the dimensionless parameter n is called the flow behaviour index and k is the so-called
consistency. When n = 1 the classical incompressible Newtonian model is recovered. When
n < 1 the constitutive equation is shear thinning, whereas in the case n > 1 the constitutive
equation is shear thickening. The apparent viscosity is such that

n < 1 (Shear thinning) lim
γ̇→0

µ(γ̇) =∞ lim
γ̇→∞

µ(γ̇) = 0

n > 1 (Shear thickening) lim
γ̇→0

µ(γ̇) = 0 lim
γ̇→∞

µ(γ̇) =∞

The unboundness of the apparent viscosity and the absence of non zero viscosity for vanishing
shear rate actually limits the applicability of power law fluids.

Prandtl-Erying. These fluids are such that

µ(γ̇) = µc
sinh−1(2kγ̇)

2kγ̇
,

where
sinh−1(z) = ln(z +

√
1 + z2),

and

T = −pI + µc
sinh−1(2kγ̇)

kγ̇
D,

and where µc and k are material constants. The apparent viscosity (see Fig. 6.3a) tends to zero
as γ̇ tends to infinity

lim
γ̇→0

µ(γ̇) = µc lim
γ̇→∞

µ(γ̇) = 0.

Powell-Eyring. These fluids are characterized by a three constant model. The apparent vis-
cosity is bounded by a non zero value at both the upper and the lower limits

µ(γ̇) = µ∞ + (µc − µ∞)
sinh−1(2kγ̇)

2kγ̇
,
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Figure 6.3

and

T = −pI +

[
2µ∞ + (µc − µ∞)

sinh−1(2kγ̇)

kγ̇

]
D,

where µc, µ∞ and k are material constants. The apparent viscosity (see Fig. 6.3b) is such that

lim
γ̇→0

µ(γ̇) = µc lim
γ̇→∞

µ(γ̇) = µ∞.

Cross. This is a four constant model where the apparent viscosity is

µ(γ̇) = µ∞ + (µc − µ∞)

[
1

1 + (2kγ̇)n−1

]
,

and

T = −pI + 2

[
µ∞ + (µc − µ∞)

1

1 + (2kγ̇)n−1

]
D,

and where µc, µ∞ and k are material constants. The apparent viscosity (see Fig. 6.4a) is such
that

n > 1 lim
γ̇→0

µ(γ̇) = µc lim
γ̇→∞

µ(γ̇) = µ∞

n < 1 lim
γ̇→0

µ(γ̇) = µ∞ lim
γ̇→∞

µ(γ̇) = µc

Ellis. Since often the flow regime of interest is such that a non zero µ∞ is not required, we may
set µ∞ = 0 in the Cross model, obtaining the so called Ellis model

µ(γ̇) =

[
µc

1 + (2kγ̇)n−1

]
,

with

T = −pI + 2

[
µc

1 + (2kγ̇)n−1

]
D,

and where µc and k are material constants. The main advantage of Ellis model is that it is
possible to construct analytical solution for some simple flows (see [4]).
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6.3 The Bingham model

An interesting generalized Newtonian fluid is the so-called Bingham plastic. This type of fluid
is characterized by the presence of stress threshold below which the fluid is incapable of flowing.
This threshold is termed yield stress and must be overcome in order to observe a non zero strain
rate. The apparent viscosity of a Bingham fluid is a multivalued function for zero strain rate.

In a Bingham fluid the stress T = −pI + S is defined as

(6.6)


S =

(
2µy +

τy
γ̇

)
D, τ > τy,

D = 0, τ 6 τy,

where µy is the viscosity, τy is the yield stress and

τ =

√
1

2
S · S.

Therefore we can write
(τ − τy)+ = 2µyγ̇.

In Fig. 6.5a the stress-strain relation of the Bingham model is shown. As one can notice, when
γ̇ = 0 the stress τ is indeterminate. In complex flows where the shear stress is not constant
throughout the flow, there may be regions where the yield criterion is reached (and the fluid is
flowing) and other regions where τ < τy and the fluid behaves like a rigid body, i.e. with D = 0.
Note that D = 0 does not necessarily imply v = 0. In some peculiar cases analytical solutions
of the Bingham model can be found.

In some particular geometries the Bingham model may lead to paradoxes (e.g. lubrication
paradox, see [19]) consisting in the unyielded phase that does not behave as a rigid body. Recently
Fusi et al. [8], [9], [10], [11] have explained and overcome such paradoxes.

6.4 Papanastasiou model

Even though the Bingham model appears to well model some real fluids (such as foams, pastes,
mayonnaise, suspensions etc), the constitutive equation is in general complex to model numeri-
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cally because of the difficulty in tracking the yield surface. This is essentially due to the singu-
larity of the apparent viscosity when τ 6 τy. The Papanastasiou model overcomes this difficulty
by smoothing the singularity. Indeed in the Papanastasiou model

S =

[
2µy +

τy
(
1− e−nγ̇

)
γ̇

]
D,

and

τ = 2µyγ̇ + τy(1− e−nγ̇),

as shown in Fig. 6.5b. In the limit n→∞ we recover the classical Bingham model.

6.5 Flow of a generalized Newtonian fluid in a pipe

Here we consider the steady flow in a pipe of circular cross section, as the one considered in
Section 5.11 for Newtonian fluids. We assume

(6.7) v = vz(r)ez.

The volumetric flow rate is given by

(6.8) Q = 2π

R∫
0

vzrdr.

When a closed form solution can be calculated for a given apparent viscosity µ(γ̇), then one
can calculate the volumetric flow rate from (6.8). Unfortunately most generalized Newtonian
flows does not admit a closed form solution, so that Q can be evaluated only numerically. In
some cases it is possible to extrapolate a relation between the pressure gradient, the flow rate
and µ(γ̇). A velocity field of the form (6.7) identically satisfies the incompressibility condition.
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Moreover

D =



0 0
1

2

(
∂vz
∂r

)
0 0 0

1

2

(
∂vz
∂r

)
0 0


, D2 =



1

4

(
∂vz
∂r

)2

0 0

0 0 0

0 0
1

4

(
∂vz
∂r

)2


,

so that

(6.9) γ̇ =

√
1

2
D ·D = −1

2

∂vz
∂r

,

where we have taken the minus sign since we expect velocity to be a decreasing function of r.
The principal invariants are

i1(D) = 0, i2(D) = −γ̇2 i3(D) = 0.

Recalling (6.5) the stress tensor is

T =


−p 0 −2µ(γ̇)γ̇

0 −p 0

−2µ(γ̇)γ̇ 0 −p

 ,
From the balance of linear momentum in cylindrical coordinates derived in Section 3.9 we find

(6.10)



0 =
∂p

∂r
,

0 =
1

r

∂p

∂θ
,

0 = −∂p
∂z

+
1

r

∂

∂r
(rTrz),

Therefore p = p(z, t) and ∂p/∂z must not depend on z, namely

p = −Θz + f(t).

Integration of (6.10)3 yields

(6.11) Trz = −Θr

2
,

where we have exploited the symmetry condition Trz = 0. As a consequence

(6.12) µ(γ̇)γ̇ =
Θr

4
.

To proceed further we must specify the viscosity function. If we consider, for instance, power
law fluids where

µ(γ̇) = kγ̇n−1,
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Figure 6.6

then

γ̇ = −1

2

∂vz
∂r

=

(
Θr

4k

)1/n

.

Integrating with the no-slip condition vz(R) = 0 we get

vz(r) =

(
ΘR

4k

)1/n 2R

1/n+ 1

[
1−

( r
R

)1/n+1
]
.

Exploiting (6.8) we also find

Q =

(
ΘR

4k

)1/n 2πR3

3 + 1/n
.

In conclusion we can express the velocity field as a function of Q

(6.13) vz(r) =
Q

πR2

[
1/n+ 3

1/n+ 1

] [
1−

( r
R

)1/n+1
]
.

In Fig. 6.6a we have plotted the nondimensional velocity profiles vz(r)/(Q/πR2) as a function of
the nondimensional radius r/R, for different values of n. We notice that, for the same flow rate,
the velocity field of the shear thinning power-law model (n < 1) is flatter than the Newtonian
model n = 1. When considering a Bingham fluid

τ = |Trz| =
Θr

2
,

which we will be the largest at r = R. Therefore, when ΘR2−1 < τy the yield criterion is
never met and D = 0 throughout the channel. In this case, from the no-slip condition, v = 0
everywhere. If, on the other hand ΘR2−1 > τy then there will be a region adjacent to the wall
where the criterion is met and the fluid flows as a viscous Newtonian fluid and an inner core
where D = 0. The interface separating the two regions is given by

|Trz| = τy ⇐⇒ ry =
2τy
Θ
.
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Hence recalling (6.10)3 and (6.6) we have

∂p

∂z
=

1

r

∂

∂r

[
r

2

∂vz
∂r

(
2µy +

τy
γ̇

)]
,

or equivalently
∂p

∂z
=

1

r

∂

∂r

[
r

(
µy
∂vz
∂r

+ τy sgn
∂vz
∂r

)]
.

Since we are looking for solutions where ∂vz/∂r < 0 we get

−Θr =
∂

∂r

[
r

(
µy
∂vz
∂r
− τy

)]
.

Integrating between ry and r > ry and recalling that ∂vz/∂r = 0 on r = ry we find

(6.14) µy
∂vz
∂r

=
Θ

2
(ry − r) .

Integrating once more between r and R with the no-slip condition vz(R) = 0 we may write the
velocity field for the whole domain as

vz(r) =
ΘR2

4µy

[
1−

( r
R

)2
]
− τyR

µ

[
1− r

R

]
r ∈ [ry, R],

vz(r) =
ΘR2

4µy

[
1− ry

R

]2
r ∈ [0, ry].

The volumetric flow rate can be easily calculated from (6.8). In Fig. 6.6b the velocity profile of
the Bigham fluid flowing in a cylindrical duct is shown.

6.6 Evaluation of Q in a cylindrical duct

For the large majority of generalized Newtonian fluids it is impossible to determine a closed form
solution of the velocity field. Here we show how to evaluate the volumetric flow rate without
obtaining an explicit expression of velocity. Recalling definition (6.8) and integrating by parts
we get

(6.15) Q = 2π

vz(r)r2

2

∣∣∣∣R
0︸ ︷︷ ︸

=0

−
R∫

0

r2

2

(
∂vz
∂r

)
dr

 = −π
R∫

0

r2

(
∂vz
∂r

)
dr.

Integrating once more by parts we find

(6.16) Q =
π

3

−R3 ∂vz
∂r

∣∣∣∣
R

+

R∫
0

r3

(
∂2vz
∂r2

)
dr

 .
Now recall (6.9) and set

γ̇w = γ̇(R) = −1

2

∂vz
∂r

∣∣∣∣
R

.
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Relation (6.16) can be rewritten as

(6.17) Q =
π

3

2R3γ̇w +

R∫
0

r3

(
∂2vz
∂r2

)
dr

 .
Exploiting the substitution

γ̇(r) = −1

2

∂vz
∂r

∣∣∣∣
r

dγ̇

dr
= −1

2

∂2vz
∂r2

,

we can rewrite (6.17) as

Q =
2π

3

R3γ̇w −
γ̇w∫
0

r3(γ̇)dγ̇

 .
Equation (6.12) provides

r = r(γ̇) =
4µ(γ̇)γ̇

Θ
,

while γ̇w is found solving

(6.18) µ(γ̇w)γ̇w =
ΘR

4
.

In conclusion

(6.19) Q =
2π

3

R3γ̇w −
64

Θ3

γ̇w∫
0

µ3γ̇3dγ̇

 .
Once γ̇w is obtained from (6.18), we can integrate (6.19) and get Q as a function of the pressure
gradient Θ. Notice that, when µ is constant (Newtonian fluid) we get

(6.20) Q =
πΘR4

8µ
,

which is exactly the volumetric flow rate obtained in Section 5.11.

6.7 Obtaining µ(γ̇) from pressure drop and flow rate

Capillary viscometer are tools designed to reproduce the fully developed flow of type (6.7) in
cylindrical ducts. Their use is based on the idea that measures of pressure drops and flow rates
can provide, via balance of linear momentum, the expression of µ(γ̇). We shall see that the
problem can be reduced to obtaining µ as a function of a characteristic shear rate γ̇c and of the
shear stress at the wall τw, where

(6.21) γ̇c =
2Q

πR3
,

is the shear rate at the wall for a Newtonian fluid. Recalling (6.9) and (6.15) we find

(6.22) γ̇c =
4

R3

R∫
0

r2γ̇(r)dr.
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From (6.11) we find

(6.23) τw = Trz

∣∣∣
R

= −ΘR

2
,

so that τw can be easily evaluated from pressure drop measurements. We get

(6.24) r = −2Trz
Θ

=
RTrz
τw

.

From (6.12)

µ(γ̇)γ̇ =
ΘR

4

Trz
τw

.

When the above is invertible
γ̇ = γ̇(Trz).

Hence, from (6.22)

(6.25) γ̇c =
4

R3

R∫
0

γ̇(Trz)r
2(Trz)dr.

Exploiting the substitution (6.24)

Trz =
rτw
R

dTrz
dr

=
τw
R
,

we find

γ̇c =
4

τ3
w

τw∫
0

γ̇(Trz)T
2
rzdTrz.

If we now differentiate the above w.r.t. τw we get

dγ̇c
dτw

= −3
γ̇c
τw

+ 4
γ̇(τw)

τw
,

that, after some algebra can be rewritten as

4

(
γ̇w
γ̇c

)
= 3 +

d ln(γ̇c)

dτw
· dτw
d ln(τw)

where we have defined γ̇w = γ̇(τw). Setting

1

m
=
d ln(γ̇c)

d ln(τw)
,

we get

(6.26) γ̇w = γ̇c

(
3m+ 1

4m

)
.

Equation (6.26) is the Mooney-Rabinowitsch equation. Experiments can be run with different
pressure drops to obtain a curve of γ̇c as a function of τw, recall (6.21) and (6.23). Using a
log scale the value m can be obtained from the slope of the curve. From the definition of the
apparent viscosity evaluated at the wall (6.18) we find

(6.27) µ(γ̇w) = − τw
2γ̇w

,

which provides the apparent viscosity for the specific flow considered.



102 CHAPTER 6. NON-NEWTONIAN FLUIDS

Figure 6.7: Schematic representation of the cone and plate rheometer. The angle β is commonly
less that 10 degrees.

6.8 Cone and plate flow for a generalized Newtonian fluid

The cone and plate rheometer is a device used to measure viscosity and normal stress coefficients.
A schematic representation of this device is shown in Fig. 6.7. The flow is driven by the rotation
of the cone about the e3 axis. The fundamental relationships for this kind of rheometer can be
developed using the spherical polar coordinates introduced in Section 1.5. In particular we look
for a velocity field of the form

v = vφ(r, θ)eφ,

where θ represent the polar angle. The boundary conditions are

(6.28)



v
(
r,
π

2

)
= 0,

v
(
r,
π

2
− β

)
= Ωr cosβ eφ,

Tn = −patmn

where Ω is the angular velocity of the rotating cone, β is the angle formed between the cone and
the plate, patm is the atmospheric pressure acting on the free lateral surface of the fluid whose
normal is n. From the boundary condition (6.28)2 it is clear that the dependence of vφ on r
must be linear, that is

(6.29) v = rω(θ)eφ.

Recalling the definition of the gradient of a vector in spherical coordinates given in Section 1.5,
we can easily prove that

D =
1

2


0 0 0

0 0 ω
′
(θ)− cot θω(θ)

0 ω
′
(θ)− cot θω(θ) 0

 ,
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D2 =
1

4


0 0 0

0 [ω
′
(θ)− cot θω(θ)]2 0

0 0 [ω
′
(θ)− cot θω(θ)]2

 .
Moreover

(6.30) γ̇ =

√
1

2
D ·D = − sin θ

d

dθ

(
ω(θ)

sin θ

)
= cot θω(θ)− ω′(θ),

where we have taken the minus sign because we want

d

dθ

(
ω(θ)

sin θ

)
< 0.

The only non-zero stress components of the extra stress are

Tθφ = Tφθ = −µ(γ̇)γ̇.

Next we observe that γ̇ is a function of θ only and so is Tθφ. The equations of linear momentum
(see Section 3.9) reduce to

(6.31)



−%rω2 = −∂p
∂r
,

−%r2ω2 cot θ = −∂p
∂θ
,

0 = − 1

sin θ

∂p

∂φ
+

1

sin2 θ

∂

∂θ
(Tθφ sin2 θ).

Since Tθφ depends only on on θ, we conclude that p must be linear in φ

p = A(θ)φ+B(r, θ).

Recalling boundary condition (6.28)3 we see that A ≡ 0 and p = p(r, θ). Differentiating (6.31)1
w.r.t θ and (6.31)2 w.r.t r and subtracting we get

2%rω[ω
′ − ω cot θ],

implying either ω = 0 or

ω
′

ω
= cot θ ⇐⇒ ω = A sin θ,

with A constant of integration. Unfortunately neither of these solutions satisfy the boundary
conditions. This seems to indicate that our specific form of the velocity field is meaningful only
when inertial effects are negligible, that is when the left hand sides of equations (6.31) are set to
zero. In this case p is independent of θ and r and therefore constant and equal to patm throughout
the fluid. From the third component of (6.31) we get

(6.32) Tθφ = − C

sin2 θ
,

with C constant of integration. Let us see how to relate this constant to the applied torque
m = me3. We recall that in our case the torque is given by

m = me3 =

∫
S

(
x×Tn

)
dσ,
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where S is the lateral surface of the cone whose height is (see Fig. 6.7)

H = R sinβ.

The level arm x evaluated at the lateral surface of the cone S is

x = (r cosβ cosφ) e1 + (r cosβ sinφ) e2,

or
x = (r cos2 β) er + (r cosβ sinβ) eθ,

when expressed in spherical coordinates. The stress the fluid is acting on S is

Tn
∣∣∣
S

= pa eθ − Tθφ
∣∣∣
S
eφ,

so that (
x×Tn

)∣∣∣
S

= par cos2 βeφ +
(
Tθφr cos2 βeθ − Tθφr cosβ sinβer

)∣∣∣
S
.

Recalling (1.32) it is easy to show that(
Tθφr cos2 βeθ − Tθφr cosβ sinβer

)∣∣∣
S

= −Tθφ
∣∣∣
S
r cosβe3.

so that (
x×Tn

)∣∣∣
S

= par cos2 β
(
− sinφe1 + cosφe2

)
− Tθφ

∣∣∣
S
r cosβe3.

As a consequence

m =

 2π∫
0

dφ

R∫
0

dr
[
par

2 cos3 β
(
− sinφe1 + cosφe2

)
− Tθφ

∣∣∣
S
r2 cos2 βe3

] e3,

which reduces to

m = 2π

 R∫
0

[
−Tθφ

∣∣∣
S
r2 cos2 β

]
dr

 e3.

From (6.32)

Tθφ

∣∣∣
S

= − C

cos2 β
,

hence

m =
2πCR3

3
e3.

The torque m = me3 is such that

C =
3m

2πR3
,

and

(6.33) Tθφ = − 3m

2πR3 sin2 θ
.

We have obtained an expression relating the shear stress with the applied torque (the relation
depends also on the geometry). To determine µ(γ̇) we need to use (6.33) in conjunction with the
expression of Tθφ for a specific constitutive equation.
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Small angle approximation Let us consider now the special case in which the angle β is much
less than one, i.e. β � 1. It is convenient to introduce the angle

α =
π

2
− θ.

In the fluid domain α < β � 1 and

cos θ = sinα = α+O(α2) = α+O(β2),

sin θ = cosα = 1 +O(α2) = 1 +O(β2),

We have
Tθφ = − C

sin2 θ
= − C

cos2 α
= −C +O(β2).

From (6.30)

γ̇ =
(

1 +O(α2)
) ∂

∂α

[
w
(

1 +O(α2)
)]

Recalling that α� 1 we expand ω as

ω(α) = K + Jα+O(α2),

where the constant of integration can be obtained imposing the boundary conditions (6.28)
ω
∣∣∣
θ=π/2

= ω
∣∣∣
α=0

= K = 0,

ω
∣∣∣
θ=π/2−β

= ω
∣∣∣
α=β

= Jβ = Ω.

Therefore
ω(α) =

Ωα

β
+O(β2).

The approximate value of γ̇ is

γ̇ =
Ω

β
+O(β2).

As a consequence

(6.34) µ

(
Ω

β

)
=

3m

2πR3

(
β

Ω

)
.

Hence, for a given geometry (R, β) we may determine the form of the functional µ by changing
m and Ω. Note that in the small angle approximation (where inertial effects are ignored) both
Tθφ and γ̇ can be considered constant throughout the fluid domain.

Finite angle approximation: power law fluids Relation (6.34) relates µ to the applied
torque, Ω, β and R in the case of small angle β and negligible inertial effects. What happens
when these assumptions are relaxed? Whereas things get really more complicated when inertial
effects are considered, we may still get some closed form solutions even in the case in which
the angle β is not small. To obtain something similar to (6.34) we must consider particular
constitutive equations. Let us focus, for instance, on the power-law models introduced earlier.

A power-law fluid undergoing a flow motion of type (6.29) is such that

(6.35) Tθφ = −µ(γ̇)γ̇ = −kγ̇n.
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Recalling (6.29) and (6.32) we find

(6.36) γ̇ = − sin θ
d

dθ

( ω

sin θ

)
=

(
−
Tθφ
k

)1/n

=

(
C

k

)1/n [
sin θ

]−2/n
,

so that
d

dθ

( ω

sin θ

)
= −

(
C

k

)1/n [
sin θ

]−1−2/n
.

Integrating with boundary condition ω(π/2) = 0, we find

(6.37) ω(θ) =

(
C

k

)1/n

sin θ

π/2∫
0

[
sin ξ

]−1−2/n
dξ.

We can obtain Ω evaluating ω at the cone surface and exploiting (6.28)2. The integral in (6.37)
can be easily computed when 1 + 2/n is an integer. Then, defining

F(β) =

π/2∫
π/2−β

[
sin ξ

]−1−2/n
dξ,

we get, recalling the boundary condition (6.28)2,

Ω =

(
C

k

)1/n

F(β).

From (6.36) we find

γ̇ =
Ω

F(β)
[

sin θ
]2/n

γ̇w =
Ω

F(β)
[

cosβ
]2/n

.

From (6.35) we easily find that

µ(γ̇) = k

(
Ω

F(β)

)n−1 [
cosβ

]2/n−2

When n = 2 we find

F(β) =

π/2∫
π/2−β

[
sin ξ

]−2
dξ = tanβ,

and
µ(γ̇) = k

(
Ω

sinβ

)
.

Recalling (6.32) we get

Tθφ

∣∣∣
w

= −µ(γ̇w)γ̇w = − 3m

2πR3 cos2 β
,

so that

(6.38) µ(γ̇w) =
3m

2πR3 cos2 β

sinβ

Ω
.
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divergence theorem, 12
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Euler’s formula, 26
Eulerian coordinates, 20

first law of thermodynamics, 39
fixed point deformation, 22
flow behaviour index, 93
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frame indifference, 43

Gauss-Green formula, 12
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Hagen-Poiseuille flow, 77
heat flux, 39
heating rate, 40
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Helmoltz equation, 53
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homogeneous deformation, 22

ideal fluid, 47
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infinitesimal strain, 24
inner product of two vectors, 5
internal energy, 39
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Jukowski potential, 61

Kelvin’s theorem, 54
kinematic viscosity, 71
kinetic potential, 51

Lagrange’s theorem, 54
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Lagrangian coordinates, 20
left and right Cauchy-Green tensors, 23
local form of motion equation, 37
local time derivative, 21

Mach number, 64
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material time derivative, 21
material volume, 20
Mooney-Rabinowitsch equation, 101
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Newtonian fluid, 69
Newtonian fluids, 69
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non-Newtonian fluid, 90
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