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Preface
These notes have been inspired by a series of lectures I have taught during the last years

at the Scuola Normale Superiore in Pisa. The lectures were addressed to the students of the
Ph.D. Programme “Mathematics for Industrial Technologies”. Their general purpose was to
provide several examples of how a mathematical model for a given process can be formulated,
starting from the raw material, i.e. some basic physical information. Thus particular attention
was devoted to the modelling stage, still keeping the necessary level of mathematical rigour.
Topics like rescaling, usually not a main concern for mathematicians, find here some emphasis
to point out that solving real world problems requires quite often more than the knowledge of
fundamental theorems. Not only one has to understand the physical (or biological, etc.) nature
of the problem, but even once a sensible set of equations is obtained, then practical questions
arise that are not in mathematical books; for instance: how to understand if some effects are
dominant and some are negligible. This is normally crucial, because modelling is in many cases
the result of a compromise and it is very important to know the relative weight of the various
ingredients entering the final equations. Also it may happen that the process can have concur-
rent phenomena taking place at time and space scales very different from each other and that it
goes through several stages in which the relative importance of the various simultaneous mech-
anisms changes, sometimes producing a radical modification of the mathematical structure of
the model. All these circumstances contribute to make the technomathematician (so to speak)
a very peculiar character that needs also a very peculiar training. This motivates the many
digressions the reader will find. In this notes I have selected some topics having diffusion as a
common denominator. Even more specifically, for obvious reasons of space I further restricted my
attention to problems exhibiting free boundaries, which occur with great frequency in a variety
of applications. Diffusion is ubiquitous in nature and plays a fundamental role in innumerable
processes quite relevant to many applied sciences and to industrial technologies. Diffusion is also
responsible for evolution of biological organisms, since it intervenes in transmitting the chemical
signals regulating e.g. growth mechanism and the formation of coloured patterns in animals coat.

As a mechanism of mass transfer (but the same applies for instance to the propagation of
heat) diffusion is a macroscopic phenomenon having its roots in the seemingly chaotic motion
of molecules. The latter, however, does not take place in the absence of rules, but is governed
by probabilistic laws. Defining in an appropriate way the average of microscopic quantities it
is often possible to derive the laws obeyed by such averages, which can receive a more familiar
interpretation on the macroscopic scale.

This is precisely the way Statistical Mechanics leads from the immensely complex mechanics
of a huge number of particles to the laws of thermodynamics.

With techniques of the same kind it is possible to show that Fick’s law 1 (the basic law of mass
transfer in dilute solutions, stating that mass flux is proportional to the gradient of mass concen-
tration), is the eventual macroscopic interpretation of the Brownian motion of inhomogeneously
distributed molecules of the same species.

The parallel law governing heat transport (heat flux proportional to temperature gradient)
is known as Fourier’s law 2. We will not enter the discussion about the validity of these linear
laws, which however work quite well in not too extreme situations. Fick’s and Fourier’s laws
belong to a class of experimental laws in which the gradient of some quantity plays the role of

1Adolf Eugen Fick (1829-1901), German physiologist. He formulated his law of diffusion in 1855. Inventor of
the contact lens (1887). Also known for the Fick Principle which allows to calculate the heart output from the
oxygen uptake or the carbon dioxide output during breathing.

2Joseph Fourier (1768-1830), the famous mathematician. His treatise on the Analytical Theory of Heat ap-
peared in 1822.
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a driving force. Another member of this class is Darcy’s law 3 (describing how liquids move
through porous materials like sand), which we will also consider.

In these notes we will not deal with the statistical origin of diffusion, nor with processes
deviating from the Fickian behaviour. We will present some problems including linear diffusion
and characterized by the presence of free (i.e. unknown) boundaries.

The prototype of this class of problems is the celebrated Stefan problem (heat conduction
with phase change), on which we will spend some more time, although for reasons of space
our approach will be far from being encyclopedic. On the other hand there are several books,
partially or totally devoted to this subject and many survey papers (see [15], [22], [23], [26], [30],
[33], [55], [65], [68], [74], [80], [81], [82]).

There are many reasons to start with an overview of the Stefan problem:
1) Phase change takes place in an impressive number of industrial processes (metal casting,

mould injection, crystal growth, etc.).
2) The standard Stefan problem has a simple mathematical formulation and has been studied

extensively.
3) Many other processes of different physical nature can be reduced to a problem of Stefan

type.
On the other hand we will have the opportunity to see that the occurrence of free boundaries

in mass or heat transport processes is quite frequent and gives rise to an amazing variety of
mathematical problems. Indeed we will illustrate a number of problems of industrial relevance
(either quite classical or very recent) having the structure of a boundary value problem for a
parabolic partial differential equation (i.e. the equation governing diffusion) in which part of the
boundary in unknown. Having already illustrated the fundamental mathematical aspects for the
Stefan problem, the emphasis in the remaining parts of the notes will be on modelling.

Keeping in mind the purpose of these notes we will confine to problems whose nature is
relatively easy to explain, once the basic facts about the classical Stefan problem are known.
However, at the same time we will at least take the opportunity to quote more complicated
problems in the same area, with the hope of arising the curiosity of the reader.
Having focused so much on on a very particular class of free boundary problems we feel the obli-
gation to point out that free boundaries appear in a really great variety of phenomena described
by differential equations and systems, most of the time of remarkable difficulty. For reasons of
space here we adopt a very restricted view, even within the class of free boundary problems for
parabolic equations. Thus the reader must be aware that this is not a book, in the sense that
completeness and full generality are out of our scopes, and references are also given sparingly.

We hope that these notes can provide some teaching material for higher courses in applied
mathematics and can anyway be helpful to students (even not mathematicians!) having an
interest for genuine applications of mathematics. For the latter reason we have treated with
perhaps excessive attention some introductory details.

I like to thank Professor Domingo A. Tarzia, my longtime friend, who kindly proposed me
to write these notes and who took care of their publication.
Let me recall that Prof. Tarzia has collected an impressively large bibliography on free bound-
ary problems, extremely useful for everybody working in this area. The bibliography is avail-
able at the internet address http:\\www.austral.edu.ar\fce\archives \mat\Tarzia-MAT-SerieA-
2(2000).pdf.
I wish to thank MAT, SIMAI, and I2T3 (Innovazione Industriale Tramite Trasferimento Tecno-
logico) for the typing work.

3Henry Darcy (1803-1858), French hydrologist. He formulated his law in 1855.
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Chapter 1

Balance equations

1.1 General balance laws

Let g be any physical quantity for which we may define a density u (~x, t) and a current density
~j (~x, t). If dσ is a surface element with normal unit vector n, the amount of g crossing dσ per
unit time is ~j · ~n dσ.

While the procedure to define u is standard, the definition of ~j has an experimental basis
and is one of the main elements in formulating the mathematical model for the evolution of g.

The simplest case is the one in which g is just transported in a velocity field ~v: then we
have the advection current ~jc = u~v. This happens for instance in the case in which g is the mass
density ρ of a moving medium.

It is well known that mass conservation is expressed by the continuity equation

∂ρ

∂t
+ div(ρ~v) = 0;(1.1)

which is a particular case of a more general conservation law, deductible on the basis of the same
arguments leading to (1.1) . Such a law, referred to the quantities u, ~j reads

∂u

∂t
+ div~j = 0.(1.2)

If instead of being conserved g is produced (or eliminated) at a rate f in the unit volume, a
source term appears in the balance law 1:

∂u

∂t
+ div~j = f.(1.3)

Quite frequently the evolution of g is associated to the motion of a continuum medium of
density ρ and velocity ~v. Then we must keep in mind the following facts.

1The derivation of (1.3) is quite simple and well known. If one is not familiar with it, it’s a useful exercise to
count molecules of a chemical species which migrate with a velocity field ~v (~x, t) and are produced at the rate of
f (~x, t) moles cm−3 sec−1 . At time t consider a domain of volume V containing N moles and follow the motion of
the domain to a new configuration occupying a volume V + ∆V after a time ∆t. The Lagrangian derivative dn

dt
of

the concentration n = N
V

(we refer to the average concentration, but it may represent the actual concentration if

V is taken ”infinitesimal”), is the limit as ∆t → 0 of the ratio 1
∆t

[
N+∆N
V +∆V

− N
V

]
, where ∆N = V f∆t at the first

order (f is the average of f over V ).
This can be rewritten as ∆N

∆t
1

V +∆V
− N

V +∆V
∆V/∆t

V
.

The ratio ∆V/∆t
V

is the specific dilation rate and thus tends to div ~v, while ∆N
∆t

1
V +∆V

tends to f . Therefore
the limit ∆t → 0 gives dn

dt
+ n div ~v = f , or ∂n

∂t
+ div (n~v) = f .

6
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(i) the density (or concentration) of g is defined through a specific capacity w (the amount
of g per unit mass of the supporting medium) via the equality

u = ρw,(1.4)

(ii) the current density is the sum of the advection term

~jc = ρw~v(1.5)

and of another term, due to a specific transport mechanism of g (for instance diffusion), that we
denote by ~j′ :

~j = ~jc +~j′.(1.6)

If we use (1.4), (1.5), (1.6) and mass conservation (1.1), we re-interpret (1.3) as follows:

ρ

[
∂w

∂t
+ ~v · ∇w

]
+ div~j′ = f,(1.7)

to which (1.1) has still to be associated together with the evolution equation for ~v (momentum
balance), if the velocity field is not prescribed.

In all equations above we have tacitly supposed that we were dealing with differentiable
functions. Let us examine what happens in the presence of discontinuities.

1.2 Propagation of discontinuities

We still refer to the generic conservation law (1.2). Suppose that a moving regular surface ζ (t)
is a set of discontinuity for u and ~j, which are C1 on both sides of ζ. We define the positive and
the negative side of ζ by choosing the orientation of the unit normal vector ~n and we denote by
u+, ~j+ the limits for (~x, t) tending to ζ+.

The jumps [u],
[
~j
]
are defined by

[u] = u+ − u−,
[
~j
]

= ~j+ −~j−.(1.8)

~V
~n

u+, ~j+

u−, ~j−

ζ(t)

Figure 1.1: Propagation of discontinuities.
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Let ~V (~x, t) be the propagation velocity ζ (t). An element dσ on ζ sweeps the volume ~V · ~n
dσ dt in the time interval (t, t + dt). If for instance on dσ we have u+ > u−, ~V · ~n > 0, then the
expression

~V · ~n [u] dσ

represents the loss rate of our quantity, due to the displacement of ζ (t) (if one of the inequalities
is reversed we have a gain rate).

If we still impose that the quantity g has to be conserved, we must say that the loss (or gain)
rate equals the difference between the local outgoing current ~j+ · ~n dσ and the incoming current
~j− ·~n dσ: the current density field takes away from ζ+ more (less) material than it brings to ζ−.

Thus the conservation law on the moving discontinuity surface ζ (t) is expressed by the well
known Rankine-Hugoniot condition:

[u] ~V · ~n =
[
~j
]
· ~n.(1.9)

Note that the presence of possible (bounded) sources has no influence.
If ζ is a discontinuity surface for the mass density in a medium with velocity field ~v, the conser-
vation condition (1.9) accompanying (1.1) is

[ρ] ~V · ~n = [ρ~v] · ~n.(1.10)

Using the identity [ab] = [a] b+ + a− [b] = [a] b− + a+ [b], we see that (1.10) shows how the
jump [~v] · ~n is related to [ρ] and to the relative velocity of the medium with respect to the
discontinuity surface ζ:

[ρ]
(

~V − ~v+
)
· ~n = ρ− [~v] · ~n,(1.11)

[ρ]
(

~V − ~v−
)
· ~n = ρ+ [~v] · ~n.

Note that (1.11) are frame invariant.
If ζ (t) is represented by the equation

S(~x, t) = 0,(1.12)

we have
~V · ∇S +

∂S

∂t
= 0(1.13)

and multiplying (1.9) by |∇S|, we may write it in the equivalent form:

− [u]
∂S

∂t
=

[
~j
]
· ∇S.

In the situation described by (i), (ii) of the previous section, i.e. when g evolves in a medium
of density ρ and velocity ~v, using (1.4), (1.5), (1.6) and (1.11) we may rewrite (1.9) in the form

ρ−
(

~V − ~v−
)
· ~n [w] =

[
~j′

]
· ~n(1.14)

or equivalently
ρ+

(
~V − ~v+

)
· ~n [w] =

[
~j′

]
· ~n.(1.15)

As we said, the presence of (bounded) distributed sources or sinks does not affect (1.9).
However, there are cases in which non-preserving phenomena occur on an interface and the
situation is completely different from the one we have illustrated so far. A clear example is
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provided by fast chemical reactions between two diffusing species. Diffusion of a diluted substance
in a still enviroment is governed by Fick’s law:

~j = −d∇c(1.16)

where c is the substance concentration and d > 0 is the diffusion coefficient.

On an interface separating two diffusing species of concentrations c1, c2 which react infinitely
fast we have the following conditions:

c1 = c2 = 0,(1.17)

α~j1 · ~n = −~j2 · ~n,(1.18)

α being the ratio of the mass involved in the reactions, expressing the fact that the reaction is
sustained by the two diffusive fluxes at the reaction site.

1.3 Heat conduction

The heat capacity of a thermal conductor at a temperature T is defined by the relationship

dQ = C(T ) dT,(1.19)

where dQ is the amount of heat that must be supplied to the body to raise its temperature from
T to T + dT . The heat capacity of the unit mass, namely the specific heat c (t), is a property of
the material of which the conductor is made, but it also depends on the way the amount of heat
is supplied.

If we recall the first principle of thermodynamics

dQ = dU + dL(1.20)

(dU variation of internal energy, dL work made by the system during the transformation), we can
easily emphasize the difference between the heat capacity at constant volume (Cv), corresponding
to dL = 0, and the heat capacity at the constant pressure (Cp), in which we have the contribution
of dL = P dV (P pressure, dV volume variation).

The definition of internal energy may be complicated, because it involves the potential energy

of molecules interaction, but for ideal gases we know that U =
3
2
NkT (N number of molecules,

k Boltzmann’s constant) 2. Thus Cv = 3
2Nk.

In the case of constant pressure we have

dQ = d(U + PV ) = dH,(1.21)

where H is the enthalpy of the system, which we may define as

H(T ) =
∫ T

T0

Cp (ξ) dξ,(1.22)

up to a constant (the selection of the temperature T0 is arbitrary).
2Remembering that N = NmNA (Nm: number of moles, NA: Avogadro’s number) and that the universal gas

constant is R = kNA, the product kN can be also expressed as NmR.
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At this point we try to use equations (1.4)− (1.7) to write down the heat balance equation
at constant pressure. We identify the quantity w with the specific enthalpy

h(T ) =
∫ T

T0

cp (ξ) dξ,(1.23)

i.e. the enthalpy of the unit mass, and we define the non-convective enthalpy current density by
means of the Fourier’s law

~j′ = −k(T )∇T,(1.24)

k > 0 being the heat conductivity of the material.
Thus in our case (1.7) becomes (neglecting the work of thermal dilation3)

ρcp
∂T

∂t
+ ρcp~v · ∇T − div (k (T )∇T ) = 0(1.25)

where ρ has to be prescribed as a function of T (since we are considering an isobaric process).

We will review some basic facts about the linear version of (1.25) (i.e. constant coefficients)
in the next Chapter.

A very important procedure when dealing with real problems is rescaling. Let us consider for
simplicity the case of constant coefficients. Looking at the shape of the heat conducting body it
is usually clear how to select a reference length L4. Likewise the initial or boundary conditions
indicate a reference temperature T0. We denote by ∇ and by ∆ the gradient and the Laplacian

in the non-dimensional coordinates and we put T =
T

T0
.

Velocity can be rescaled by v0, e.g. the maximum modulus of ~v. Thus we define the nondi-

mensional vector ~v =
~v

v0
. The choice of time scale is generally more delicate. For the moment

we set t =
t

t0
with t0 to be defined. Adopting the new variables, equation (1.25) takes the form

∂T

∂t
+

v0

L/t0
~v · ∇T − t0

td
∆T = 0,(1.26)

where td =
ρcL2

k
is the natural time scale associated to heat diffusion.

If we select t0 = td and we put L/td = vd, (1.26) reduces to

∂T

∂t
+

v0

vd
~v · ∇T −∆T = 0.(1.27)

The number
Pe =

v0

vd
=

v0Lρc

k

is called Peclet number and it expresses the relative importance of advection vs. diffusion. If
Pe << 1, then the advection term can be neglected and (1.26) simplifies to

∂T

∂t
−∆T = 0.(1.28)

3Again we are taking a simplified approach to heat diffusion. Thermal dilation not only affects energy balance,
but is the cause of buoyancy effects in fluids. For a description of the general theory see [75]

4It may happen that the geometry of the body suggests different rescalings for different spatial coordinates.
This is the case for a thin layer or a slender body (e.g. a thin rod). Proceeding in this way it is often possible to
obtain significant simplifications
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If on the contrary Pe >> 1, then we expect that diffusion has little importance and the choice
of time scale should be changed.

In this case the natural choice is the one which reduces to 1 the coefficient of ~v ·∇T in (1.26),

namely t0 =
(v0

L

)−1
. At the same time we have now

t0
td

=
k

ρcv0L
=

1
Pe

<< 1 and we replace

(1.26) by
∂T

∂t
+ ~v · ∇T = 0.(1.29)

However, we must notice that this time we have changed the character of the equation (from
a second order parabolic equation to a first order (hyperbolic) equation). Such a modification
has substantial implications. For instance, when we solve (1.26) in a bounded spatial domain Ω
with regular boundary ∂Ω we must specify the temperature T (x, 0) and e.g. the temperature
on the whole boundary ∂Ω during a given time interval. When we come to equation (1.29),
besides the initial temperature we must assign T only on those points of ∂Ω such that ~n · ~v < 0
(~n normal to ∂Ω pointing outwards: the material enters the domain and we have to say with
what temperature). The data formerly prescribed on the complementary part of ∂Ω for equation
(1.26) will not generally match the solution of (1.29).

Such a conflict is originated by the fact that the approximation leading to (1.29) does not
respect the nature of the original problem and is in fact admissible as long as ∆T does not

become so large to compensate the smallness of
1
Pe

.

A circumstance like this occurs any time we introduce approximations deeply affecting the
mathematical structure of a differential equation (for instance, also for ordinary differential
equations, if we neglect the leading order term). We say that we have a singular perturbation
and we are forced to study the original (unmodified) equation in a boundary layer. This is a
large and important branch of mathematics 5.

Continuing our analysis of equation (1.26), there may be cases in which the natural time scale
t0 is suggested by another parallel process. For instance another diffusive process of Fickian type

in which the (material) diffusivity d is much smaller than the heat diffusivity α =
k

ρc
. In that

case it may be convenient to rescale time by
∧
td=

L2

d
. Now the coefficient of the Laplacian in

(1.26) is
∧
td

td
=

α

d
>> 1 and we rewrite (1.26) in the form

d

α

∂T

∂t
+

v0L

α
~v · ∇T −∆T = 0,

where
v0L

α
= Pe. Thus, if Pe << 1, this time we are led to conclude that we may simplify (1.26)

to
∆T = 0.(1.30)

In this case the time evolution of the thermal field is so fast (in the chosen time scale) that
we may consider it quasi-steady.

Time variations of the temperature are driven only by the boundary data (provided they are
slow enough!).

Once more we have changed the nature of the equation (from parabolic to elliptic). An
obvious consequence is that we are not allowed to prescribe initial data. If we need to describe
the correct time evolution from t = 0 we must revert to the time scale td and compute the

5See e.g. the recent book by S. Howison [58] and the very classical book by H. Schlichting and K. Gersten [75].
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solution for a time interval (which will anyway be much smaller than
∧
td) long enough for T to

approach its asymptotic value.

Remark 3.1.
We will always assume, without mentioning it, that ρ, c, k are strictly positive. In deriving

equation (1.25) we have excluded that any phase change takes place.

1.4 Inflow and outflow boundary conditions

It frequently happens to consider diffusion problems within domains which are crossed by a liquid
(typically the solvent). Here we discuss very briefly what kind of boundary conditions should be
imposed in those cases.

We suppose to work in a frame of reference in which the boundary of the domain is at rest.
If ~n is the outer normal and ~v is the fluid velocity then we have inflow if ~v · ~n < 0 and outflow
if ~v · ~n > 0.We refer to the case of solutions, but the extension to heat conduction-advection is
obvious.

(i) “Standard” conditions.
It is always possible to impose the value of concentration (Dirichlet) or of its normal deriva-

tive (Neumann) or of a linear combination of the two. This is what can be found on any book
on PDE’s. We will return to the question of the initial-boundary-value problems for parabolic
equations in the next Chapter. However we take the opportunity here to point out that even this
seemingly innocent subject can hide unexpected difficulties. Suppose for instance that in a layer
0 < x < l it is possible to guarantee that concentration takes a value c0(t) at x = 0, while at

x = l the extraction rate of the solute is prescribed as −D
∂c

∂x
= ϕ0 > 0. Here we suppose that

ϕ0 is the maximum rate attainable in the process under consideration. To make the problem
even simpler we take v = 0. Of course the initial concentration cin(x) ≥ 0 must be prescribed

and the governing differential equation is
∂c

∂t
−D

∂2c

∂x2
= 0. This problem is absolutely standard,

but we must be aware that, since we are dealing with a concentration, the constraint c(x, t) ≥ 0
must always be fulfilled. If we just solve the stated problem blindly, depending on the data it
may happen that, starting from x = l, a negativity set appears at some time t∗. Clearly we are
entering a non-physical stage, because we are imposing an extraction rate no longer compatible
with the amount of solute actually present in the solution. Therefore, for t > t∗ we have re-
placed the flux boundary condition with the Dirichlet condition c(l, t) = 0. Once we have done

this, we should still keep the outgoing flux −D
∂c

∂x
under surveillance. Indeed, it may happen

that if the boundary concentration c0(t) increases fast enough, the extraction rate needed to
keep c(l, t) = 0 exceeds the value ϕ0. In that case we have to switch to the former condition

−D
∂c

∂x
= ϕ0 > 0, and so on. Thus the problem turns out to obey the unilateral constraints

c(l, t) ≥ 0, −D
∂c

∂x
|x=l ≤ ϕ0, according to which the active boundary condition must be selected.

(ii) Contact with a well-stirred reservoir.
For simplicity we consider a layer 0 < x < l with permeable walls (see fig. 1.2).

(a) Inflow.

Fluid is injected with velocity v through x = 0 (we consider a portion of the inflow surface of
area S). The well stirring hypothesis means that the concentration cres in the reservoir depends
on time only. The thickness L of the reservoir decreases in time.
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stirred reservoir

c = cres

diffusion-advection

domain

piston

x = L(t) x = 0 x = l

Figure 1.2: Injection of a solution from a well stirred reservoir.

The mass balance in the reservoir is

d

dt
(Lcres) = LF − j,(1.31)

where F is the possible supply rate to the reservoir (per unit volume) and j is the solute mass
flow rate in the domain considered. The latter is

j =
(
−D

∂c

∂x
+ cv

)∣∣∣∣
x=0+

.(1.32)

Clearly L = L0 −
∫ t
0 v (τ) dτ and

◦
L= −v, so (1.31) writes

L (t)
(◦
cres −F

)
= D

∂c

∂x
+ v (cres − c) .(1.33)

It is evident that this equation is not sufficient, because both cres and c are unknown, if we
exclude the limit cases in which either cres or c are prescribed. The missing condition is usually
expressed in the form of the diffusive mass exchange rate

D
∂c

∂x
= h (c− cres) ,(1.34)

where h > 0 measures the exchange efficiency (it has the dimension of a velocity)6.

A justification of (1.34) can be obtained by assuming that agitation in the reservoir produces
a uniform distribution cres everywhere with the exception of a boundary layer near x = 0, having
thickness εl, where ε ¿ 1 depends on the agitation speed. There we have a concentration cb(x, t),
obeying

∂cb

∂t
−Db

∂2cb

∂x2
+ v

∂cb

∂x
= 0, −εl < x < 0

and satisfying cb(−εl, t) = cres(t), cb(0, t) = c(0, t).

6Show that as long as L/l À 1 and F = 0, from (1.33) we can deduce cres ' constant (hint: rescale x by l
and t by l2/D).
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If we take non-dimensional variables,
∧
cb, ξ, τ with ξ = x/εl, τ = l2/D, we obtain

D

l2
∂
∧
cb

∂τ
− Db

ε2l2
∂2 ∧cb

∂ξ2
+

v

εl

∂
∧
cb

∂ξ
= 0, −1 < ξ < 0,

or

ε
D

Db

∂
∧
cb

∂τ
− ∂2 ∧cb

∂ξ2
+

εlv

Db

∂
∧
cb

∂ξ
= 0.

Since
D

Db
= O(1) and

εlv

Db
plays the role of a Peclet number in the boundary layer, we can say

that, if the main transport process in 0 < x < l is not advection-dominated and thus
lv

D
is not

large, then the mass transport in the boundary layer is quasi-steady and diffusion-dominated,

i.e.
∂2 ∧cb

∂ξ2
' 0. Thus

∧
cb=

∧
cres (1− ξ)+

∧
c ξ ⇒ ∂

∧
cb

∂ξ
=
∧
c − ∧

cres

and returning to the original variables

Db
∂cb

∂x
=

Db

εl
(c− cres) = D

∂c

∂x
,(1.35)

which identifies the coefficient h in (1.34) :

h =
Db

εl
.

Thus mass exchange is more efficient if the boundary layer is thinner.
(b) Outflow.
A typical case is when the fluid flowing out is eliminated. Then the outgoing solute mass

flux is cv and equating cv to the incoming flux, i.e. −D
∂c

∂x
+ cv, we conclude that the correct

condition to be imposed is
∂c

∂x

∣∣∣∣
x=L

= 0.(1.36)

Of course we can also consider the case which the outgoing fluids enters another reservoir.
Then the analysis goes exactly as for the inflow case.

1.5 An example of singular perturbation

As we said, we have no space to deal with the theory of singular perturbations, particularly for
p.d.e.’s. Just to explain the main ideas, let us consider a classical case from mechanics.
The equation

m
··
x +λ

·
x +κx = 0(1.37)

describes the motion of a point of mass m under the action of an elastic force of constant κ and
with a viscous damping of constant λ.

We may rescale x by some length L
(∼
x= x/L

)
and time by t =

∼
t τ , so that (1.37) becomes

m

τ2

d2 ∼x

d
∼
t
2 +

λ

τ

d
∼
x

d
∼
t

+ κ
∼
x= 0(1.38)
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and if we choose τ = λ
κ and we set ε = m

κτ2 = mκ
λ2 , we obtain

ε
d2 ∼x

d
∼
t
2 +

d
∼
x

d
∼
t
+
∼
x= 0.(1.39)

Of course we can associate to (1.37) any pair of conditions

x (0) = x0,
·
x (0) = v0,(1.40)

which in the nondimensional form become

∼
x (0) =

∼
x0=

x0

L
,

d
∼
x

d
∼
t

∣∣∣∣∣∼
t=0

=
∼
v0=

v0

v∗
, v∗ =

L

τ
(1.41)

and we always find one unique solution.
However, we are interested in the case in which m is small, in the sense that ε << 1. We

wonder whether the solution can be approximated by taking ε = 0 in (1.39). Thus we are led to
consider the so-called outer solution xout, governed by the equation without the inertia term

dxout

d
∼
t

+ xout = 0,(1.42)

which however cannot match the original data (1.41) for the simple reason that it is a first order

equation whose general integral is xout

(∼
t
)

= ce
−∼t . Therefore we need to put a magnifying lens

on what happens in a short time close t = 0 and to describe the so-called inner solution xin.
Returning to (1.39) we use the different rescaling

∧
t=

∼
t
ε , leading to

1
ε

(
d2xin

d
∧
t
2 +

dxin

d
∧
t

)
+ xin = 0.(1.43)

Treating (1.42) and (1.43) is not difficult, but it is delicate.

In this particularly simple case it is possible to calculate the exact solution of (1.39), (1.40)
and its first order approximation in ε, which can be used to check the validity of the expression
we will derive for xout, xin. The exact solution is

(
ε
∼
v0 +1

2

(
1 +

√
1− 4ε

) ∼
x0

)
√

1− 4ε
exp

[(−1 +
√

1− 4ε

2ε

)
∼
t

]
+

+
1
2

(−1 +
√

1− 4ε
) ∼

x0 −ε
∼
v0√

1− 4ε
exp

[(
−1 +

√
1− 4ε

2ε

)
∼
t

]
'(1.44)

[∼
x0 +ε

(∼
x0 +

∼
v0

)]
e−(1+ε)

∼
t − ε

[∼
x0 +

∼
v0 +ε

(
3
∼
x0 +2

∼
v0

)]
e−( 1

ε
−1−ε)

∼
t ,

to the first order in ε.
It is easy to check that both the differential equation and the initial conditions are satisfied

to the first order in ε by this approximation (note that the coefficient of the second exponential
must be calculated to the second order in ε order to compute its first order contribution to
velocity).
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Let us go back to the problem of computing xout, xin.
Looking for the inner solution we may write

xin

(
∧
t

)
= y0

(
∧
t

)
+ εy1

(
∧
t

)

imposing that (1.43) is satisfied with initial conditions

xin(0) = x̃0,
dxin

dt
|∧
t=0

= εṽ0(1.45)

in the sense that

y′′0 + y′0 = 0, y0 (0) =
∼
x0, y′0 (0) = 0 ⇒ y0

(
∧
t

)
=
∼
x0

y′′1 + y′1+
∼
x0= 0, y1 (0) = 0, y′1 (0) =

∼
v0⇒ y1 =

(∼
x0 +

∼
v0

)(
1− e−

∧
t

)
− ∼

x0
∧
t .

Thus we find the expression

xin

(
∧
t

)
=
∼
x0 +ε

{(∼
x0 +

∼
v0

)(
1− e−

∧
t

)
− ∼

x0
∧
t

}
,(1.46)

which clearly agrees with (1.44) to the first order in ε, once we put
∧
t=

∼
t

ε
.

Coming to the outer solution, we note that it should lose the memory of the initial ve-
locity. Indeed if we now match for ε ¿∼

t¿ 1 the function xout ' ce−
∼
t with xin ' ∼

x0

+ε

{(∼
x0 +

∼
v0

)(
1− e−

∼
t
ε

)
− 1

ε

∼
x0
∼
t

}
' ∼

x0

(
1− ∼

t
)
we get c =

∼
x0, as expected, and thus simply

xout

(∼
t
)

=
∼
x0 e−

∼
t .(1.47)

The transition from xin to xout takes place in a time interval in which
∼
t is small while

∧
t is large.

For instance if ε ' 10−4 we can have
∼
t= 10−2,

∧
t= 102. Check that xin, xout do match for these

numerical values.

1.6 Phase change.The Stefan condition

We refer to the specific case of melting or solidification at constant pressure. The peculiar feature
of such phase transitions is that they are accompanied by a jump of the specific enthalpy.

For simplicity here we suppose that there is a fixed temperature Tm (the melting point) above
which the material is liquid and below which it is solid 7. For pure substances this is actually the
case (Tm depends on pressure, which however is constant in our case), although usually the solid
may be (slightly) overheated and the liquid may be (largely) undercooled. For systems such as
alloys or polymers the situation is much more complicated, but we are not going to deal with
such cases.

If we take Tm as the reference temperature in the definition (1.23) of the specific enthalpy,
we write

hs(T ) =
∫ T

Tm

cs (η) dη, T < Tm(1.48)

7See Remark Remark 4.2 below.
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and

hl(T ) =
∫ T

Tm

cl (η) dη + λ, T > Tm(1.49)

where λ > 0 is the so-called latent heat and the indices s, l refer to the solid and liquid phase,
respectively.

We want to derive the mathematical model for two heat conducting phases separated by a
sharp and regular interface Γ, defined as the set {T = Tm}.

All we have to do is to write down the enthalpy conservation law on the moving interface
(i.e. the Rankine-Hugoniot condition for enthalpy), which is obtained from (1.14) with w = h,
[h] = λ, ~j′ = −κ∇T .

Note that [h] = λ is consistent with the normal ~n to Γ pointing towards the liquid phase.
The resulting equation is the so-called Stefan condition:

Either
λ ρs (~V − ~vs) · ~n = −κl

∂Tl

∂n
+ κs

∂Ts

∂n
,(1.50)

or
λ ρl (~V − ~vl) · ~n = −κl

∂Tl

∂n
+ κs

∂Ts

∂n
,(1.51)

to be coupled with

Ts = Tl = Tm on Γ.(1.52)

If we may neglect deformations in the solid phase and we take a frame of reference in which
the solid phase is at rest, equation (1.50) simplifies to

λ ρs
~V · ~n = −κl

∂Tl

∂n
+ κs

∂Ts

∂n
, (~vs = 0)(1.53)

and if Γ is described as the set S(~x, t) = 0 , we can also write

−λ ρs
∂S

∂t
= [−κ∇T ] · ∇S.(1.54)

Let us consider in particular the one-dimensional case with the only space coordinate x. If
we put S(x, t) = x− s(t), then (1.53) is

λ ρs
·
s (t) = −κl

∂Tl

∂x
+ κs

∂Ts

∂x
. (~vs = 0)(1.55)

When we have no variation of Tm it makes sense to consider one-phase problems:
a) melting (with liquid at rest) of solid at T ≡ Tm

λ ρl
·
s= −κl

∂T

∂x
(~vl = 0)(1.56)

(remembering (1.10) we see that ρl
·
s= ρs(

·
s −vs), explaining that when ~vl = 0 the solid is

displaced with the velocity given by: (ρl − ρs)
·
s= −ρsvs. In the frame with the solid at rest in

(1.56) ρl is replaced by ρs (see(1.55)),
b) solidification (with solid at rest) of liquid at T ≡ Tm

λ ρs
·
s= κs

∂T

∂n
(~vs = 0)(1.57)

(with vs = 0 the liquid phase is diplaced with the velocity vl = (1− ρs

ρl
)
·
s).
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Remark 4.1.
The sign of the one-phase one-dimensional Stefan condition indicates which phase is conduct-

ing and which is identically at the phase transition temperature. 2

As we shall see, in one-phase problems the conducting phase is always advancing over the
isothermal phase.

So far we have excluded superheating or supercooling. However, the model above still makes
sense if the liquid is below freezing and/or the solid is above melting temperature, provided we
impose that phase change occurs only at T = Tm.

For instance we may use (1.56) to describe solidification of a supercooled liquid (T < Tm) or
(1.57) to describe melting of a superheated solid (T > Tm). In such cases however the conducting
phase shrinks in favour of the isothermal phase which increases its volume.

More generally the temperature at the interface is not constant but depends on its curvature
(through surface tension effects) or on its velocity (kinetic supercooling). We will not deal with
such cases, nor with processes with variable pressure.

Concerning rescaling we have several options.
Considering the one-phase one-dimensional melting problem

ρc
∂T

∂t
− κ

∂2T

∂x2
= 0, ρλ

·
s= −κ

∂T

∂x

∣∣∣∣
x=s

, T |x=s = Tm,(1.58)

with constant coefficient, we can introduce the non-dimensional variables

θ =
T − Tm

T0 − Tm
, ξ =

x

L
, σ =

s

L
, τ =

t

tm
, tm =

ρλL2

κ (T0 − Tm)
, td =

ρcL2

k
(1.59)

obtaining
∂θ

∂τ
− tm

td

∂2θ

∂ξ2
= 0,

dσ

dτ
= − ∂θ

∂ξ

∣∣∣∣
ξ=σ(τ)

, θ|ξ=σ(τ) = 0.(1.60)

The temperature T0 may be a typical value of the boundary temperature. In this way we
have selected a time scale linked with the phase change process. The nondimensional ratio

Ste =
c (T0 − Tm)

λ
(1.61)

is called the Stefan number and it coincides with td
tm

.
By adopting the different rescaling

θ =
T − Tm

T ∗
, τ =

t

td
, ξ =

x

L
, σ =

s

L
,(1.62)

we reduce (1.58) to the simpler form

∂θ

∂τ
− ∂2θ

∂ξ2
= 0,

dσ

dτ
= − ∂θ

∂ξ

∣∣∣∣
ξ=σ

, θ|ξ=σ = 0,(1.63)

provided T ∗ =
λ

c
. Of course we can get the same result performing a further rescaling of (1.60).

Note that in (1.60) the thermal field θ can be considered quasi-steady (hence linear in ξ) if
Ste << 1 (meaning that the latent heat is large with respect to the amount of heat required to
take the unit mass from the temperature T0 to the temperature Tm).

Example: Water
ρ = 1 gr/cm3, c = 1 cal/g◦K, κ ' 1.5× 10−3 cal/ sec cm ◦K,
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λ = 80 cal/g, L = 10cm [L = 1cm] , T0 = 283 ◦K, Tm = 273 ◦K
=⇒
td = ρλL2

κ ' 6.64× 104 sec
[
6.64× 102 sec

]

tm = ρλL2

κ(T0−Tm) ' 5.33× 105 sec
[
5.33× 103 sec

]

Ste ' 1.25× 10−1

For T0 = 323 ◦K, tm is reduced by 1
5 and Ste ' 6.25.

Remark 4.2 .
We recall that only solidification (and melting) accompanied by the formation (or destruction)

of crystals gives rise to a discontinuity of enthalpy (i.e. involving release or absorption of latent
heat).

When the solid phase is amorphous no latent heat is released upon solidification and this
process is more approximately called glassy transition. During a glassy transition molecules
do not enter a crystalline structure, but we can say that their mobility is strongly reduced by
a sudden and large increase of viscosity. In other words amorphous solids (like glass) can be
considered fluids with an extremely high viscosity. 2

1.7 Weak version of balance laws

Ω− Ω+

Γ

∂Ω

~µ

Rn

t

Γ− Γ+

Figure 1.3: Weak formulation of balance laws.

Let us come back to the balance law (1.3) in the presence of a discontinuity surface Γ ⊂ Rn+1,
on which the Rankine-Hugoniot condition (1.9) applies.

We want to show that we may interpret (1.3) in a generalized way, so that it incorporates
(1.9). Such a generalized version of (1.3) holds in any domain including Γ and replaces the
system (1.3), (1.9). This approach presents several advantages:

(i) We can deal with non-smooth functions (thus we may consider for instance a larger class
of data),

(ii) in many cases (like in the Stefan problem) the surface Γ is unknown (i.e. it is a free
boundary) and there is no explicit mention of it in the weak formulation (in other words its
definition becomes implicit),

(iii) numerical methods can be set up for the weak version, based on smoothing approximation
procedures.
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We will discuss in more details such aspects when we will deal with the weak form of the
Stefan problem. Here we want to say a few general things about the weak version of (1.3), (1.9).

Let us suppose that u, ~j satisfy (1.3), (1.9) in the usual sense (classical version). We select
a test function ϕ (~x, t) having compact support in a smooth domain Ω ⊂ Rn+1 in which (1.3),
(1.9) are satisfied and which intersects Γ. With reference to fig. 1.3 we define the domains Ω−,
Ω+, where ~µ is the unit vector normal to Γ in Rn+1.

For the moment we suppose that ϕ is a C∞ function.

For a vector function ~z (~x, t) ∈ Rn+1 we define the divergence operator divn+1~z =
n∑

i=1

∂zi

∂xi
+

∂zn+1

∂t
. We take ~z =

(
ϕ~j, ϕu

)
, so that

divn+1~z = ϕ

(
div~j +

∂u

∂t

)
+~j · ∇ϕ + u

∂ϕ

∂t
(1.64)

= fϕ +~j · ∇ϕ + u
∂ϕ

∂t
in Ω− ∪ Ω+.

Clearly ∫

Ω±

divn+1~z d~x dt =
∫

∂Ω±

~z · ~ν± dσ,(1.65)

where ~ν+ is the outer unit normal to ∂Ω±.
Due to the choice of ϕ, ~z vanishes on ∂Ω. Therefore the only contributions to (1.65) come

from the sides Γ−, Γ+ of Γ ∩ Ω. For Γ− we have ~ν− = ~µ, for Γ+ we have ~ν+ = −~µ.
Hence (1.65) gives ∫

Ω+

divn+1~z d~x dt = ∓
∫

Γ±

~z · ~µ dσ,(1.66)

We are now ready to evaluate
∫

Ω+∪Ω−

divn+1~z d~x dt =
∫

Ω

{
u

∂ϕ

∂t
+~j · ∇ϕ + fϕ

}
d~x dt = −

∫

Γ∩Ω

[~z] · ~µ dσ.(1.67)

Since ϕ is continuous across Γ, we have

[~z] · ~µ = ϕ
{[

~j
]
· ~µn + [u]µt

}
(1.68)

where ~µn is the projection of ~µ into Rn and µt is the n + 1 (i.e. time) component of ~µ.

If Γ has the equation S (~x, t) = 0, ~µ is parallel to the (n + 1)-dimensional vector
(
∇S,

∂S

∂t

)
.

If we use S (~x, t) = 0 to define ~x (t) in Rn, we have
~◦
x = ~V (with the notation of Sect. 2), and

~V · ∇S +
∂S

∂t
= 0.

Setting Σ =
(
|∇S|2 +

(
∂S
∂t

)2
) 1

2 , we see that

Σ~µ = ±
(
∇S,

∂S

∂t

)
= ± |∇S|

(
~n,−~V · ~n

)
,

~n being the unit normal vector to the surface S (~x, t) = 0 in Rn.
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Thus (1.68) becomes

Σ [~z · ~µ] = ± |∇S|
{[

~j
]
· ~n− [u] V · ~n

}
ϕ = 0(1.69)

because of (1.9).
The conclusion is that if the pair u,~j satisfies the system (1.3), (1.9) we have

∫

Ω

{
u

∂ϕ

∂t
+~j · ∇ϕ + fϕ

}
d~x dt = 0(1.70)

for all ϕ ∈ C∞
0 (Ω).

Now we may replace (1.3), (1.9) with the requirement that (1.70) is satisfied in the above
sense. At this point we should be more precise about function spaces. Equation (1.70) makes
sense if we look for u ∈ L2, ~j ∈ (

L2
)n, and accordingly the space of test functions can be

identified with H1
0 (Ω).

Note that f is then to be taken in H−1 (Ω): in a sense we can say that the source term has
no role in balancing the singularities at a discontinuity surface, provided it belongs to H−1 (Ω).

However, if e.g. u is just an L2 function, we are no longer able to specify for instance its
initial value (which is always essential in evolution problems). Initial data must be incorporated
in the problem statement (weak version) by suppressing the requirement ϕ = 0 for t = 0 and
letting the corresponding term appear explicitly in (1.70). Boundary values must be treated in
a similar way.

This general framework can be adapted in various ways to the specific problem considered,
using the peculiar structure of ~j.



Chapter 2

Some basic facts about the heat
equation

2.1 Main results on the model problems

In this section we summarize a few fundamental results, stated in their simplest form and referring
to the most elementary model problems.

x

t = T

u(x, t) = h(x)

(I) u(0, t) = f(t)

either

or
x = s(t)

u(s(t), t) = 0

t

0 s(0) = b > 0

uxx − ut = q(x, t)

(II) ux(0, t) = g(t)

Figure 2.1: Sketch of Dirichlet (I) and of Neumann (II) conditions.

In Fig. 2.1 we sketch the typical Dirichlet (I) and Neumann (II) problem for the heat equation
in one space dimension with a (prescribed) moving boundary x = s(t).

Main assumptions on the data are:

• s(t) Lipschitz, inf s(t) > 0

• h, f , [g] continuous and h (0) = f (0), h (b) > 0 (⇒ u continuous in QT )

Notation for norms on QT

‖f‖ = sup
QT

|f | for f continuous in QT

(
f ∈ C

(
QT

))
.

22
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C2,1(QT ) is the space of functions u continuous in QT together with ux, uxx, ut.

|f |α = ‖f‖+ sup
x′ 6=x′′

|f (x′, t)− f(x′′, t)|
|x′ − x′′|α + sup

t′ 6=t′′

|f (x, t′)− f (x, t′′)|
|t′ − t′′|α/2

for f ∈ C
(
QT

)
, α ∈ (0, 1)

The corresponding functional space is denoted by Hα,α/2(QT ).

Similarly we define
H1+α,(1+α)/2

(
QT

)

as the space of functions having bounded norm

|f |(1+α) = ‖f‖+ |fx|(α) ,

and the space H2+α,1+α
2

(
QT

)
with norm

|f |(2+α) = ‖f‖+ |fxx|(α) + |ft|(α) .

Basic references are the classical books [15], [51], [62].

More definitions:

• Definition of parabolic boundary

∂P QT = Cl {∂QT ∩ {t < T}}

x

t

0

ST

A B

Figure 2.2: The parabolic boundary.

• Open segment ST =
◦

{∂QT ∩ {t = T}}
• Spaces Hα,α/2 (QT ) , H1+α,(1+α)/2 (QT ) , H2+α,1+α/2 (QT ):

f ∈ Hα,α/2 (QT ) if |f |(α)
Q′T

is bounded for all domains Q′
T having positive distance from

∂P QT .
Similarly for the other Hölder spaces.

Now we are going to state some fundamental theorems.
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Theorem 2.1 (Maximum principle (weak version)) Let u ∈ C2,1(QT ) ∩C(Q̄T ) be a solu-
tion of uxx − ut = q in QT and let QT be bounded. Then if q ≥ 0 [≤ 0] u takes its maximum
[minimum] on the parabolic boundary ∂P QT . 2

The weak maximum principle does not forbid that maxu [maxu] is assumed somewhere in QT

also. The strong maximum principle (valid also for QT not bounded) examines precisely this
situation. Its general statement is rather complicated, but it is greatly simplified if the boundary
∂P QT has an interval on t = 0 and is completed laterally by one or two continuous curves along
which time increases, as we are supposing.

Theorem 2.2 (Maximum principle (strong version)) Let u ∈ C2,1(QT ) ∩ C(Q̄T ) be a
solution of uxx − ut = q in QT ,with QT as in Fig. 2.2. Suppose q ≥ 0 [≤ 0]. If u has a
maximum [minimum] on ST , then u is constant in Q̄T . 2

An immediate corollary is the uniqueness for the Dirichlet problem (I).

Again we state the following theorem for the particular boundary we have chosen.

Theorem 2.3 (Boundary point principle)(Friedman (1958), Vyborny (1957), also known
as parabolic version of Hopf’s theorem(1952))(for the elliptic case). Let u ∈ C2,1(QT ) ∩ C(Q̄T )
be a solution of uxx − ut = q and q ≥ 0 [≤ 0]. Suppose that at a boundary point (x0, t0) (either
x0 = 0, or x0 = s (t0)), with t0 > 0, u attains a maximum [minimum] strictly larger [smaller]
than the values taken in the intersection of QT with some half circle (x− x0)

2 + (t− t0)
2 < R2,

t ≤ t0. For any unit vector ~e pointing in the above neighborhood consider the points (xδ, tδ) =
(x0, t0) + δ~e with δ > 0 sufficiently small and take the directional difference gradient χ (δ,~e) =
u (xδ, tδ)− u (x0, t0)

δ
.

Then lim sup
δ→0+

χ (δ,~e) < 0
[
lim inf
δ→0+

χ (δ,~e) > 0
]
for all ~e in the specified set. 2

Hence if ux (x0, t0) exists, then ux (x0, t0)
{

< 0 [< 0] , x0 = 0
> 0 [> 0] , x0 = s (t0)

As a corollary, uniqueness for the Neumann problem (II) follows.
Remark 1.1.
For more general equations or more general domains (non-Lipschitz, or in more than one

space dimension) additional requirements are needed on the coefficients and on the boundary.
We just remark that if in place of uxx−ut = q one considers the equation a(x, t)uxx +b(x, t)ux +
c(x, t)u−ut = 0, then a ≥ 0 is a minimal requirement, the presence of the term bux is immaterial
for the theorems above, while the condition c ≥ 0 is important: if c 6= 0 and c ≥ 0, in all
statements the words maximum and minimum must be replaced by positive maximum and
negative minimum. 2

Existence for the Dirichlet problem

Theorem 2.4 If the chain of data on ∂P QT is continuous, problem (I) is solvable in H2+α,1+α/2 (QT ),
provided q ∈ Hα,α/2

(
QT

)
.

Remark 1.2.
Inside QT the regularity of the solution is determined by q. The theorem is not stated in its

most general form. 2
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Theorem 2.5 If q ∈ Hα,α/2
(
QT

)
and there exists a function ψ ∈ H2+α,1+α/2

(
QT

)
coinciding

with the data on ∂P Q, and if
·
f (0) = h′′ (0)− q (0, 0), h′ (b)

·
s (0) + h′′ (b) = q (b, 0), with ṡ in a

Hölder class (exp.
α

2
), then the problem (I) is solvable in H2+α,1+α/2

(
QT

)
.

Existence for the Neumann problem
We deal just with the smooth case:

Theorem 2.6 Let q ∈ Hα,α/2
(
QT

)
and suppose there exists a function ψ ∈ H2+α,1+α/2

(
QT

)
such that ψx = g for x = 0 and ψ equals the data on the rest of ∂P QT , with compatibility
conditions satisfied at the corners (0, 0), (b, 0). Then problem (II) is solvable in H2+α,1+α/2

(
QT

)
.

2.2 Fundamental solution of the heat equation

The function

Γ (x, t; ξ, τ) =
1

2
√

π (t− τ)
exp

[
− (x− ξ)2

4 (t− τ)

]
, t > τ(2.1)

is called the fundamental solution of the one-dimensional heat equation. It is easy to check that

Γxx − Γt = 0, Γξξ + Γτ = 0 (adjoint equation).(2.2)

The basic property:

lim
t−τ↓0

∫ +∞

−∞
ϕ (ξ) Γ (x, t; ξ, τ) dξ = ϕ (x)(2.3)

at all points of continuity of ϕ, provided the integral exists, can be demonstrated performing the
limit with some care.

With the help of (2.3) we can study the Cauchy problem

uxx − ut = 0, −∞ < x < +∞, t > 0,(2.4)

u (x, 0) = ϕ (x) , −∞ < x < +∞,(2.5)

with ϕ (x) continuous and such that |ϕ (x)| < ceα2x2 .
The unique solution (in the same class of ϕ) of (2.4), (2.5) has the explicit representation

u (x, t) =
∫ +∞

−∞
ϕ (ξ) Γ (x, t; ξ, 0) dξ for 0 < t <

1
4α2

.(2.6)

Remark 2.1.
It is very easy to calculate ∫ +∞

−∞
Γ (x, t; ξ, τ) dξ = 1,(2.7)

whose meaning is heat conservation. 2

Remark 2.2.
If x0 is a point of discontinuity of ϕ (x) (and defining in an appropriate way the solution of

(2.4), (2.5)), then (2.6) is still the solution of the Cauchy problem, provided ϕ has the left and
the right limit in x0 (resp. ϕ−0 , ϕ+

0 ).
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In such a case (2.3) is modified to

lim
t→0+

∫ +∞

−∞
ϕ (ξ) Γ (x, t; ξ, 0) dξ =

ϕ+
0 + ϕ−0

2
. 2(2.8)

Remark 2.3.
Equation (2.6) shows very clearly that the heat equation forces disturbances on the initial

data to propagate at infinite speed. Although contradicting the theory of relativity, it must be
said that in the vast majority of practical cases the heat equation describes heat transfer with
great accuracy.

The Cauchy problem for the non-homogeneuous equation

uxx − ut = q (x, t)(2.9)

with q locally Hölder continuous w.r.t. x, uniformly in t, and with the same growth condition as
the initial data ϕ (x), is solved by

u (x, t) =
∫ +∞

−∞
ϕ (ξ) Γ (x, t; ξ, τ) dξ −

∫ t

0

∫ +∞

−∞
Γ (x, t; ξ, τ) q (ξ, τ) dξdτ.(2.10)

The last term is called a volume potential.
Clearly, if q = constant the volume potential is simply −qt.
Let us define two more heat potentials. In the following x = s (t) is a Lipschitz continuous

curve.
Simple layer potential (∀ continuous function ψ)

Ψ1 (x, t) =
∫ t

0
ψ (τ) Γ (x, t; s (τ) , τ) dτ.(2.11)

Ψ1 solves the heat equation for t > 0, x 6= s (t) and is continuous accross the curve x = s (t).
Double layer potential (∀ continuous function ψ)

Ψ2 (x, t) =
∫ t

0
ψ (τ) Γx (x, t; s (τ) , τ) dτ.(2.12)

Note that

Γx (x, t; ξ, τ) = − x− ξ

4
√

π (t− τ)
3
2

exp

[
− (x− ξ)2

4 (t− τ)

]
,

so for x = s (t), ξ = s (τ) it behaves like (t− τ)−
1
2 (remember we are considering Lipschitz

curves).
Ψ2 solves the heat equation for t > 0, x 6= s (t) and satisfies the jump relation

lim
x→s(t)±

Ψ2 (x, t) = ∓1
2
ψ (t) +

∫ t

0
ψ (τ) Γx (s (t) , t; s (τ) , τ) dτ.(2.13)

Example: For s = s0, constant

lim
x→s0±

Ψ2 (x, t) = ∓1
2
ψ (t) .
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t

s2(0) > 0 x

x = s2(t)

u = f2(t)

x = s1(t)

s1(0) = 0 u = h(x)

u = f1(t)

uxx − ut = q

Figure 2.3: Sketch of Problem 1

2.3 Representation formulas

As an application of heat potentials we can get representation formulas for various typical prob-
lems.

Problem 1 (see fig. 2.3):

f1, f2 continuous
h continuous
fi, h matching
si Lipschitz, |s1 − s2| ≥ γ > 0
We split u into the sum w + v with

wxx − wt = q, w (x, 0) = h (x) , −∞ < x < +∞ (already solved)

with arbitrary continuation of h and q (e.g. bounded).
Then v (x, t) solves

vxx − vt = 0,

v (si (t) , t) = fi − w (si (t) , t) = ϕi (t) ,

v (x, 0) = 0,

and has the representation

v (x, t) = −
∫ t

0
Γx (x, t; s1 (τ) , τ) µ1 (τ) dτ +

∫ t

0
Γx (x, t; s2 (τ) , τ) µ2 (τ) dτ,(2.14)

with µ1, µ2 solving a system of two Volterra integral equations of the second kind with weakly
singular kernels:

ϕ1 (t) =
1
2
µ1 (t)−

∫ t

0
Γx (s1 (t) , t; s1 (τ) , τ) µ1 (τ) dτ(2.15)

+
∫ t

0
Γx (s1 (t) , t; s2 (τ) , τ) µ2 (τ) dτ,



28 CHAPTER 2. SOME BASIC FACTS ABOUT THE HEAT EQUATION

ϕ2 (t) =
1
2
µ2 (t)−

∫ t

0
Γx (s2 (t) , t; s1 (τ) , τ) µ1 (τ) dτ

+
∫ t

0
Γx (s2 (t) , t; s2 (τ) , τ) µ2 (τ) dτ,

having a continuous unique solution (µ1, µ2) .

Problem 2:
Instead of the domain s1 (t) < x < s2 (t), t > 0 consider the unbounded domain x > s1 (t),

t > 0 (or x < s2 (t), t > 0) and drop the index 1 (or 2). Of course a growth condition must be
imposed on h (as we have seen for the Cauchy problem). Using the same procedure as above we
are led to consider one of the following problems.

x

t

0 0

x = s(t)

v = 0 v = 0

(b)(a)

x = s(t)

vxx − vt

v = ϕ
v = ϕ

t

x

vxx − vt

Figure 2.4: Problem 2 with x > s(t) (a), or x < s(t) (b).

For (a), (b) we can write

v (x, t) = ∓
∫ t

0
Γx (x, t; s (τ) , τ)µ (τ) dτ(2.16)

with µ satisfying

ϕ (t) =
1
2
µ (t)∓

∫ t

0
Γx (s (t) , t; s (τ) , τ) µ (τ) dτ(2.17)

where “−” corresponds to (a) and “+” to (b).
Note that when s1 or s2 (or both) are constant, then the corresponding otherwise singular

kernel in eq. (2.15) or (2.17) vanishes identically.
For instance, the solution of the first i.b.v. problem in the quarter plane x > 0, t > 0 with

data v(x, 0) = 0, v(0, t) = ϕ(t) is given by

v (x, t) = −
∫ t

0
Γx (x, t; 0, τ) µ (τ) dτ

ϕ (t) =
1
2
µ (τ) ,

i.e.

v (x, t) = −2
∫ t

0
Γx (x, t; 0, τ) ϕ (τ) dτ =

1
2
√

π
x

∫ t

0

ϕ (τ)

(t− τ)
3
2

exp
[
− x2

4 (t− τ)

]
dτ.(2.18)
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Problem 3:

t

s2(0) > 0 x

x = s2(t)

u = f2(t)

x = s1(t)

s1(0) = 0 u = h(x)

uxx − ut = q

ux = g1(t)

Figure 2.5: Sketch of Problem 3.

With the same procedure used for Problem 1 we arrive at considering the following simplified
problem

t

s2(0) > 0 x

v = ϕ2

vxx − vt = 0

vx = ψ1

x = s1(t)

s1(0) = 0 v = 0

x = s2(t)

Figure 2.6: Reduction of Problem 3 to homogeneous initial data and zero source.

with ϕ2 defined as before and ψ1 = g1 − wx (s1 (t) , t).
The representation formula (2.14) is modified replacing the double layer potential on x =

s1 (t) by a simple layer potential:

v (x, t) = −
∫ t

0
Γ (x, t; s1 (τ) , τ) ν1 (τ) dτ +

∫ t

0
Γx (x, t; s2 (τ) , τ) µ2 (τ) dτ.(2.19)

The associated system of Volterra integral equations is:

ψ1 (t) =
1
2
ν1 (t)−

∫ t

0
Γx (s1 (t) , t; s1 (τ) , τ) ν1 (τ) dτ +



30 CHAPTER 2. SOME BASIC FACTS ABOUT THE HEAT EQUATION

+
∫ t

0
Γxx (s1 (t) , t; s2 (τ) , τ) µ2 (τ) dτ,

ϕ2 (t) =
1
2
µ2 (t)−

∫ t

0
Γ (s2 (t) , t; s1 (τ) , τ) ν1 (τ) dτ +

+
∫ t

0
Γx (s2 (t) , t; s2 (τ) , τ) µ2 (τ) dτ.(2.20)

Note that the kernel Γxx (s1 (t) , t; s2 (τ) , τ) is not singular because of the condition that the
two boundaries stay at a positive distance from each other.

Moving the right boundary to +∞ leads to the problem

t

x

vxx − vt = 0

vx = ψ

v = 0

x = s(t)

Figure 2.7: Neumann Problem for x > s(t).

We call it problem (α) and we also consider problem (β), formulated on the left of x = s (t).
The corresponding solutions are

v (x, t) = ∓
∫ t

0
Γ (x, t; s (τ) , τ) ν (τ) dτ(2.21)

with

ψ (t) =
1
2
ν (t)∓

∫ t

0
Γx (s (t) , t; s (τ) , τ) ν (τ) dτ,(2.22)

where ∓ corresponds to (α), (β) resp.
When s = s0, constant, we simply have ν (t) = 2ψ (t) and (2.21) reduces to

v (x, t) = ∓2
∫ t

0
Γ (x, t; s0, τ) ψ (τ) dτ.(2.23)

2.4 The Green and Neumann functions for the quarter plane

We have already solved the Dirichlet and the Neumann problem in the quarter plane with no
source and zero initial data by means of (2.18), (2.23).
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We know that the respective data ϕ (t) , ψ (t) are obtained from the original data f , g by
subtracting the value taken on x = 0 by the solution w (or wx) of a suitable Cauchy problem,
taking care of the source term q (x, t) and of the initial data h (x), continued for x < 0.

If we take q = 0, we may continue h (x) for x < 0 is such a way that w = 0 or wx = 0 on
x = 0, so that ϕ, ψ coincide with the original data.

For the Dirichlet problem the obvious continuation is h (x) = −h (−x), while we take h (x) =
h (−x) for the Neumann problem.

In the first case the solution of the associated Cauchy problem is

w (x, t) =
∫ +∞

0
h (ξ) [Γ (x, t; ξ, 0)− Γ (x, t;−ξ, 0)] dξ,(2.24)

and in the second case

w (x, t) =
∫ +∞

0
h (ξ) [Γ (x, t; ξ, 0) + Γ (x, t;−ξ, 0)] dξ.(2.25)

The functions
G (x, t; ξ, τ) = Γ (x, t; ξ, τ)− Γ (x, t;−ξ, τ)(2.26)

N (x, t; ξ, τ) = Γ (x, t; ξ, τ) + Γ (x, t;−ξ, τ)(2.27)

are the Green and Neumann function (respectively) for the quarter plane.
Thus we are able to write down the explicit solution of the problem in fig. 2.8

t

x

u = f

uxx − ut = 0

u = h

Figure 2.8: Dirichlet i.b.v. problem in the quarter plane.

u (x, t) =
∫ +∞

0
h (ξ) G (x, t; ξ, 0) dξ +

1
2
√

π
x

∫ t

0

f (τ)

(t− τ)
3
2

exp
[
− x2

4 (t− τ)

]
dτ(2.28)

and of the problem in fig. 2.9

u (x, t) =
∫ +∞

0
h (ξ) N (x, t; ξ, 0) dξ − 1√

π

∫ t

0

g (τ)√
t− τ

exp
[
− x2

4 (t− τ)

]
dτ.(2.29)

We note that the functions G, N have some of the properties of Γ, namely:

Gxx −Gt = 0, Gξξ + Gτ = 0,(2.30)
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t

x

ux = g

uxx − ut = 0

u = h

Figure 2.9: Neumann i.b.v. problem in the quarter plane.

Nxx −Nt = 0, Nξξ + Nτ = 0,(2.31)
t↓τ
lim

∫ +∞

−∞
ϕ (ξ) G (x, t; ξ, τ) dξ = ϕ (x) ,(2.32)

t↓τ
lim

∫ +∞

−∞
ϕ (ξ)N (x, t; ξ, τ) dξ = ϕ (x) ,(2.33)

at points of continuity of ϕ.
In addition

G (0, t; ξ, τ) = 0,(2.34)

Nx (0, t; ξ, τ) = 0,(2.35)

and
Gx = −Nξ, Gξ = −Nx.(2.36)

It is convenient to have the explicit expressions of the x-derivatives

Gx (x, t; ξ, τ) =

=
1

4
√

π (t− τ)
3
2

{
− (x− ξ) exp

[
− (x− ξ)2

4 (t− τ)

]
+ (x + ξ) exp

[
− (x + ξ)2

4 (t− τ)

]}
(2.37)

Nx (x, t; ξ, τ) =

=
1

4
√

π (t− τ)
3
2

{
− (x− ξ) exp

[
− (x− ξ)2

4 (t− τ)

]
− (x + ξ) exp

[
− (x + ξ)2

4 (t− τ)

]}
(2.38)

2.5 A simplified version of Gronwall’s lemma

If a continuous function y (t) satisfies the integral inequality

0 6 y (t) 6 c +
∫ t

0
λ (τ) y (τ) dτ,(2.39)



2.6. COMPUTING THE TEMPERATURE GRADIENT AT THE BOUNDARY 33

for some constant c ≥ 0 and a summable non-negative kernel λ, then

0 6 y (t) 6 c exp
(∫ t

0
λ (τ) dτ

)
.(2.40)

Proof.
Set Λ (t) = exp

(
− ∫ t

0 λ (τ) dτ
)
and multiply (2.39) by λΛ = −Λ̇, obtaining

yλΛ + Λ̇
∫ t

0
λydτ 6 −cΛ̇(2.41)

i.e.
d

dt

[
Λ

∫ t

0
λy dτ

]
6 −cΛ̇(2.42)

from which ∫ t

0
λy dτ 6 c

(
Λ−1 − 1

)
,(2.43)

providing the estimate of the r.h.s. of (2.39) leading to (2.40) 2.
A slightly more general version of Gronwall’s inequality is

0 6 y (t) 6 c + c1

∫ t

0

y (τ)√
t− τ

dτ,(2.44)

(the kernel is now of Abel type). Using the same technique employed for solving Abel’s integral
equation, one arrives at the following result [[15], Lemma 17.7.1]

0 6 y (t) 6 c
(
1 + 2c1

√
τ
)
eπc21T .(2.45)

2.6 Computing the temperature gradient at the boundary

In many applications it is important to calculate the heat flux at a boundary where temperature
is specified and to investigate its behaviour when t ↓ 0 (i.e. at a corner point of the parabolic
boundary). If the data match at that point and the boundary is not singular, then the flux will
be continuous. We want to show this in a particularly simple case.

We consider the following model problem in a wedge:
Problem A.

uxx − ut = 0, αt < x, 0 < t,

u(x, 0) = −βx, 0 < x,

u(αt, t) = 0, 0 < t,

where α, β are constant, with the aim of computing ux(αt, t). Dealing with more general data and
a more general boundary (provided they are sufficiently regular) requires some more complicated
calculations, but the procedure is the same. In particular we want to show that ux is continuous
at the corner:

lim
t→0

ux(αt, t) = −β.(2.46)

Instead of Problem A, we consider
Problem B.

vxx − vt = 0, αt < x, 0 < t,
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v(x, 0) = 0, 0 < x,

v(αt, t) = αβt, 0 < t,

having in mind the decomposition

u(x, t) = −βx + v(x, t).(2.47)

Clearly (2.46) is equivalent to
lim
t→0

vx(αt, t) = 0.(2.48)

We use the double layer potential (2.12) to represent the solution

v(x, t) =
∫ t

0
µ(τ)Γx(x, t; ατ, τ)dτ(2.49)

and the jump relation (2.13) to obtain the integral equation for µ:

αβt = −1
2
µ(t)− α

4
√

π

∫ t

0

µ(τ)√
t− τ

e
−

α2

4
(t− τ)

dτ.(2.50)

We use this same equation to compute

∫ t

0

µ(τ)√
t− τ

e
−

α2

4
(t− τ)

dτ = −2αβ

∫ t

0

τ√
t− τ

e
−

α2

4
(t− τ)

dτ +

− α

2
√

π

∫ t

0

∫ τ

0

µ(η)√
(t− τ)(τ − η)

e
−

α2

4
(t− η)

dηdτ.(2.51)

We may interchange τ and t− τ in the first integral on the r.h.s. and exchange the integration
order in the second integral, obtaining

∫ t

0

µ(τ)√
t− τ

e
−

α2

4
(t− τ)

dτ =

= −2αβ

∫ t

0

t− τ√
τ

e
−

α2

4
τ
dτ − α

√
π

2

∫ t

0
µ(η)e

−
α2

4
(t− η)

dη.(2.52)

Inserting (2.52) in (2.50), the latter becomes

µ(t) = F (t) +
α2

4

∫ t

0
µ(η)e

−
α2

4
(t− η)

dη,(2.53)

with

F (t) = −2αβt +
α2β√

π

∫ t

0

t− τ√
τ

e
−

α2

4
τ
dτ,(2.54)

which tends to zero (as expected) if αβ → 0, and is simply proportional to β.
The last integral can be calculated by means of the transformation

α

2
√

τ = ϑ and the result is:

F (t) = 2β
√

t
{
− α

√
t + 2

[ 1√
π

e
−

α2

4
t
+

+ erf
(α
√

t

2

)(α
√

t

2
− 1

α
√

t

)]}
.(2.55)
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This way of writing F (t) emphasizes that α and β always multiply
√

t.
We can easily compute

Ḟ (t) = −2αβ
[
1− erf

(α

2

√
t
)]

.(2.56)

Now we differentiate (2.53), getting the simple expression

µ̇(t) = Ḟ (t) +
α2

4
F (t).(2.57)

Since we know from (2.53) that µ(0) = 0, we obtain the integral

µ(t) = F (t) +
α2

4

∫ t

0
F (τ)dτ.(2.58)

Using (2.49) we compute

vx(x, t) =
∫ t

0
µ(τ)Γxx(x, t; ατ, τ)dτ = −

∫ t

0
µ(τ)Γτ (x, t;ατ, τ)dτ.(2.59)

Noting that

Γτ (x, t; ατ, τ) =
d

dτ
Γ(x, t; ατ, τ)− αΓξ(x, t;ατ, τ) =

=
d

dτ
Γ(x, t;ατ, τ) + αΓx(x, t; ατ, τ),(2.60)

from (2.59) we get

vx(x, t) = µ(τ)Γ(x, t; ατ, τ)|t0 +

+
∫ t

0
µ̇(τ)Γ(x, t; ατ, τ)dτ − α

∫ t

0
µ(τ)Γx(x, t; ατ, τ)dτ.(2.61)

The first term is zero for all x 6= αt.
Now we take the limit x → αt+. We know already that µ(t) has been constructed in such a way
that the last term tends to −α2βt. In order to compute the integral containing µ̇ we use (2.57),
obtaining the final expression

vx(αt, t) = −α2βt− αβ

2
√

π

∫ t

0

1√
t− τ

e
−

α2

4
(t− τ)

{
2
(
1 +

α2τ

4

)[
1− erf

(α

2
√

τ
)]

+

+
[
erf

(α

2
√

τ
)
− α

√
τ√

π
e
−

α2

4
τ ]}

dτ,(2.62)

evidently satisfying (2.48) for any α and β. Again we point out that vx(αt, t) is proportional to
β and vanishes as α tends to zero.



Chapter 3

The Stefan problem. Classical solutions

3.1 Self-similar solutions

a) Self-similar solutions for the heat equation
We look for a pair of functions f (ξ), γ (t) such that

u (x, t) = f (γ (t) x)

satisfies uxx = ut. Excluding the trivial case f = constant, we impose γ2f ′′ =
·
γ xf ′ and we

separate the variables
f ′′

ξf ′
=

·
γ

γ3
⇒

·
γ

γ3
= −λ2,

f ′′

f ′
= −λ2ξ

with λ ∈ R. From the first equation we obtain

γ (t) = λ−1 [2 (t− t0)]
− 1

2 , t > to.(3.1)

The second equation leads to

f (ξ) = A

[
erf

(
λξ√

2

)
− erf

(
λξ0√

2

)]

with A, ξ0 integration constants and

erf (z) =
2√
π

∫ z

0
e−y2

dy

(
lim

z→±∞ erf (z) = ±1
)

.(3.2)

Noting that λξ = λγx =
x√

2 (t− t0)
, we realise that the constant λ has no role and we can

define the desired class of self-similar solutions:

u (x, t) = A

{
erf

(
x

2
√

t− t0

)
− erf (z0)

}
(3.3)

depending on the three parameters A, t0, z0.
b) Self-similar solutions to the one-phase Stefan problem
We look for a pair (s, u) with u of the form (3.3), satisfying

u (s (t) , t) = 0,(3.4)

∂u

∂x

∣∣∣∣
x=s(t)

= −ṡ (t) , (the limit is taken for x ↑ s (t)) .(3.5)

36
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The choice of the sign in (3.5) is compatible with the fact that the heat conducting phase is
liquid, while the solid is uniformly at the phase change temperature (namely zero).

We set t0 = 0 and we remark that all the level curves of (3.3) are parabolas in the (x, t) plane.

Therefore we must seek s (t) in the form s = 2α
√

t. Imposing (3.5), since
∂u

∂x
= A

1√
πt

e−
x2

4t ,

ṡ =
α√
t
, we find

A = −√παeα2

and we obtain a one parameter family of self-similar solutions:

u (x, t) =
√

παeα2

{
erf (α)− erf

(
x

2
√

t

)}
= 2αeα2

∫ α

x
2
√

t

e−η2
dη,(3.6)

s (t) = 2α
√

t.(3.7)

The pair (3.6), (3.7) is sometimes referred to as Neumann’s solution. Let us compute the
limits for t ↓ 0 and for x → 0. Before doing that we remark that we can interpret (3.6), (3.7) in
one of the following ways (see fig. 3.1):

(i) α > 0, x < 2α
√

t
Cauchy problem
(u > 0)
(ii) α > 0, 0 < x < 2α

√
t

(u > 0) boundary value problem
(iii) α < 0, x < 2α

√
t

(u < 0: supercooled liquid)
We also have the symmetric cases (the heat conducting phase is the solid)
(iv) α < 0, x > 2α

√
t

Cauchy problem
(u < 0)
(v) α < 0, 2α

√
t < x < 0

(u < 0): boundary value problem
(vi) α > 0, x > 2α

√
t

(u > 0: superheated solid)

We confine our attention to cases (i), (ii), (iii).
Case (i): α > 0, x < 2α

√
t

lim
t↓0

u (x, t) = 2αeα2

∫ α

−∞
e−η2

dη, ∀x < 0.(3.8)

Thus for any α > 0 (3.6), (3.7) solve the Cauchy problem with initial value u (x, 0) = u0 (α)
defined by (3.8) for x < 0.

Note that u is discontinuous at the origin (requiring some care in the definition of solution)

and ṡ is singular
(

ṡ =
α√
t

)
.

Case (ii): α > 0, 0 < x < 2α
√

t

lim
x↓0

u (0, t) = 2αeα2

∫ α

0
e−η2

dη ≡ u1 (α) > 0.(3.9)

Note that u1 (α) = u0 (α)−√παeα2 and again ṡ(t) has a singular behaviour at the origin:
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t

x

(ii) : α > 0, 0 < x < 2α
√

t

(u > 0), Boundary value problem

(iv) : α < 0, x > 2α
√

t

(u < 0), Cauchy problem

(vi) : α > 0, x > 2α
√

t

(u > 0), Superheated solid

x

t
x = 2α

√
t

x = 2α
√

t

u ≡ 0

t

x

(i) : α > 0, x < 2α
√

t

(iii) : α < 0, x < 2α
√

t

(u < 0), Supercooled liquid

(v) : α < 0, 2α
√

t < x < 0

(u < 0), Boundary value Problem

(u > 0), Cauchy Problem

x

t

x = 2α
√

t

x = 2α
√

t

u ≡ 0

x

t

u ≡ 0

x = 2α
√

t

u ≡ 0

u ≡ 0

u ≡ 0

x = 2α
√

t

Figure 3.1: Self-similar solutions for melting (i), (ii); solidification of a supercooled liquid (iii); solidifi-
cation (iv), (v); melting of a superheated solid (vi).
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Case (iii): α < 0, x < 2α
√

t

The limit of u for t ↓ 0, x < 0 is the same function u0 (α) defined by (3.8), but this time
u0 (α) < 0.

Now we want to solve the inverse problems:
Problem (i):
Given U0 ≥ 0, find α such that u0 (α) = U0.
Problem (ii):
Given U1 ≥ 0, find α such that u1 (α) = U1.
Problem (iii):
Given U0 < 0, find α such that u0 (α) = U0.
Let us anticipate the conclusion:

Theorem 3.1 Problems (i), (ii) have one unique solution (α ≥ 0) for any choice of U0 ≥ 0,
U1 ≥ 0. Problem (iii) has one and only one solution (α < 0) if U0 ∈ (−1, 0) and no solutions for
U0 ≤ −1.

Proof.
Recalling the definition (3.8) of u0 (α) we have to study the equation

u0 (α) = 2αeα2

∫ α

−∞
e−η2

dη = U0.(3.10)

We have

u′0 (α) = 2eα2 (
1 + 2α2

) ∫ α

−∞
e−η2

dη + 2α,(3.11)

u
′′
0 (α) = 4αeα2 (

3 + 2α2
) ∫ α

−∞
e−η2

dη + 2(1 + 2α2) + 2(3.12)

and we realize that all the derivatives of u0 (α) are positive for α > 0. Clearly lim
α→+∞u0 (α) = +∞

and therefore the equation u0 (α) = U0 is uniquely solvable for any U0 ≥ 0 (of course U0 = 0
corresponds to the trivial solution u = 0, s = 0).

The same analysis and the same conclusion hold for Problem (ii).
Solving (3.10) for U0 < 0 is not equally easy (Problem (iii)).
From (3.11) we see that u′0 (0) =

√
π, u

′′
0 (0) = 4, but the behaviour of u′0 (α), u

′′
0 (α) is not

immediately evident for α < 0 (clearly all possible solutions of (3.10) for U0 < 0 are negative,
since u0 (α) has the same sign as α).

However we can establish that u0 (α) has the graph described in fig. 3.2.

Let us first compute the limit

lim
α→−∞u0 (α) = lim

α→−∞ 2

∫ α
−∞ e−η2

dη

e−α2

α

= lim
α→−∞ 2

1
−2− 1

α2

= −1.(3.13)

Next we rewrite (3.11) as

u′0 (α) = u0
1
α

(
1 + 2α2

)
+ 2α(3.14)

and (3.12) as

u
′′
0 (α) = u′0

1
α

(
1 + 2α2

)
+ u0

2α2 − 1
α2

+ 2(3.15)
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uo(α)

α

−1

Figure 3.2: Graph of the function u0(α) in (3.10).

If u′0 can vanish for some
∧
α< 0, then

u0

(∧
α
)

= − 2
∧
α

2

1 + 2
∧
α

2 ∈ (−1, 0)

and consequently

u
′′
0

(∧
α
)

=
4

1 + 2
∧
α

2 > 0.

Therefore u0

(∧
α
)

can only be a minimum, thus contradicting (3.13). We conclude that
u′0 (α) > 0 also for α < 0, which completes the proof of the theorem. 2

The physical interpretation of Theorem 3.1 is easy. While melting of ice due to a given positive
initial temperature of the confining liquid (Problem (i)) or to a prescribed positive temperature
on the surface x = 0 (Problem (ii)) is always possible, the conversion of a supercooled liquid
at a given initial negative temperature into ice at zero temperature proceeds with a parabolic
interface only if the supercooled liquid is not “too cold”.

There is a large literature devoted to various types of supercooling.
We just quote [33] for a survey.

3.2 The one-dimensional one-phase Stefan problem

a) Statement of the problem
Problem 2.1: Find a pair (s, u) such that s ∈ C [0, T ]∩C1 [0, T ], u ∈ C

(
QT

)
, u ∈ C2,1 (QT ),

∂u

∂x
continuous up to x = s (t), t ∈ [0, T ], such that, for some T > 0,

uxx − ut = 0, in QT =
{
(x, t) ∈ R2/0 < x < s (t) , 0 < t < T

}
(3.16)
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s (0) = b > 0,(3.17)

u (x, 0) = h (x) , 0 < x < b,(3.18)

u (0, t) = f (t) , 0 < t < T,(3.19)

u (s (t) , t) = 0, 0 < t < T,(3.20)

ux (s (t) , t) = − ·
s (t) , 0 < t < T.(3.21)

Condition (3.19) may be replaced e.g. by

ux (0, t) = g (t)(3.22)

We will also consider the case s (0) = b = 0, thus dropping the initial condition (3.18).
There are two main classes of problems:
Problem 2.1A, with sign restrictions on the data (h ≥ 0, f ≥ 0 or g ≤ 0).
Problem 2.1B, with no sign restrictions.
In the framework of phase change we can say that if we do not impose the “correct” sign of

the data, we allow supercooling.
However Problem 2.1B makes sense in a variety of cases, since, as we shall see, free boundary

problems in areas quite far from thermodynamics can be given the form (3.16)-(3.21), even if we
cannot attach a physical meaning to the sign of the data.

We anticipate that there is a fundamental difference between Problem 2.1A and Problem
2.1B: the former is solvable globally in time, the latter can develop various kinds of singularities
in a finite time (or it can have a solution for all T > 0 , or it can have no solution at all).

A final remark concerns the condition u ∈ C
(
QT

)
, that implies matching conditions for the

data, but can be relaxed in many ways.
b) Global heat balance (a weaker version of Stefan’s condition).
Multiply equation (3.16) by x and for any t ∈ (0, T ) integrate over the domain Qt. Using the

identity xuxx = (xux − u)x, we can say that

0 =
∫

Qt

x (uxx − ut) dxdτ =
∮

∂Qt

[(xux − u) dτ + xu dx]

Hence

∫ s(t)

0
xu (x, t) dx =

∫ b

0
xh (x) dx +

∫ t

0
f (τ) dτ − 1

2
(
s2 (t)− b2

)
.(3.23)

If condition (3.22) is prescribed instead of (3.19), we integrate directly (3.16) and obtain
∫ s(t)

0
u (x, t) dx =

∫ b

0
h (x) dx−

∫ t

0
g (τ) dτ − 1

2
(s (t)− b)(3.24)

which is clearly readable in terms of heat balance: the heat stored in the phase at time t is the
one at time t = 0 plus the heat that entered the system through x = 0 in the time interval (0, t)
and minus the latent heat needed to produce phase change in the layer of thickness s (t)− b.

Equation (3.23) is also a kind of weighted average.
Both (3.23) and (3.24)are weaker form of the heat balance because they do not involve ṡ nor

ux (s (t) , t).
However, if we know that s (t) is Lipschitz continuous, then ux (s (t) , t) is continuous and

from (3.23) or (3.24) we may compute the limit of the difference quotient of s (t), proving that
ṡ = −ux (s (t) , t) and therefore that s is C1. Thus (3.23), (3.24) are actually equivalent to the
Stefan condition, provided we add the requirement of Lipschitz continuity of s.
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Remark 2.1.
We have not used the condition b > 0.
c) Stefan Problem 2.1A (melting with no undercooling):existence
For the time being we refer to the case

s (0) = b > 0(3.25)

and we assume that f (t), h (x) are continuous and nonnegative, and

0 ≤ h (x) ≤ H (b− x)(3.26)

for some constant H ≥ 0.
A minor assumption is f (0) = h (0).
A first a-priori result is

Proposition 3.1 For any solution of Problem 2.1A we have u ≥ 0, ṡ ≥ 0. If h or f are not
identically zero in a neighborhood of t = 0, then u > 0 in QT and ṡ > 0 for t > 0.

Proof.
A simple consequence of Theorems 2.2 and 2.3. 2

Now we prove existence.

Theorem 3.2 Under the assumptions (3.25), (3.26) Problem 2.1A has at least one solution.

Proof.
For any given T > 0 we consider the set

Σ(A) =
{

s ∈ C [0, T ] | s (0) = b, 0 ≤ s (t′)− s (t′′)
t′ − t′′

≤ A, 0 ≤ t′ < t′′ ≤ T

}
.(3.27)

If s is prescribed in Σ(A) the problem (3.16), (3.18), (3.19), (3.20)
is uniquely solvable (Thm. 2.4) and ux (s (t) , t) exists continuous. Thus we can define the

mapping τ : s ∈ Σ(A) → σ by means of

·
σ= −ux (s (t) , t) , σ (0) = b.(3.28)

Note that if s is a fixed point of τ (i.e. s = τs), then (3.21) is satisfied and the pair (s, u) is
a solution of Problem 2.1A. Thus we look for the fixed points of τ . The plan is to show that for
a suitable choice of A

(i) τΣ(A) ⊂ Σ(A) ,
(ii) τ is completely continuous, i.e. it is continuous and τΣ(A) is compact in the selected

topology.
Since Σ(A) is compact, it will be enough to show continuity. Then the existence of at least

one fixed point in Σ(A) will be guaranteed by Schauder’s theorem.
The first target is easy: we need an estimate for ux (s (t) , t).
As in Proposition 2.1 we can immediately see that

u ≥ 0, ux (s (t) , t) ≤ 0 ⇒ ·
σ (t) ≥ 0.(3.29)

In order to get a lower estimate for ux (s (t) , t) we use the so-called technique of barriers.
Take t0 arbitrarily in (0, T ] and compare the solution u of (3.16), (3.18), (3.19), (3.20) with the
linear function

v (x, t0) = −A (x− s (t0))(3.30)
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which is also a solution of (3.16). We choose A in such way that v (x, t0) ≥ u (x, t) in Qt0 (by
construction v (s (t0) , t0) = u(s(t0), t0) and for this reason v is called a barrier for u).

Since s (t) ≤ s (t0) in (0, t0) we have v (s (t) , t0) ≥ 0 = u (s (t) , t) .
If we take A ≥ H in (3.26), then v (x, t0) ≥ H (b− x) ≥ u (x, 0) .
Finally, if A ≥ sup

t∈(0,T )
f (t) = F (t), then we have also v (0, t0) ≥ u (0, t) in (0, t0). Therefore

the inequality v (x, t0) ≥ u (x, t) in Qt0 is a trivial consequence of the maximum principle.
At this point we use the coincidence of v and u in (s (t0) , t0) to infer that

−A = vx ≤ ux (s (t0) , t0) .(3.31)

Recalling that t0 is arbitrary, we conclude that for all t in (0, T ] we have

A (s (t)− x) ≥ u (x, t) ≥ 0, 0 ≤ x ≤ s (t) ,(3.32)

−A ≤ ux (s (t) , t) ⇒ σ̇ (t) ≤ A,(3.33)

with

A = max

(
H,

1
b

sup
t∈(0,T )

f (t)

)
.(3.34)

Thus we have proved (i) with A given by (3.34).
In order to prove the continuity of the mapping τ , we start from the identity

∮

∂Qt

[(xux − u) dτ + xu dx] = 0(3.35)

(already introduced in (b)), in connection with ux (s (t) , t) = −σ̇ (t).
For a pair of functions s1, s2 taken in Σ(A) we consider the corresponding functions u1 (x, t),

u2 (x, t) and for each of them we write (3.35), namely
∫ t

0
si (τ) σ̇i (τ) dτ −

∫ si(t)

0
ui (x, t) dx +

∫ b

0
xh (x) dx−

∫ t

0
f (τ) dτ = 0, i = 1, 2(3.36)

and by substraction we get
∫ t

0
s1 (τ) (σ̇1 (τ)− σ̇2 (τ)) dτ +

∫ t

0
(s1 (τ)− s2 (τ)) σ̇2 (τ) dτ =(3.37)

=
∫ α(t)

0
(u1 (x, t)− u2 (x, t)) dx + (−1)j+1

∫ β(t)

α(t)
uj (x, t) dx,

where α (t) = min (s1 (τ) , s2 (τ)) , β (t) = max (s1 (τ) , s2 (τ)) , and j = 1 if β = s1, j = 2 if
β = s2.

Our aim is to arrive at an inequality of the type

‖σ1 − σ2‖ ≤ C ‖s1 − s2‖(3.38)

with ‖·‖ denoting the norm of C [0, T ] and C being a positive constant depending on A, T , and
on b > 0.

Clearly the most delicate term in (3.37) is the first one. We can approach our target with an
integration by parts replacing that term with

s1 (t) [σ1 (t)− σ2 (t)]−
∫ t

0
ṡ1 (τ) [σ1 (τ)− σ2 (τ)] dτ(3.39)
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(recall that ṡ1 ∈ L∞ with ‖ṡ1‖L∞ ≤ A).
Next we have to estimate the difference u1 − u2 in the domain 0 < x < α (t), 0 < t < T .

The difference of the data is zero for t = 0 and x = 0. For x = α (t) we have ui (α (t) , t) = 0
if si (t) =α (t) and uj (α (t) , t) ≤ A (β (t)− α (t))for j 6= i, because of (3.32). The maximum
principle provides the desire inequality:

|u1 (x, t)− u2 (x, t)| ≤ A ‖s1 − s2‖t ,(3.40)

where ‖·‖t denotes the sup in (0, t).
For uj in (α, β)we use again (3.32). Passing to the absolute values in (3.37), and recalling

(3.39) , (3.40), we obtain the inequality

s1 (t) |σ1 (t)− σ2 (t)| ≤ A

∫ t

0
|σ1 (τ)− σ2 (τ)| dτ+

A

∫ t

0
|s1 (τ)− s2 (τ)| dτ + α (t) ‖s1 − s2‖t +

1
2
A

∣∣s2
1 (t)− s2

2 (t)
∣∣ .(3.41)

Now we can use (in a crucial way) assumption (3.25) (b > 0) and we note that α (t) ≤ b+AT ,
1
2 (s1 (t) + s2 (t)) ≤ b + AT , obtaining

|σ1 (t)− σ2 (t)| ≤ A

b

∫ t

0
|σ1 (τ)− σ2 (τ)| dτ+(3.42)

+
1
b

[AT + b + AT + A (b + AT )] ‖s1 − s2‖t .

Gronwall’s inequality leads eventually to (3.38) and at the same time to the conclusion of
the existence proof. 2

Exercise: Prove the analogous theorem with (3.22) replacing (3.19).

d) Stefan problem 2.1A: continuous, monotone dependence and uniqueness

Theorem 3.3 (monotone dependence on the data). Let (b1, h1, f1), (b2, h2, f2) be a pair
of data satisfying the assumption of Theorem 3.2 and such that

b1 ≤ b2(3.43)

h1 (x) ≤ h2 (x) in (0, b1)(3.44)

f1 (t) ≤ f2 (t) .(3.45)

Then
s1 (t) ≤ s2 (t) ,(3.46)

u1 (x, t) ≤ u2 (x, t) in 0 < x < s1 (t) , t > 0.(3.47)

Moreover, if
b1 < b2(3.48)

then
s1 (t) < s2 (t) .(3.49)
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Proof.
Let us first consider the stronger version of the theorem, i.e. (3.48). As a preliminary we

examine the trivial case h1 = h2 = f1 = f2 = 0. If the initial and boundary data are zero, since
the value of u on the free boundary is also zero, the maximum principle forces u to be identically
zero with the obvious consequence that s is constant. Thus (b, 0) is the only solution to the
trivial case and comparing trivial solutions is also trivial.

Now we may suppose that the set of larger data do not produce a trivial solution: this implies
that ṡ2 > 0 and u2 > 0 at inner points. We know that ṡ1, ṡ2 are both bounded in [0, A] and

therefore there is a time interval (0, t∗) in wich s1 (t) < s2 (t), with t∗ ≥ b2 − b1

A
(note that, since

at least h2 or f2 are not identically zero, A has to be positive).
Suppose that for some finite t∗ the two boundaries intersect each other for the first time and

compare u1, u2 in the smaller domain.

By assumption u1 − u2 ≤ 0 for t = 0 in (0, b1), u1 − u2 ≤ 0 for x = 0 in (0, t∗) and
u1 − u2 = −u2 < 0 on x = s (t) in (0, t∗).

The intersection point (s (t∗) , t∗) is such that we may apply Theorem 2.3, concluding that
(u1x − u2x) (s (t∗) , t∗) > 0, implying that ṡ2 (t∗) > ṡ1 (t∗). Such inequality is not compatible
with the assumption that t∗ is a point of absolute minimum for s2 − s1 in [0, t∗]. Thus (3.49) is
proved and (3.47)follows at once.

The above argument fails if b1 = b2, because the starting point of both boundaries could be
an accumulation point of intersections.

If b1 = b2 = b > 0, we construct a sequence of dominating solutions
(
sδ, uδ

)
corresponding

to the data

bδ = b + δ, hδ (x) =
{

h2 (x) , x ∈ [0, b]
0, x ∈ [b, b + δ]

, f δ (t) = f2 (t) .(3.50)

We know that for each δ > 0 at least one solution
(
sδ, uδ

)
of Problem 2.1A exists. From the

previous monotonicity result we conclude that

s1 < sδ, s2 < sδ, u1 ≤ uδ, u2 ≤ uδ.(3.51)

Now we write equation (3.23) for the pairs
(
sδ, uδ

)
, (s2, u2) and take the difference, obtaining

1
2

(
sδ (t)− s2 (t)

)(
sδ (t) + s2 (t)

)
=

=
1
2
δ (2b + δ)−

∫ s2(t)

0
x

(
uδ (x, t)− u2 (x, t)

)
dx−

∫ sδ(t)

s2(t)
x uδ (x, t) dx ≤

≤ 1
2
δ (2b + δ) .(3.52)

Since sδ (t) + s2 (t) ≥ 2b + δ we conclude that

s1 (t) < sδ (t) ≤ s2 (t) + δ(3.53)

and letting δ tend to zero we complete the proof. 2

Corollary 3.1 Uniqueness. The same assumptions of the existence theorem (Theorem 3.2)
guarantee uniqueness.
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Exercise: Study Problem 2.1A with Neumann data for x = 0.
Remark 2.2.
Theorem 3.3 extends to the case b1 = 0 (and possibly b2 = 0) and in such a case we must

consider it (at the stage of our knowledge) an a-priori result. As a matter of fact, in the proof
we have used (3.23) (valid also for b = 0) and we have applied the existence theorem only for
the dominating solutions

(
sδ, uδ

)
, having in any case sδ (0) ≥ δ > 0. 2

Theorem 3.4 (Continuous dependence). Let (s1, u1), (s2, u2) be the solutions of Problem
2.1A corresponding to the respective sets of data (b1, h1, f1), (b2, h2, f2) both satisfying the as-
sumption of Theorem 3.2. Let b = min(b1, b2), A = max(A1, A2), with A1, A2 defined as in
(3.34). Then there exists a constant C = C(b, T,A) such that

‖s1 − s2‖ ≤ C(‖h1 − h2‖+ |b1 − b2|+ ‖f1 − f2‖),
‖u1 − u2‖ ≤ C(‖h1 − h2‖+ |b1 − b2|+ ‖f1 − f2‖).

when computing ‖h1−h2‖ the functions h1, h2 are given zero extension beyond b1, b2 if necessary.
The result is valid also when Dirichlet data are replaced by Neumann data.

Proof.
We sketch the proof for the Dirichlet data. We have to start from (3.23), from which we imme-
diately deduce the inequality

b‖s1 − s2‖t ≤ C[|b1 − b2|+ ‖h1 − h2‖+ ‖f1 − f2‖] +
∫ α(t)

0
x|u1(x, t)− u2(x, t)|dx +

∫ β(t)

α(t)
xujdx,

where α, β, j have the same meaning as in the proof of Theorem 3.3 and from now on C denotes
a constant depending on b, T , A.
Let us estimate the last two terms, exploiting the information

|u1(α(t), t)− u2(α(t), t)| ≤ A(β − α).

Setting v(x, t) = u1(x, t)− u2(x, t) we use the inequality

|v| ≤ v1 + v2,

where v1 solves the heat equation with data

v1(0, t) = |f1(t)− f2(t)|, v1(x, 0) = |h1(x)− h2(x)|for x ∈ (0, b),

v1(α(t), t) = 0,

and v2 is the solution of the heat equation with data on t = 0 and on x = 0, and such that
v2(α(t), t) = A(β − α).
The function v1 is easily estimated by means of the maximum principle.
In turn v2 is dominated by the solution v3 of the initial boundary-value problem in the unbounded
domain −∞ < x < α(t), t ∈ (0, T ) with the data A‖β−α‖t on x = α(t) and vanishing for t = 0.
We recall that α(t) is Lipschitz (with a Lipschitz constant not greater than A), thus we may use
the representation

v3(x, t) =
∫ t

0
µ(τ)Γx(x, t;α(τ), τ)dτ,

with µ solving the integral equation

A‖β − α‖t =
1
2
µ(t) +

∫ t

0
µ(τ)Γx(α(t), t;α(τ), τ)dτ.
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This inequality is of the type (2.44) and therefore we deduce

‖µ‖ ≤ C‖β − α‖t

and consequently ∫ α(t)

−∞
v3(x, t) ≤ C

∫ t

0

‖β − α‖τ√
t− τ

dτ.

Thus the term
∫ α(t)
0 x|u1 − u2|dx has the estimate

∫ α(t)

0
x|u1 − u2|dx ≤ C

[
|b1 − b2|+ ‖h1 − h2‖+ ‖f1 − f2‖+

∫ t

0

‖β − α‖τ√
t− τ

dτ
]
.

Similarly we can say that uj(x, t) for x ∈ (α, β) is majorized by ‖h1 − h2‖+ v4, where v4 solves
the heat equation for x > α(t), t > 0 with data A‖β − α‖t on x = α(t) and vanishing for t = 0.
Hence we get for v4 precisely the same estimate as v3.
Putting all these elements together we arrive at the inequality

‖s1 − s2‖t ≤ C
[
|b1 − b2|+ ‖h1 − h2‖+ ‖f1 − f2‖+

∫ t

0

‖s1 − s2‖τ√
t− τ

dτ
]
,

again of the type (2.44) and yielding the desired continuous dependence result. The similar
inequality for ‖u1 − u2‖ is now trivial. 2

e) Stefan problem 2.1A: appearance of a phase (b = 0)
When the thickness of the conducting phase is initially zero of course we drop the initial

condition (3.18).
The assumptions we make on f , besides f ≥ 0 are

f ∈ C [0, T ] , f not identically zero in a neighbourhood of t = 0.(3.54)

Remark 2.3.
Differentiating (3.20) and using (3.21)we deduce that at regular points of the free boundary

ut (s (t) , t) = −ṡ2 (t) .(3.55)

Thus we expect that ṡ (0) will exist if f ∈ C1 [0, τ ] and f (0) = 0. Since (3.54) is more
general, the free boundary is likely to be singular at the origin. We may have singularities for
t = 0 also when b > 0 but condition (3.26) is violated, a case we have not treated. 2

Remark 2.4.
Uniqueness is guaranteed a-priori by the monotone dependence on f , which applies also in

this case (Remark 2.2). 2

Now we want to prove existence.
First of all we deduce an a-priori lower bound for s (t).

Lemma 3.1 Let (s, u) be a solution of Problem 2.1A with b ≥ 0 and h (x) ≡ 0 if b > 0. Then

s (t) > ρ (t) =
{

2
1 + ‖f‖t

∫ t

0
f (τ) dτ

} 1
2

.(3.56)
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t

x

x = s(t)

x = ρ(t)

Figure 3.3: Lower bound for the free boundary.

Proof.

We start from (3.23), now reduced to

1
2
s2 (t) =

1
2
b2 +

∫ t

0
f (τ) dτ −

∫ s(t)

0
xu (x, t) dx,(3.57)

and we use the obvious estimate (recall (3.54)and the maximum principle)

0 < u (x, t) < ‖f‖t , 0 < x < s (t) , t > 0

to obtain
1
2

(1 + ‖f‖t) s2 (t) >

∫ t

0
f (τ) dτ. 2(3.58)

In order to prove existence it will be enough to show existence for a sufficiently small time
interval, because, once we have reached a time τ0 > 0, it will be clear that u (x, τ0) satisfies (3.26)
in (0, s(τ0)) and we are back to the previous case.

We split the existence proof in two parts.

Theorem 3.5 (First case of existence). Suppose (3.54) and

‖f‖t

ρ (t)
bounded in (0, T ) .(3.59)

Then Problem 2.1A with b = 0 has a solution and moreover

0 < ṡ (t) ≤ sup
t∈(0,T )

‖f‖t

ρ (t)
.(3.60)
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t

0 un = 0 x

un = f unxx
= unt

x = sn(t)

un = 0

bn

Figure 3.4: Construction of a comparison function.

Proof.
Take a sequence {bn} strictly decreasing to zero. For each bn we can find the solution of the

problem in fig. 3.4

We know that the pairs (sn, un) depend monotonically on n, and we also know from Lemma
2.1 that the sequence {sn} is bounded from below by ρ (t) > 0. In order to get some information
on the limit, for any t∗ ∈ (0, T ) and each n we look for a linear barrier of the form

vn (x, t∗) = κ (sn (t∗)− x) .(3.61)

The condition guaranteeing that vn (x, t∗) is a barrier for un is

vn (0, t∗) = κ sn (t∗) ≥ ‖f‖t∗ .(3.62)

Thanks to Lemma 2.1 we can say that (3.62) holds, provided that

κ = sup
t∈(0,T )

‖f‖t

ρ (t)
(3.63)

which leads to the uniform estimate

0 < ṡn (t) ≤ κ in (0, T ) .(3.64)

Hence {sn} decreases to a Lipschitz continuous function s (t), such that s (0) = 0, s (t) > ρ (t).
If u (x, t) denotes the solution of the problem in fig. 3.5

it is easy to see that {un} → u uniformly in 0 < x < s (t) , 0 < t < T .
Now we write (3.57) for each pair (sn, un):

1
2
s2
n (t) =

1
2
b2
n +

∫ t

0
f (τ) dτ −

∫ sn(t)

0
xun (x, t) dx(3.65)

and we pass to the limit, obtaining

1
2
s2 (t) =

∫ t

0
f (τ) dτ −

∫ s(t)

0
x u (x, t) dx.(3.66)
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t

0

u = f uxx − ut = 0 u = 0

x = s(t)

x

Figure 3.5: Performing the limit.

We know that (3.66) together with the Lipschitz continuity of s (t) is equivalent to the Stefan
condition ux = −ṡ and therefore (s, u) is the solution of Problem 2.1A. 2

Remark 2.5.
If f (t) behaves like ctα near t = 0, assumption (3.59) is verified for α ≥ 1 (in agreement with

Remark 2.3). 2

We are left with the case opposite to (3.59), i.e.

‖f‖t

ρ (t)
is not bounded near t = 0.(3.67)

This time we need a finer comparison theorem for the increments of s (t).

Lemma 3.2 Consider the following pair of problems (see fig. 3.6)

differing only for s (0) = b <
_
b=

_
s (0). For any t > 0 we have

s2 (t)− b2 >
_
s

2
(t)−

_
b

2
.(3.68)

Proof.
We write (3.57) for the pairs (s, u),

(_
s ,

_
u

)
and by substraction we get

1
2

[
s2 (t)− b2

]− 1
2

[_
s

2
(t)−

_
b

2]
=(3.69)

= −
∫ s(t)

0
x

[
u (x, t)− _

u (x, t)
]

dx +
∫ _

s (t)

s(t)
x
_
u (x, t) dx,

where we have used
_
s (t) > s (t). We also know that 0 < u <

_
u (x, t) and therefore the r.h.s. of

(3.69) is strictly positive. 2

Now we prove:

Theorem 3.6 (complementary to Theorem 3.5). If in Theorem 3.5 we replace (3.59) with the
opposite condition (3.67) we still have existence.
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t

0

ūx = − ˙̄s

b

u = ū = f

b̄ x

u = 0

x = s̄(t)x = s(t)

u = 0

ux = −ṡ

Figure 3.6: Approximating sequence.

Proof.
Again we work with the sequence {(sn, un)}. Of course we cannot obtain a uniform estimate

for ṡn in (0, T ), as in (3.64). Instead we look for bounds in intervals separated from t = 0. With
this aim in mind we fix τ ∈ (0, T ) and define the domains

Qτ
n,t∗ =

{
(x, t) ∈ R2/ 0 < x < sn (t) , τ < t < t∗

}

for any t∗ ∈ (τ, T ). We want to construct a linear barrier in Qτ
n,t∗ of the type

vn (x, τ, t∗) = κ (τ, t∗) (sn (t∗)− x) .(3.70)

Not only we need
vn (0, τ, t∗) ≥ ‖f‖t∗ ,(3.71)

but also
vn (x, τ, t∗) ≥ un (x, τ) , 0 < x < sn (τ) .(3.72)

The difficulty comes from the absence of uniform bounds on un (x, τ) more precise than
0 ≤ un (x, τ) < ‖f‖τ . Therefore the only thing we can do in order to ensure (3.72) is to impose
that

vn (sn (τ) , τ, t∗) ≥ ‖f‖t∗ ,(3.73)

which also implies (3.71). Thus κ (τ, t∗) must be defined so that

κ (τ, t∗) (sn (t∗)− sn (τ)) ≥ ‖f‖t∗ ,(3.74)

which leads us to the necessity of a uniform lower bound of the increment sn (t∗)− sn (τ). Here
Lemma 3.2 comes into play.

First we construct the solution (sτ
n, uτ

n) of the Stefan problem for t > τ with data uτ
n (0, t) =

f (t), uτ
n (x, τ) = 0 for 0 < x < sn (τ), sτ

n (τ) = sn (τ).
Since uτ

n ≤ un and in particular uτ
n (x, t) < un (x, τ) for 0 < x < sn (τ), we have sτ

n (t) < sn (t)
(Theorem 3.3). Next, we construct a supersolution for the latter problem. We have learned how
to obtain the self-similar solution of the problem in fig. 3.7
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t

x

Ux = −ṡ

U = 0

s = b1 + α
√

t

U = ‖f‖t∗

Uxx − Ut = 0

b1

Figure 3.7: The target problem.

i.e. how to find α in terms of ‖f‖t∗ . Here b1 is the first element in the sequence {bn}. From
Theorem 3.3 we have obviously

sn (t) < b1 + α
√

t, ∀n.

Therefore we can say that the solution (στ , ωτ ) of the Stefan problem for t > τ with data
ωτ (0, t) = f (t), ωτ (x, 0) = 0 for 0 < x < b1 + α

√
t, and στ (τ) = b1 + α

√
t, dominates the

solutions (sτ
n, uτ

n) .

bn b1 b1 + α
√

τ x

sn(t)

στ(t)

τ

t

sτ
n(t)

Figure 3.8: The increment s2 − b2 decreases with b.

At this point we apply Lemma 3.2 to the pairs (sτ
n, uτ

n), (στ , ωτ ), concluding that

s2
n (t)− s2

n (τ) > (sτ
n (t))2 − s2

n (t) > (στ (t))2 − (στ (τ))2 ,(3.75)
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and consequently

sn (t)− sn (τ) >
(στ (t))2 − (στ (τ))2

sn (t) + sn (τ)
> στ (t)− στ (τ) .(3.76)

Now we come back to (3.74) and we realize that it is satisfied for all n if we take

κ (τ, t∗) =
‖f‖t∗

στ (t∗)− στ (τ)
.(3.77)

With the help of the linear barrier (3.70) we can say that κ (τ, t∗) is a uniform bound for
·
sn (t) in the interval (τ, t∗), implying the uniform convergence of {sn} in (τ, T ) to a Lipschitz
continuous function s (t) > ρ (t) (Lemma 3.1). Of course the Lipschitz constant goes to infinity
as τ → 0. However we can say that the convergence of sn is anyway uniform in (0, T ). Indeed,
chosen ε > 0, we select τ0 (ε), η0 (ε), so that 0 ≤ sn (t) − s (t) ≤ sn (t) < bn + α

√
τ0 < ε for

n > n0 and t ∈ (0, τ0) (α is the same as in the self-similar solution used above, but with ‖f‖t∗
replaced by ‖f‖T ), and we already know that the convergence is uniform in (τ0, T ).

From now on the proof is identical to the one of Theorem 3.5. 2

3.3 Stefan problem 2.1B (no sign specification)

When we say that in a one-phase melting problem the conducting phase is not necessarily at a
non-negative temperature the main information we lose is the monotonicity of the free boundary.
The possibility of using the technique of linear barriers in the existence proof of Problem2.1A
was strictly linked to the fact that in that case the conducting phase is expanding. This is a deep
difference between the two classes of problems which is not reflected just in the technical details
of the existence proof, but has also more substantial consequences: for instance the solutions of
Problem 2.1B (if they exist) may blow up in finite time.

As a matter of fact, the general existence theorem we are going to prove refers only to a
sufficiently small time interval.

A remarkable feature of this class of problems is that, since monotonicity of the free boundary
is ignored, there is no basic difference between one-phase and two-phase problems.

We confine our analysis to the case (3.25) (b > 0) and we keep the continuity assumption
on the data h, f and the matching conditions at the corners (0, 0), (b, 0). Condition (2.10) is
naturally replaced by

|h (x)| ≤ H (b− x) , 0 < x < b.(3.78)

Theorem 3.7 (Existence.) Under the assumptions cited above Problem 2.1B has at least one
solution in a sufficiently small time interval (0, T ) .

Proof.
We argue as in the proof of Theorem 3.2, studying exactly the same mapping τ : σ → σ.

However, we have a remarkable difference right from the starting point: instead of the set (3.27)
we take now

Σ (A, T ) =
{

s ∈ C [0, T ] / s (0) = b,
|s (t′)− s (t′′)|

|t′ − t′′| ≤ A,(3.79)

0 ≤ t′ < t′′ ≤ T, s (t) ≥ c > 0 for some c < b
}

where we have eliminated monotonicity of s and T can no longer be arbitrary. For s in Σ(A, T )
we solve (3.16), (3.18), (3.19), (3.20) and we consider the mapping (3.28).
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Clearly we must look for a bound on |ux (s (t) , t)|. A very natural comparison function
(actually a barrier for each point of the boundary x = s (t)) is the solution of the problem

vxx − vt = 0, 0 < x < s (t) , 0 < t < T,(3.80)

v (s (t) , t) = 0, 0 < t < T,(3.81)

v (x, 0) = κ (b− x) , 0 < x < b,(3.82)

v (0, t) = κb, 0 < t < T,(3.83)

where
κ =

1
b

max (Hb, ‖f‖T ) .(3.84)

The inequality
|u (x, t)| ≤ v (x, t)(3.85)

follows immediately from the maximum principle, implying

|ux (s (t) , t)| ≤ |vx (s (t) , t)| .(3.86)

In order to estimate the latter quantity we use a representation formula for v (x, t). For fixed
t we consider the variables (ξ, τ) in the domain 0 < ξ < s (τ), 0 < τ < t, and we introduce the
operator

L =
∂2

∂ξ2
− ∂

∂τ

and its adjoint

L∗ =
∂2

∂ξ2
+

∂

∂τ
.

We recall from Section 4.II that L∗G (x, t; ξ, τ) = 0, G being the Green function for the
quarter plane.

From the identity

0 = vL∗G−GLv = (vGξ −Gvξ)ξ + (vG)τ ,

integrating over the domain Qt−ε =
{
(ξ, τ) ∈ R2 / 0 < ξ < s (τ) , 0 < τ < t− ε

}
, ε > 0, we get

0 =
∮

∂Qt−ε

[(vGξ −Gvξ) dτ + vG dξ]

=
∫ s(t−ε)

0
v (ξ, t− ε) G (x, t; ξ, t− ε) dξ −

∫ b

0
κ (b− ξ)G (x, t; ξ, 0) dξ

−
∫ t−ε

0
κbGξ (x, t; 0, τ) dτ −

∫ t−ε

0
G (x, t; s (τ) , τ) vξ (s (τ) , τ) dτ,

where we have used G|ξ=0 = 0.
Letting ε ↓ 0, we use the fundamental property (2.3) (obviously valid for G as well as for Γ

(see (2.32)) to obtain

v (x, t) =
∫ b

0
κ (b− ξ) G (x, t; ξ, 0) dξ + κb

∫ t

0
Gξ (x, t; 0, τ) dτ

+
∫ t

0
G (x, t; s (τ) , τ) vξ (s (τ) , τ) dτ.(3.87)
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Then we compute vx (x, t) :

vx (x, t) = −
∫ b

0
κ (b− ξ) Nξ (x, t; ξ, 0) dξ

+κb

∫ t

0
Nτ (x, t; 0, τ) dτ +

∫ t

0
Gx (x, t; s (τ) , τ) vξ (s (τ) , τ) dτ(3.88)

= −κ

∫ b

0
N (x, t; ξ, 0) dξ +

∫ t

0
Gx (x, t; s (τ) , τ) vξ (s (τ) , τ) dτ

(recalling (2.34), Gξx = −Nξξ = Nτ ).
We pass to the limit x → s (t)−, using the jump relation of the double layer potential (2.36),

obtaining for vx (s (t) , t) the following Volterra equation with weakly singular kernel

1
2
|vx (s (t) , t)| = −κ

∫ b

0
N (s (t) , t; ξ, 0) dξ +

∫ t

0
Gx (s (t) , t; s (τ) , τ) vx (s (τ) , τ) dτ.(3.89)

The kernel is

Gx (s (t) , t; s (τ) , τ) = − s (t)− s (τ)

4
√

π (t− τ)
3
2

exp

{
− [s (t)− s (τ)]2

4 (t− τ)

}
(3.90)

+
s (t) + s (τ)

4
√

π (t− τ)
3
2

exp

{
− [s (t) + s (τ)]2

4 (t− τ)

}

and since s ∈ Σ(A, T ) we have the estimate

|Gx (s (t) , t; s (τ) , τ)| ≤ A

4
√

π (t− τ)
+

AT + b

2
√

π (t− τ)
3
2

exp
{
− c2

t− τ

}

=
A

4
√

π (t− τ)

(
1 +

2
(
T + b

A

)

t− τ
exp

{
− c2

t− τ

})
(3.91)

≤ A

4
√

π (t− τ)

(
1 +

2
ec2

(
T +

b

A

))
=

1
4
√

π (t− τ)

{
A

(
1 +

2T

ec2

)
+

2b

ec2

}

where we just used ye−y ≤ 1
e
.

Let us estimate the two terms in the first integral of (3.89).

1
2
√

πt

∫ b

0
exp

{
− [s (t)− ξ]2

4t

}
dξ =

1√
π

∫ s(t)

2
√

t

s(t)−b

2
√

t

e−η2
dη < 1,(3.92)

1
2
√

πt

∫ b

0
exp

{
− [s (t) + ξ]2

4t

}
dξ =

1√
π

∫ s(t)+b

2
√

t

s(t)

2
√

t

e−η2
dη <

1
2
.(3.93)

Thus we deduce the inequality

|vx (s (t) , t)| ≤ 3κ +
1

4
√

π

{
A

(
1 +

2T

ec2

)
+

2b

ec2

} ∫ t

0

|vx (s (τ) , τ)|√
t− τ

dτ(3.94)

which is of type (2.44), yielding the estimate

|vx (s (t) , t)| ≤ 3κF (T,A, c) ,(3.95)
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with
F (T,A, c) =

(
1 + 2C1 (T, A, c) T

1
2

)
exp

(
πC2

1 (T,A, c) T
)
,(3.96)

C1 (T,A, c) =
1

2
√

π

{
A

(
1 +

2T

ec2

)
+

2b

ec2

}
.

For T = 0, F ≡ 1. For T > 0 we have
∂nF

∂An
> 0, ∀n.

3κF (A, T, c)

0 A1(T ) Ac A2(T )

3κ T = 0

T ∈ (0, Tc)

Tc

A

Figure 3.9: Investigating the inequality (3.98).

Thus Ac, Tc are uniquely defined, such that

3κ F (Tc, Ac, c) = Ac.(3.97)

For all T ∈ (0, Tc) we have
3κF (T, A, c) < A(3.98)

for A in an interval (A1 (T ) , A2 (T )) .
From (3.95), (3.98), (3.86) and the definition of σ we conclude that for T ∈ (0, Tc) and

(A1 (T ) , A2 (T ))
σ̇ ≤ A.(3.99)

However (3.99) alone is not enough to say that σ ∈ ∑
(A, T ), because the condition σ ≥ c

must also be satisfied. On the basis of (3.99) we must possibly reduce T in such a way that

b−AT ≥ c.(3.100)

It is immediately realized that (3.98) and (3.100) are compatible. Just remark that Ac is
always an admissible choice for A, since it belongs to (A1 (T ) , A2 (T )) for all T ∈ (0, Tc). Then
an appropriate choice for T fulfilling both (3.98) and (3.100) is

T ∗c = min
(

Tc,
b− c

Ac

)
.(3.101)

Thus the set
∑

(Ac, T
∗
c ) is mapped into itself by the operator T : s → σ. In view of (3.101)

we can optimize the choice of c so to maximize T ∗c .
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As for the case of Problem 2.1A, also in the present situation the existence proof is now
reduced to showing the continuity of T , i.e. the existence of a constant C such that

‖Ts1 − Ts2‖ ≤ C ‖s1 − s2‖(3.102)

for any choice of s1, s2 ∈
∑

(Ac, T
∗
c ). It is easily seen that (3.102) can be obtained through the

same procedure as in the previous proof, using the inequality

|u (x, t)| ≤ v (x, t) ≤ ‖vx‖ (s (t)− x) .(3.103)

All we have to do is to provide an estimate of ‖vx‖ independent of the choice of s in
∑

(Ac, T
∗
c ).

The function vx satisfies the heat equation and on the parabolic boundary it satisfies the
following conditions

vx (x, 0) = κ, vxx (0, t) = 0, |vx (s (t) , t)| ≤ Ac.(3.104)

From Theorems 2.1, 2.3 we deduce

‖vx‖ ≤ Ac,(3.105)

which is the last step of the proof. 2

We have already stressed that the solution may not exist in the large.

Theorem 3.8 The solution found in Theorem 3.7 ceases to exist in a finite time θ if (at least)
one of the following facts occurs

lim
t↑θ

s (t) = 0(3.106)

or
lim
t↑θ

ṡ (t) = ∞.(3.107)

Proof.
It is possible to continue the solution beyond T ∗c , since the pair (s (T ∗c ) , u (x, T ∗c )) satisfies

the assumptions of Theorem 3.7, owing to (3.103).
Looking at (3.96) we realize that c > 0 is an essential condition in the deduction of (3.97),

therefore if (after repeated continuations) s (t) approaches zero in a finite time, the continuation
procedure comes to a stop.

Also we have to notice that Ac > 3κ (see fig. 3.9), so going through a chain of continuations
it may happen that

·
s blows up in a finite time (Exercise 1). 2

Examples of (3.106) and (3.107) can be provided.
The analysis of blowing up solutions and of possible further continuation is extremely delicate,

and here we will not deal with it.
We still have to prove uniqueness. This time we cannot rely on a monotone dependence result

and therefore we study the continuous dependence on the data. The following theorem extends
Theorem 3.5.

Theorem 3.9 (Continuous dependence.) Consider a pair of data (b1, h1, f1), (b2, h2, f2)
satisfying the assumptions of Theorem 3.1 and let (s1, u1), (s2, u2) be corresponding solutions of
Problem 2.1B. If e.g. b2 > b1 we continue h1 for b > b1 as h1 = 0.

Suppose (0, T ) is a time interval in which for both solutions the bound
∣∣∣ ·si

∣∣∣ ≤ A, i = 1, 2, is
available as well as si ≥ c > 0, i = 1, 2. Then, in the same time interval

‖s1 − s2‖ <(3.108)
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< C

(
|b1 − b2|+

∫ max(b1,b2)

0
x |h1 (x)− h2 (x)| dx +

∫ T

0
|f1 (τ)− f2 (τ)| dτ

)

where C depends on T , A and on c. A similar bound for ‖u1 − u2‖ in the common domain of
definition is easily obtained.

Proof.
As a preliminary we remark that T , A can indeed be found in terms of the data, following

the proof of Theorem 3.7.
We start from

1
2

∣∣s2
1 − s2

2

∣∣ ≤ 1
2

∣∣b2
1 − b2

2

∣∣ +
∫ max(b1,b2)

0
x |h1 (x)− h2 (x)| dx(3.109)

+
∫ t

0
|f1 (τ)− f2 (τ)| dτ +

∫ α(t)

0
x |u1 (x, t)− u2 (x, t)| dx +

∫ α(t)

β(t)
x |uj (x, t)| dx,

where, as in the proof of Theorem 3.3, we define

α (t) = min (s1 (t) , s2 (t)) , β (t) = max (s1 (t) , s2 (t))

and j = 1 if s1 > s2, j = 2 if s1 < s2.
We must estimate the last two integrals.
(I) Estimate of

∫ α(t)
0 x |u1 (x, t)− u2 (x, t)| dx.

Observing that
|uj (α (t) , t)| ≤ A |s1 (t)− s2 (t)| ,(3.110)

we can use the maximum principle to say that

|u1 − u2| ≤ W + Z(3.111)

with W , Z solving the following initial-boundary value problems for the heat equation:

W (0, t) = |f1 (t)− f2 (t)| ,(3.112)

W (x, 0) =
{ |h1 (x)− h2 (x)| , 0 < x < max (b1, b2)

0, x > max (b1, b2)

(problem in the quarter plane),
Z (0, t) = 0,(3.113)

Z (x, 0) = 0, 0 < x < min (b1, b2)

Z (α (t) , t) = A |s1 (t)− s2 (t)| .
Recalling (2.28) we have

W (x, t) =
∫ max(b1,b2)

0
|h1 (x)− h2 (x)| G (x, t; ξ, 0) dx(3.114)

+
x

2
√

π

∫ t

0

f (τ)

(t− τ)
3
2

exp
[
− x2

4 (t− τ)

]
dτ

and it is not difficult to check that both xW (x, t) and xWx (x, t) tend to zero as x → ∞
uniformly for t in compact sets.
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If we take a rectangle R = (0, X) × (0, t) in the (x, τ)-plane and we integrate over R the
equation Wxx −Wt = 0, we find, for X large enough,

∫ X

0
xW (x, t) dx =

∫ max(b1,b2)

0
x |h1 (x)− h2 (x)| dx +

∫ t

0
|f1 (τ)− f2 (τ)| dτ(3.115)

+
∫ t

0
(xWx −W )|x=X dτ.

Letting X → +∞ we get the final expression
∫ ∞

0
xW (x, t) dx =

∫ max(b1,b2)

0
x |h1 (x)− h2 (x)| dx +

∫ t

0
|f1 (τ)− f2 (τ)| dτ.(3.116)

The function Z (x, t) can be represented as a double layer potential:

Z (x, t) =
∫ t

0
µ (τ) Nx (x, t; α (τ) , τ) dτ(3.117)

(remember that Nx (0, t; ξ, τ) = 0: see (2.36)) with µ solving the Volterra equation

A |s1 (t)− s2 (t)| = 1
2
µ (t) +

∫ t

0
µ (τ) Nx (α (t) , t;α (τ) , τ) dτ(3.118)

from which, by means of Gronwall’s lemma, we have an estimate of the type

|µ (t)| ≤ C (t) ‖s1 − s2‖t(3.119)

with C (t) depending on A, c and being an increasing function of t.
We need an estimate of

∫ α(t)

0
xZ (x, t) dx =

∫ t

0

∫ α(t)

0
xµ (τ) Nx (x, t; α (τ) , τ) dxdτ(3.120)

First we compute
∫ α(t)

0
x Nx (x, t; α (τ) , τ) dx = α (t) N (α (t) , t; α (τ) , τ)

−
∫ α(t)

0
N (x, t; α (τ) , τ) dx.

A rough estimate of the latter integral is 1. Moreover c ≤ α (t) ≤ AT + min (b1, b2) and

0 < N (α (t) , t; α (τ) , τ) <
1√

π (t− τ)
. Thus using (3.119),

0 <

∫ α(t)

0
xZ (x, t) dx ≤ C1

∫ t

0

‖s1 − s2‖τ√
t− τ

dτ + C2

∫ t

0
‖s1 − s2‖τ dτ(3.121)

≤ C3

∫ t

0

‖s1 − s2‖τ√
t− τ

dτ, C3 = C1 +
√

τC2.

Collecting (3.116), (3.121) we have the desired estimate

∫ α(t)

0
x |u1 (x, t)− u2 (x, t)| dx(3.122)
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≤
∫ max(b1,b2)

0
x |h1 (x)− h2 (x)| dx +

∫ t

0
|f1 (τ)− f2 (τ)| dτ + C3

∫ t

0

‖s1 − s2‖τ√
t− τ

dτ.

(II) Estimate of
∫ α(t)
β(t) x |uj | dx.

Of course we are assuming α (t) < β (t). We distinguish two cases
(i) in [0, t) α (t) < β (t) (no intersections)
(ii) there is at least one intersection in [0, t).
Case (i). |uj | ≤ Y1 +Y2 with Y1, Y2 solving the following IBV problems for the heat equation

Y1xx − Y1t = 0, x > α (t) , t > 0,(3.123)

Y1 (x, 0) = 0, x > α (0) ,

Y1 (α (t) , t) = A |s1 (t)− s2 (t)| ,
Y2xx − Y2t = 0, α (t) < x < β (t) , t > 0,(3.124)

Y2 (x, 0) = |hj (x)| , α (0) < x < β (0) ,

Y2 (α (t) , t) = Y2 (β (t) , t) = 0.

We know that

Y1 (x, t) =
∫ t

0
µ1 (τ) Γx (x, t; α (τ) , τ) dτ(3.125)

with

A |s1 (t)− s2 (t)| = −1
2
µ1 +

∫ t

0
µ1 (τ) Γx (α (t) , t;α (τ) , τ) dτ(3.126)

and again
|µ (t)| ≤ C (t) ‖s1 − s2‖t .(3.127)

Thus ∫ β(t)

α(t)
xY1 (x, t) dx ≤

∫ +∞

β(t)
xY1 (x, t) dx(3.128)

=
∫ t

0
µ1 (τ)

{
−α (t) Γ (α (t) , t; α (τ) , τ)−

∫ +∞

α(t)
Γ (x, t; α (τ) , τ) dx

}
dτ.

The integral of Γ is less than 1, and therefore

0 ≤
∫ β(t)

α(t)
x Y1 (x, t) dx ≤ C4

∫ t

0

‖s1 − s2‖τ√
t− τ

dτ,(3.129)

thanks to (3.127).
Passing to Y2, integrating the identity (xY2x − Y2)x − (xY2)t = 0 we find immediately

∫ β(t)

α(t)
xY2 (x, t) dx =

∫ β(0)

α(0)
x |hj (x)| dx +

∫ t

0
β (τ) Y2x (β (τ) , τ) dτ(3.130)

−
∫ t

0
α (τ) Y2x (α (τ) , τ) dτ.

Observing that Y2 is minimum on the lateral boundaries we see that Y2x (β (τ) , τ) ≤ 0,
Y2x (α (τ) , τ) ≥ 0, so that

0 ≤
∫ β(t)

α(t)
xY2 (x, t) dx ≤

∫ β(0)

α(0)
x |hj (x)| dx.(3.131)
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Hence ∫ β(t)

α(t)
x |uj (x, t)| dx ≤ C4

∫ t

0

‖s1 − s2‖τ√
t− τ

dτ +
∫ β(0)

α(0)
x |hj (x)| dx.(3.132)

Case (ii). Let t∗ be such that α (t∗) = β (t∗) and α (τ) < β (τ) for τ ∈ (t∗, t).
Now |uj (x, t)| is less than the solution of

Yxx − Yt = 0, x > α (t) , t > t∗,(3.133)

Y (x, t∗) = 0, x > α (t∗) ,

Y (α (t) , t) = A |s1 (t)− s2 (t)| , t > t∗,

and all we have to do is to remark that Y (x, t) < Y1 (x, t).
Therefore (3.129) is valid also for Y .
The conclusion of this discussion is that the desired estimate for

∫ α(t)
β(t) x |uj (x, t)| dx is again

(3.132).
We can now revert to inequality (3.109), using (3.122), (3.132), and s1 (t) + s2 (t) ≥ 2c > 0:

|s1 (t)− s2 (t)| ≤ C

{
|b1 − b2|+

∫ max(b1,b2)

0
x |h1 (x)− h2 (x)| dx(3.134)

+
∫ t

0
|f1 (τ)− f2 (τ)| dτ +

∫ t

0

‖s1 − s2‖τ√
t− τ

dτ

}
.

We observe that the integral
∫ t

0

ϕ (τ)√
t− τ

dτ =
∫ t

0

ϕ (t− τ)√
τ

dτ is non-decreasing if ϕ is non-

negative and non-decreasing.
Thus the r.h.s of (3.134) is non-decreasing and for this reason we may replace |s1 (t)− s2 (t)|

by ‖s1 − s2‖t on the r.h.s.
In this way we have constructed an integral inequality for ‖s1 − s2‖ of the type studied in

Section 5, II, which leads precisely to (3.108). 2

Bibliographical remarks.
After the early papers [64], [79] the first analytical investigation of the classical one-dimensional
Stefan problem was due to L.I. Rubinstein (see the references in [74]). Important contributions
came next from A. Friedman (see the references in [51], [53]), J.R. Cannon and C.D. Hill (see
the references in [15] and others. A systematic analysis of one-dimensional problems (including
some singular case) was performed by A. Fasano, M. Primicerio in [42], [43], [44], later extended
to the case of nonlinear parabolic equations and nonlinear free boundary conditions [45].
We cannot deal with the more recent and quite fundamental contributions by a number of
important mathematicians who have developed an extremely rich theory (particularly for the
multidimensional Stefan problem and other free boundary problems). As we said this is far
beyond our scopes and we refer once more to the books and surveys already quoted.

EXERCISES
1. Show that repeated continuations of the solutions of Problem 2.1B by means of the

technique of Theorem 3.1 may lead to blow-up in finite time. Hint: in the second step we may
expect that 3Ac replaces 3κ. Varying κ the curves of the family 3κF (A, T, c) change by a
multiplicating factor and by rescaling we conclude that Ac at the n-th iteration is larger than
3nκ (going to infinity) while summing the extension times we get a convergent sequence.

2. Study the behaviour for large t of the solution of Problem 2.1A.
3. Extend the results of Section 3 to the two-phase problem.
4. Show that blow-up cannot occur for two-phase problems with no superheating or super-

cooling.



Chapter 4

The Stefan problem. Weak solutions.

4.1 General concepts and weak formulation

The weak formulation allows to deal with multidimensional problems and at the same time gives
a better insight of the mathematical structure of the problem. Another significant advantage
concerns the formulation of numerical methods.

It applies rigorously to the case of constant melting temperature and absence of supercooling
or superheating. In the following use the symbols of Section 4(II), and we keep the assumption
of constant pressure.

For simplicity we suppose we may neglect convection (other than the one generated by ρ (T )),
which is not always permitted, although there is no difficulty in dealing with the general case
(as long as the velocity field is prescribed).

In order to derive the weak formulation of the multidimensional two-phase Stefan problem
we suppose we know a classical solution consisting of:

(i) the interface γ (t), supposed to be a regular surface in Rn

(ii) the thermal fields in the liquid and in the solid and we try to write the whole problem in
the form

ρ
∂h

∂t
− div (κ∇T ) + ρ∇h · ~v = 0(4.1)

interpreting the derivatives in the distributional sense. In such a way we have no separate
equation for the evolution of the interface, which is incorporated in (4.1).

Before we proceed, let us briefly consider the relationship between h and T .
In Chapter 1 h was defined as a discontinuous function of T by (2.24), (2.25), the jump being

the latent heat of the material. In the picture 4.1 we use a schematic representation with cs, cl

constant.

So far we have said nothing about h at T = Tm, because we have only considered situations
in which the system can be either solid or liquid.

But, even in this simple case, the fact that in regions of nonzero measure where T = Tm we
have to specify the phase is a clear clue that the state of the system is not completely described by
temperature. The variable that does the job is the specific enthalpy. Indeed not only it specifies
the phase but it determines T uniquely, since the inverse function is Lipschitz continuous.

Considering the inverse function T (h) emphasizes the role of the values of h in [0, λ], all
corresponding to T = Tm. What is the underlying physics?

Take a thermally insulated sample of copper and raise its temperature to Tm by Joule heating.
If you keep supplying electric current phase change will not take place instantaneously because it
needs a finite amount of heat, which only can be supplied in a finite time. Therefore temperature
stays constant at Tm while h enters the interval (0, λ) and melting will be completed when the
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Tm

h

T

0

λ

T

Tm

0 λ h

Figure 4.1: .

value λ is reached. The intermediate states in which h ∈ (0, λ) can be considered as a phase
mixture and regions with such values of h are called mushy regions.

It is legitimate to expect the presence of mushy regions when solving (4.1) in the distributional
sense. Also, the discussion above points out that at t = 0 enthalpy (and not temperature) must
be prescribed.

In view of the fact that h is the real unknown of the problem, we remark that the function

θ =

{ ∫ T
Tm

κl (T ′) dT ′, T ≥ Tm∫ T
Tm

κs (T ′) dT ′, T < Tm

(4.2)

can be regarded as a Lipschitz continuous function of h through T = T (h) .

Also ρ is more correctly described as a function of h: in the mushy region it is a linear
interpolation between the values in the pure phases at T = Tm.

After this digression, let us resume our project of deriving the weak formulation from the
classical statement including (i), (ii):

field equation:

ρ (h)
∂h

∂t
+ ρ (h) ∇h · ~v −∆θ = 0 in Qs ∪Ql,(4.3)

where Qs, Ql are subsets of QT =
0<t<T∪ Ω(t), Ω(t) being a bounded regular domain in Rn. More

precisely
Qs = QT ∩ {h < 0} , Ql = QT ∩ {h > λ} .

To be specific we refer to the following picture in which the external boundaries of the solid
and of the liquid phase have no intersection.
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~n

~V

Γl

Γl

Γs

Ql

Ql

Ω0
l

Ω0
s γ0

Γs

Ωl(t) Ωs(t)

Ω

Rn

t

γs

γ(t)

Qs

Qs

Figure 4.2: Evolution of the interface in Rn+1.

Remark.
Figure 4.2 refers to the case ρl = ρs = const. For ρl, ρs variable and/or different we can

take Γs fixed and let Γl move so to accommodate the total volume of the system at each time:
a condition involving all the unknowns.

QT = Ω× (0, T )
Ql = QT ∩ {h > λ}
Qs = QT ∩ {h < 0}
Ωl (t) = Ql ∩ {t = const.}
Ωs (t) = Qs ∩ {t = const.}
Γl external boundary of Ql

Γs external boundary of Qs

Γ0 interface in Rn+1

γ (t) = Γ0 ∩ {t = const.}
~n = normal to γ (t) pointing towards Ωl (t)
γs = Γs ∩ {t = const.}
γl = Γl ∩ {t = const.}
initial data

γ (0) = γ0, h (~x, 0) = h0 (~x) prescribed in
◦
Ωl ∪

◦
Ωs(4.4)

boundary data

T |Γl
= fl (t) > Tm, T |Γs

= fs (t) < Tm (⇒ h is known)(4.5)

interface condition (we use (1.51))

λ ρl (~v − ~vl) · ~n = −∂θl

∂n
+

∂θs

∂n
, ρl = ρ (h = λ) .(4.6)
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Now we introduce the set Φ of test functions

Φ =
{
ϕ ∈ W 2,1 (QT ) | ϕ = 0 on Γl ∪ Γs ∪ Ω× {T}} .(4.7)

We multiply (4.3) by ϕ ∈ Φ and integrate separately over Qs and Ql.

In order to compute
∫

Qs

∂h

∂t
ϕ d~xdt we note that

d

dt

∫

Ωs(t)
ρ h ϕd~x =

∫

Ωs(t)
ρ

∂h

∂t
ϕ d~x +

∫

Ωs(t)
ρ h

∂ϕ

∂t
d~x(4.8)

−
∫

Ωs(t)
h div (ρ~v)ϕ d~x +

∫

γ(t)−
Vn ρ h ϕdσ,

where we have used the properties of ϕ and the continuity equation. The last integral, in which
Vn is the normal velocity of γ (t), vanishes because h = 0 on γ (t)−, i.e. on the side of the solid.
Thus ∫ T

0

∫

Ωs(t)
ρ

∂h

∂t
ϕ d~xdt = −

∫ T

0

∫

Ωs(t)
ρ h

∂ϕ

∂t
d~xdt(4.9)

+
∫ T

0

∫

Ωs(t)
h div (ρ~v) ϕd~xdt−

∫
◦
Ωs

ρ (h0) h0ϕ (~x, t) d~x.

Next we calculate ∫

Ωs(t)
ρ∇h · ~v ϕ d~x =

∫

Ωs(t)
div (ρhϕ~v) d~x(4.10)

−
∫

Ωs(t)
[ρ h~v · ∇ϕ + hϕ div (ρ~v)] d~x

that, using again ϕ|Γs
= 0, and h|γ− = 0, gives

∫ T

0

∫

Ωs(t)
ρ∇h · ~v ϕ d~x = −

∫ T

0

∫

Ωs(t)
[ρ h~v · ∇ϕ + hϕ div (ρ~v)] d~x.(4.11)

Finally, using the identity

−ϕ∆θ = −θ∆ϕ + div (θ∇ϕ− ϕ∇θ)(4.12)

we have

−
∫

Ωs(t)
ϕ∆θ d~x = −

∫

Ωs(t)
θ∆ϕ d~x +

∫

Γs

θ (fs)
∂ϕ

∂ns
dσ −

∫

γ(t)−
ϕ

∂θs

∂n
dσ(4.13)

where we remark that the trace of ∇ϕ is defined on γs, γl, γ for a.e.t. as a fucntion in L2, as
well as on Γs, Γl, Γ0.

Thus we may write

−
∫ T

0

∫

Ωs(t)
ϕ∆θ d~xdt = −

∫ T

0

∫

Ωs(t)
θ∆ϕd~xdt+(4.14)

+
∫

Γs

θ (fs)
∂ϕ

∂ns
dσdt−

∫ T

0

∫

γ(t)−
ϕ

∂θs

∂n
dσdt.

Summing (4.9), (4.11), (4.14),
∫

Qs

{
ρ
∂h

∂t
−∆θ + ρ∇h · ~v

}
ϕd~xdt =(4.15)
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−
∫

Qs

{
ρh

∂ϕ

∂t
+ θ∆ϕ− ρ h · ~v∇ϕ

}
d~xdt−

∫

Ωs(0)
ρ (h0) h0ϕ (~x, 0) d~x

+
∫

Γs

θ (fs)
∂ϕ

∂ns
dσdt−

∫ T

0

∫

γ(t)−
ϕ

∂θs

∂n
dσdt.

We proceed in a similar way in Ql, obtaining
∫

Ql

{
ρ
∂h

∂t
−∆θ + ρ∇h · ~v

}
ϕd~xdt =(4.16)

−
∫

Ql

{
ρh

∂ϕ

∂t
+ θ∆ϕ− ρ h~v · ∇ϕ

}
d~xdt−

∫

Ωl(0)
ρ (h0)h0ϕ (~x, 0) d~x

+
∫

Γl

θ (fl)
∂ϕ

∂nl
dσdt−

∫ T

0

∫

γ(t)+
ϕ

[
∂θl

∂n
+ Vnρlλ− ρlλvn

]
dσdt.

Summing (4.15), (4.16) we see that the terms on the interface cancel out owing to (4.6) and
we arrive at the equation

∫

QT

{
ρh

∂ϕ

∂t
+ θ∆ϕ− ρh~v · ∇ϕ

}
d~xdt =(4.17)

=
∫

Γs

θ (fs)
∂ϕ

∂ns
dσdt +

∫

Γl

θ (fl)
∂ϕ

∂nl
dσdt−

∫

Ω(0)
ρ (h0) h0ϕ (~x, 0) d~x.

Definition 4.1 A weak solution of the Stefan problem (4.3) − (4.6) is a function h ∈ L∞ (QT )
satisfying (4.17) for all ϕ ∈ Φ. 2

Note that since h is only required to be bounded and measurable, the data are not prescribed
directly but appear in the equations as free terms.

It is important to underline that the velocity field ~v is generally unknown and, except the
system has a particular symmetry, it cannot be deduced just from kinematic considerations.
Therefore (4.17) should be coupled with the fluid dynamics of the melt, specifying the stress
at the boundary. As we have observed, also the motion of the outer boundary is coupled in a
nonlocal way to the evolution of the thermal field and of the interface.

For these reasons we leave aside the project of considering the full problem and from now on
we take the basic approximation

ρl (T ) = ρs (T ) = const. = ρ(4.18)

In the next section we shall study procedure for constructing an approximated sequence of
classical problems whose limit is a weak solution of the Stefan problem.

4.2 Existence theorem

We refer to the following simplified version of (4.17): find h ∈ L∞ (QT ) such that
∫

QT

{
ρh

∂ϕ

∂t
+ θ∆ϕ

}
d~xdt =(4.19)

=
∫

Γs

θ (fs)
∂ϕ

∂ns
dσdt +

∫

Γl

θ (fl)
∂ϕ

∂nl
dσdt−

∫

Ω(0)
ρh0ϕ (~x, 0) d~x,
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with ρ = const. in QT , ∀ϕ ∈ Φ.

The domain QT is cylindrical in Rn+1 and for simplicity we suppose that the boundary of
Ω(0) (and consequently Γs, Γl) are smooth and that fs, fl are continuously differentiable and
bounded away from zero in Γs, Γl respectively. For t = 0 we suppose they match the initial data
and that h0 ∈ C1

(
Ω◦

)
. These assumptions are redundant, but they simplify the existence proof

to a large extent. With the same spirit we suppose that cl, cs, κl, κs are twice continuously
differentiable.

Theorem 4.1 Under the assumptions listed above, problem (2.1) has at least one solution.

Proof.
In the previous section we have analyzed the relationship between h and T . Now we have

to be more precise, saying that h (T ) is not just a discontinuous function, but a graph, setting
h (Tm) = [0, λ].

It is more convenient to consider the graph h (θ) (we keep the same symbol), what is clearly
possible since θ (T ) is invertible (see (1.2)). With h function of θ we have h (0) = [0, λ] and for
θ 6= 0, h (θ) has two continuous and bounded derivatives. Moreover h′ (θ) is strictly positive for
θ 6= 0: h′ ≥ ω > 0.

θ

− 1
n

1
n

h

Figure 4.3: Smooth approximation of the entalphy.

We approximate h (θ) by the following sequence of functions

hn (θ) =

{
h (θ) for |θ| ≥ 1

n∧
hn (θ) for |θ| ≥ 1

n

, n = 1, 2, ...(4.20)

where
∧
hn is smooth, matches h as smoothly as possible for |θ| = 1

n
, and

∧
h
′
n≥ ω.

Of course functions hn (θ) are invertible: θ = Θn (h), and 0 < Θ′
n ≤

1
ω
.
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We restrict our attention to the values of n which are large enough to satisfy θ (fs) < − 1
n
,

θ (fl) >
1
n

and we consider the family of problems

ρh′n (θn)
∂θn

∂t
−∆θn = 0 in QT ,(4.21)

θn|Γs
= θ (fs) , θn|Γl

= θ (fl) ,(4.22)

θn (~x, 0) = Θn (h0 (~x))(4.23)

Clearly, we look at (4.21) as an approximation to ρ
∂h

∂t
−∆θ = 0 and in such a way we have

a clear view of the nonlinearity and of the singularity of the problem: h′n is nonlinear and not
uniformly bounded.

Existence and uniqueness of the solution of (4.21) − (4.23) for each n are known from the
classical literature. Also, in our simplifying assumptions we can find uniform bounds of the

normal derivatives
∂θn

∂ns

∣∣∣∣
Γs

,
∂θn

∂nl

∣∣∣∣
Γl

.

At this point we want to investigate the compactness properties of the sequence {θn}. An
easy result is that they are equibounded (maximum principle).

Next we prove the following

Lemma 4.1 There exists a constant C, independent of n and determined by the data, such that

ρω

∫

Qt

(
∂θn

∂t

)2

d~xdτ +
∫

Ω×{t}

1
2
|∇θn|2 d~x ≤ C, ∀t ∈ (0, T ) .(4.24)

Proof.

We multiply (4.21) by
∂θn

∂t
and integrate over Qt. We remark that

∫

Qt

h′n (θn)
(

∂θn

∂t

)2

d~xdτ ≥ ω

∫

Qt

(
∂θn

∂t

)2

d~xdτ(4.25)

and that ∫

Qt

∂θn

∂t
∆θn d~xdτ =

∫

Qt

div

(
∂θn

∂t
∇θn

)
d~xdτ(4.26)

−
∫

Qt

1
2

∂

∂t
|∇θn|2 d~xdτ =

=
∫

Γs,t

∂fs

∂t

∂θn

∂ns
dσdτ +

∫

Γl,t

∂fl

∂t

∂θn

∂nl
dσdτ

−1
2

∫

Ω×{t}
|∇θn|2 d~x +

1
2

∫

Ω0

|∇θn (~x, 0)|2 d~x.

Recalling that ∇θn (~x, 0) = Θ′
n (h0)∇h0, using all our assumptions, from (4.25), (4.26) we

deduce (4.24). 2

An immediate consequence of (4.24) is that
(•) the sequence {θn} is weakly compact in H1 (QT ) .
By Rellich’s theorem we have
(••) there exists a subsequence {θn′} strongly convergent in L2 (QT ) to a function θ ∈

H1 (QT ) .
⇒



4.2. EXISTENCE THEOREM 69

(• • •) there exists a subsequence {θn′′} converging a.e. to θ in QT .
⇒
(• • ••) there exists a subsequence {θn′′′} converging almost uniformly to θ in QT .
Let us turn our attention to the sequence {hn′′′ (θn′′′)}. We can select a subsequence which

is weakly convergent in L2 (QT ) to a function
∼
h (x, t) ∈ L∞ (just use the fact that the elements

are uniformly bounded). The key point in the existence proof is that we may interpret
∼
h (x, t)

as h (θ (x, t)) a.e. in QT .
For fixed ε > 0 consider the sets Qε

s, Qε
l of the points of QT in which θ < −ε, θ > ε

respectively. Owing to the definition of hn and to the almost uniform convergence of the selected
sequence we can say that for n sufficiently large in the sequence hn (θn) = h (θn) in Qε

s ∪ Qε
l

(except from sets of arbitrarily small measure). Thus we can easily conclude that

∼
h (x, t) = h (θ (x, t))(4.27)

a.e. in the negativity set of θ, Qs and in the positivity set of θ, θl.
It remains to study

∼
h (x, t) in the complement Q0 = QT \{Qs ∪Ql} if its measure is positive.

Here we just want to show that
∼
h (x, t) ∈ [0, λ] a.e. in Q0.

Let us suppose for instance that exists a set U ⊂ Q0 of positive measure in which
∼
h< 0,

implying that
∫
U

∼
h d~xdt < 0.

We are considering a sequence weakly convergent to
∼
h in L2 (QT ) and therefore for all the

elements hκ in the sequence with a sufficiently large index we have
∫
U hk d~xdt < −σ for some

σ > 0.
Then for each of such κ it must exist a subset Uκ ⊂ U in which hκ < −σ′ for some σ′ > 0

and meas (Uκ) does not tend to zero. This fact is however not compatible with the fact that
θκ → 0 in U almost uniformly.

The same argument proves that
∼
h cannot exceed λ in a subset of Q0 with positive measure.

Now we are ready to perform the last step.
Take the weak version of problem (4.21), (4.22), (4.23), namely

∫

QT

{
ρhn (θn)

∂ϕ

∂t
+ θn∆ϕ

}
d~xdt =(4.28)

=
∫

Γs

θ (fs)
∂ϕ

∂ns
dσdt +

∫

Γl

θ (fl)
∂ϕ

∂nl
dσdt−

∫

Ω(0)
ρh0ϕ (~x) d~x, ∀ϕ ∈ Φ.

We can exploit the limits θn
L2→ θ, hn (θn) L2

⇀
∼
h and the illustrated properties of

∼
h to conclude

that we have found a solution of (4.19). 2

Remark 2.1.
The solution we have just found satisfies the inequality (4.24). Therefore we can say that the

weak formulation (4.19) is equivalent (once we know uniqueness) to the less weak formulation in
which the boundary data are prescribed as traces and θ is allowed to belong to H1 (accordingly,
the space of test functions can be enlarged). It is also not difficult to see that in open sets with
positive distance from Q0 (i.e. at inner points of Ql, Qs) the differential equation.

ρ
∂h

∂t
−∆θ = 0

is satisfied in the classical sense.
Remark 2.2.
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The procedure used in proving existence is actually constructive (and can be used for numer-
ical procedures), provided we show that the solution is unique. In fact uniqueness implies that
the whole sequence of approximating solution is convergent.

Remark 2.3.
It has been proved that in the absence of mushy regions at t = 0, only pure phases will be

present during the whole process, if there are no heat sources or sinks. However, mushy regions
can be prescribed in the initial conditions. In such a case they are bound to disappear in a finite
time. Mushy regions can be treated in the framework of a classical formulation. Much work has
been done in this direction.

4.3 Uniqueness

Theorem 4.1 Problem (2.1) has at most one solution. 2

As it often the case, the proof of uniqueness of the weak solution is based on an argument
whose key point is a clever choice of the test function (remember that (4.19) has to hold for any
ϕ ∈ Φ).

A basic step is a particular estimate for the Laplacian of the solutions of b.v.p. for degenerate
parabolics equations.

Lemma 4.1 Let u ∈ W 2,1 (QT ) be a solution of

∂u

∂t
− α (~x, t)∆u = ψ (~x, t) , in QT = Ω× (0, T )(4.29)

u|∂pQT
= 0(4.30)

with α (~x, t) ≥ 0 bounded in (0, A) and ψ ∈ C∞
0 (QT ). Then there exists C (T ) > 0, independent

of α and ψ, such that ∫

QT

α (∆u)2 d~xdt ≤ C (T ) ‖∇ψ‖2
L2

(QT )
.(4.31)

Proof.
Multiplying (4.29) by ∆u and integrating over Qt, ∀t ∈ (0, T ), we obtain (using (4.30))

∫

Qt

∂u

∂t
∆u d~xdτ =

∫

Qt

div

(
∂u

∂t
∇u

)
d~xdτ − 1

2

∫

Qt

∂

∂t
|∇u|2 d~xdτ(4.32)

= −1
2

∫

Ω×{t}
|∇u|2 d~x

and (using ψ ∈ C∞
0 )
∫

Qt

ψ∆u d~xdτ =
∫

Qt

div (ψ∇u) d~xdτ −
∫

Qt

∇ψ · ∇u d~xdτ =(4.33)

−
∫

Qt

∇ψ · ∇u d~xdτ,

from which ∫

QT

α (∆u)2 d~xdt +
1
2

∫

Ω×{t}
|∇u|2 d~x =

∫

Qt

∇ψ · ∇u d~xdτ(4.34)
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≤ 1
2
‖∇ψ‖2

L2
(QT )

+
1
2

∫

Qt

|∇u|2 d~xdτ.

Setting

F (t) =
∫

Ω×{t}

1
2
|∇u|2 d~x,

from (4.34) we deduce the Gronwall’s inequality

0 ≤ F (t) ≤ 1
2
‖∇ψ‖2

L2
(QT )

+
∫ t

0
F (τ) dτ,(4.35)

implying
F (t) ≤ C (T ) ‖∇ψ‖2

L2
(QT )

.(4.36)

Going back to (4.34) we obtain the desired result. 2

Proof of Thm. 4.1.
Let h1, h2 be solutions of (4.19), so that

∫

QT

{
ρ (h1 − h2)

∂ϕ

∂t
+ [Θ (h1)−Θ(h2)] ∆ϕ

}
d~xdt = 0.(4.37)

We recall that Θ(h) is the Lipschitz continuous function obtained by inverting the graph
h (θ). Therefore, if we write

Θ(h1)−Θ(h2) = β (x, t) (h1 − h2)(4.38)

the function β (~x, t) is well defined in the set {h1 6= h2} (the sign 6= is meant in the sense of L∞),
where it satisfies a.e.

0 ≤ β ≤ 1
ω

.(4.39)

In the complement of the set {h1 6= h2} we may still define β arbitrarily as an L∞ function
satisfying (4.39).

Therefore (4.37) can be given in the form
∫

QT

(h1 − h2)
{

ρ
∂ϕ

∂t
+ β (~x, t)∆ϕ

}
d~xdt = 0.(4.40)

The basic idea is now the following: if for any ψ ∈ C∞
0 we may select ϕ ∈ Φ such that

ρ
∂ϕ

∂t
+ β∆ϕ = ψ, then (4.40) would immediately imply uniqueness (i.e. h1 = h2 a.e.).

However, finding such a ϕ is difficult for two reasons:
(i) the coefficient β is just in L∞ and therefore it has not enough regularity,

(ii) β can approach zero, i.e. the (backward) parabolic operator ρ
∂

∂t
+ β∆ is degenerate.

To overcome such difficulties, we take a sequence {βn} converging to β in L1 (QT ) with the
properties

βn ∈ C∞ (QT ) ,
1
n
≤ βn ≤ 2

ω
(4.41)

and we solve the problems

ρ
∂ϕn

∂t
+ (βn + ε)∆ϕn = ψ,(4.42)

ϕn = 0 on Γs ∪ Γl ∪ Ω× {T}(4.43)

(note that giving the ”initial” condition for t = T agrees with the fact that the equation is
backward parabolic), with ε > 0. Note that ϕn ∈ Φ.
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To ϕn we may apply Lemma 3.1:
∥∥∥(βn + ε)

1
2 ∆ϕn

∥∥∥
L2

(QT )

≤ C ‖∇ψ‖L2
(QT )

(4.44)

with C independent of n and ε.
Taking ϕn as test function in (4.40), we obtain

∫

QT

(h1 − h2) {ψ + (β − βn − ε)∆ϕn} d~xdt = 0.(4.45)

We know that h1, h2 are a-priori bounded in L∞ and therefore
∣∣∣∣
∫

QT

(h1 − h2) (β − βn − ε)∆ϕn d~xdt

∣∣∣∣(4.46)

≤ C

∫

QT

|β − βn − ε| |∆ϕn| d~xdt.

Now we write |β − βn − ε| = |β − βn − ε| 12
∣∣∣∣

β

βn + ε
− 1

∣∣∣∣
1
2

|βn + ε| 12 and we divide QT into the

subsets Q′
T in which

β

βn + ε
≤ 1 and its complement Q′′

T . By choosing a suitable subsequence,

we can say that {βn} converges to β almost uniformly, so we can make the measure of Q′′
T as

small as we wish by taking n sufficiently large. We remark that in Q′′
T we have at least the rough

estimate
β

βn + ε
≤ 1

ωε
, ε being fixed so far.

The integral on the r.h.s. of (4.46) can be estimated as follows
∫

QT

|β − βn − ε| |∆ϕn| d~xdt ≤
∫

Q′T
|β − βn − ε| 12 |βn + ε| 12 |∆ϕn| d~xdt(4.47)

+
(

1
ωε

)∫

Q′′T
|β − βn − ε| 12 |βn + ε| 12 |∆ϕn| d~xdt.

Thanks to (4.44), we can say that as meas (Q′′
T ) → 0 also

∫
Q′′T

→ 0, and that
∫
Q′T

is less than

∫

QT

|β − βn − ε| 12 |βn + ε| 12 |∆ϕn| d~xdt ≤ C ‖∇ψ‖L2
(QT )

‖β − βn − ε‖
1
2

L2
(QT )

(4.48)

(use Cauchy-Schwartz inequality).
For n →∞ we have ‖β − βn − ε‖L1 ≤ ‖β − βn‖L1 + ε meas (QT ) → εmeas (QT ) .
From (4.46), (4.47), (4.48), we conclude that

∣∣∣∣
∫

QT

(h1 − h2) (β − βn − ε)∆ϕn d~xdt

∣∣∣∣

can be made as small as desired. This means (see (4.45)) that
∫

QT

(h1 − h2)ψ d~xdt = 0, ∀ψ ∈ C∞
0 (QT ) ,(4.49)

hence uniqueness. 2

Bibliographical remarks.
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The existence of classical solutions to the multidimensional problem has been studied in
several papers (the earliest contributions were [67], [56]). For the 1-D case it has been proved
that all weak solutions are classical [48].

The first papers on weak solutions were by O.A. Oleinik [70], S.L. Kamenomostskaja [59], A.
Friedman [52].

The uniqueness proof written above is from [59].
The variational formulation was given independently by M. Frémond [50] and by G. Duvaut

[25], introducing the so-called freezing index.



Chapter 5

Other free boundary problems for the
heat equation

5.1 Reaction-diffusion processes with dead cores

Let
∧
c be the concentration of a substance diffusing in a medium with which it reacts chemically,

according to some kinetics.
The process is governed by the equations (T = absolute temperature)

∂
∧
c

∂t
− d∆

∧
c= −A

∧
c
m

exp
(
− E

RT

)
(5.1)

ρc
∂T

∂t
− κ∆T = QA

∧
c
m

exp
(
− E

RT

)
.(5.2)

The symbols needing explanation are:
A > 0, constant, the so-called pre-exponential factor,
m ≥ 0, the order of the reaction,
E > 0, activation energy,
R =universal gas constant,
exp

(− E
RT

)
is called the Arrhenius factor

Q : specific amount of heat produced (absorbed) in the reaction.
In the simplified case of isothermal reactions we only have to consider

∂
∧
c

∂t
− d∆

∧
c= −λ

∧
c
m

, λ > 0,(5.3)

with appropriate initial and boundary conditions.
Of course (5.3) has to be solved in the set

{∧
c> 0

}
. Indeed, the presence of the sink term

λ
∧
c
m
may produce regions in which the substance has been totally depleted. Such regions are

called dead cores and their boundary is unknown. The free boundary conditions are of Cauchy
type:

∧
c= 0,

∂
∧
c

∂n
= 0,

−
n unit normal vector.(5.4)

A large literature has been devoted to such problems.
We just quote the Lecture Notes [57], [76].

In order to investigate the possible occurrence of a dead core, let us examine the stationary
problem in one space dimension.

74
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The physical domain is a slab 0 < x < a and we prescribe symmetric boundary data:

∧
c (0) =

∧
c (a) =

∧
c0 .(5.5)

Defining u =
∧
c
∧
c0

and using nondimensional variables, we reformulate the problem as follows:

find u ∈ C1 [0, 1] such that

d2u

dx2
= λum in {0 < x < 1} ∩ {u > 0}(5.6)

u (0) = u (1) = 1,(5.7)

with conditions
u = u′ = 0(5.8)

at interfaces with a possible dead core.

Due to the symmetry of the problem, we may replace u (1) = 1 with
du

dx
|x= 1

2
= 0.

First of all we want to know for what values of λ, m we have a dead core.

Theorem 5.1 Problem (5.6) − (5.8) has a dead core if and only if the following conditions are
satisfied:

0 ≤ m < 1,(5.9)
(

2
m + 1

λ

) 1
2

<
1
2

(1−m) .(5.10)

Proof.
Due to symmetry, if the dead core is present, the two “active” regions do not exchange

information. Thus we may consider the reaction-diffusion problem e.g. in 0 < x < +∞ (see fig.
5.1).

Thus we integrate (5.6) imposing u (0) = 1 and lim
x→+∞u (x) = 0.

From (5.6) we deduce that
du

dx
is monotone and therefore it has a limit as x → +∞, which

is necessarily zero. Multiplying (5.6) by
du

dx
and integrating we obtain

1
2

[(
du

dx

)2

− γ2

]
=

λ

m + 1

[
(u (x))m+1 − 1

]
,(5.11)

where γ = u′ (0). Taking the limit x → +∞, we find

u′ (0) = −
(

2λ

m + 1

) 1
2

,(5.12)

and the constant terms in (5.11) cancel out, yielding

du

dx
= −

(
2λ

m + 1

) 1
2

u
m+1

2 .(5.13)

As long as u > 0 we may separate the variables, obtaining

log u = −λ
1
2 x, for m = 1,(5.14)
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0

u

1

m ≥ 1

0 ≤ m < 1

x

Figure 5.1: The semi-infinite dead core problem.

2
1−m

(
u

1−m
2 − 1

)
= −

(
2λ

m + 1

) 1
2

x, for m 6= 1.(5.15)

Now a dead core appears if and only if u vanishes at some finite x0.This happens only if
m < 1 and we have

x0 =
1

1−m

(
2
m + 1

λ

) 1
2

.(5.16)

Thus the necessary and sufficient conditions for the existence of a dead core is m < 1 and

x0 <
1
2
, i.e. (5.9) and (5.10).

Exercise: Solve (5.6), (5.7) in the absence of a dead core.
Consider the family of Cauchy problems

u′′ = λum, {x > 0} ∩ {u > 0} ∩ {
u′ < 0

}
,(5.17)

u (0) = 1,(5.18)

u′ (0) = γ < 0,(5.19)

depending on the parameter γ.
Multiplying (5.17) by u′ and integrating we obtain

u′ = −
{

γ2 − 2λ

m + 1
(
1− um+1

)} 1
2

, as long as
{

γ2 − 2λ

m + 1
(
1− um+1

)} ≥ 0(5.20)

and a further integration yields

∫ 1

u(x)

{
γ2 − 2λ

m + 1
(
1− ξm+1

)}− 1
2

dξ = x, up to the possible minimum ofu.(5.21)
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We want to show that both u (x) and u′ (x) are increasing functions of γ. Differentiating

(5.21) with respect to γ and setting
∂u

∂γ
= uγ , we get

0 = −uγ

{
γ2 − 2λ

m + 1
(
1− um+1

)}− 1
2

−
∫ 1

u
γ

{
γ2 − 2λ

m + 1
(
1− ξm+1

)}− 3
2

dξ

i.e.

uγ

u′
= γ

∫ 1

u

{
γ2 − 2λ

m + 1
(
1− ξm+1

)}− 3
2

dξ.(5.22)

Since γu′ > 0, (5.22) implies uγ > 0.
Now, integrating (5.17)

u′ = γ + λ

∫ x

0
um (ξ) dξ

and differentiating w.r.t. γ we find an expression for
∂u′

∂γ
= u′γ :

u′γ = 1 + mλ

∫ x

0
um−1uγdξ,

which implies that u′γ > 1. Defining γ∗ = −
(

2λ

1 + m

) 1
2

, we see that for γ ∈ (γ∗, 0) the function

u reaches the positive minimum um =

[
1−

(
γ

γ∗

)2
] 1

m+1

at a point xm deducible from (5.21).

For γ < γ∗, u′ is still negative when u vanishes.
For γ = γ∗ (as we already know) we have two cases:

(•) m ≥ 1 ⇒ u > 0 and u′ < 0, ∀x > 0, lim
x→+∞u = 0,

(••) 0 ≤ m < 1 ⇒ there exits a dead core
(

x > x0 =
2

1−m
|γ∗|− 1

2

)
.

Thus the solution of (5.6), (5.7) with no dead core must in any case correspond to a value of
γ in (γ∗, 0).

From the pieces of information we have collected so far we can draw the pictures represented
in fig. 5.2, concluding that xm (γ) is a monotone function of γ in (γ∗, 0) ranging from 0 to +∞
for m ≥ 1 and from 0 to x0 for 0 ≤ m < 1.

Problem (5.6), (5.7) has no dead core if m ≥ 1 or if 0 ≤ m < 1 and x0 > 1
2 . In both cases

there exists one and only one γ ∈ (γ∗, 0) such that xm =
1
2
.

Thus we have found the unique solution.
An alternative approach is the following. Solve the Cauchy problem

u′′ = λum, 0 < x <
1
2
,

u

(
1
2

)
= α ∈ (0, 1)

u′
(

1
2

)
= 0

and find α such that u (0) = 1.
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x

γ < γ∗

γ ∈ (γ∗, 0)

xo

x

γ < γ∗

γ = γ∗

γ ∈ (γ∗, 0)a) m ≥ 1

u

u

γ = γ∗

b) 0 ≤ m < 1

Figure 5.2: Dependence of u on γ.

From the first integral
1
2
u′2 =

λ

m + 1
(
um+1 − αm+1

)

we find ∫ α

u(x)

du√
um+1 − αm+1

= −
√

2λ

m + 1

(
1
2
− x

)
,

thus determining the equation for α:

∫ 1

α

du√
um+1 − αm+1

=

√
λ

2 (m + 1)
.

For instance, for m = 0 we obtain α = 1− λ

8
, which requires λ < 8, in agreement with (5.9),

(5.10).
For m = 1 we find √

1 + α +
√

1− α√
1 + α−√1− α

= e
√

λ
2 ⇒

[√
1 + α +

√
1− α

]2

2α
= e

√
λ

2 ⇒
1
α

=
1
2

(
e
√

λ
2 + e−

√
λ

2

)
,

which does not imply any limitation on λ for α to be in (0, 1).
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5.2 The oxygen diffusion-consumption problem

The dead core problem with m = 0 is known as the oxygen diffusion-consumption problem
(constant absorption rate).

Rescaling lengths by some L (e.g.
1
2

the thickness of the sample), time by t0 =
L2

d
, and

concentration by c0 = A exp
(
− E

RT

)
t0, the dead core problem in one space dimension is stated

as follows: (we shall come back later on to the question of selecting the initial data)

∂u

∂t
− ∂2u

∂x2
= −1, 0 < x < s (t) , 0 < t < T,(5.23)

s (0) = 1,(5.24)

u (x, 0) = u0 (x) , 0 < x < 1, u0 (1) = 0, u′0 (1) = 0,(5.25)

ux (0, t) = 0, 0 < t < T,(5.26)

u (s (t) , t) = 0, 0 < t < T,(5.27)

ux (s (t) , t) = 0, 0 < t < T.(5.28)

For u0 we may select the stationary solution of (5.23), (5.27), (5.28)

u0 (x) =
1
2

(1− x)2

with dead core at x = 1. Note that the steady state requires a constant supply at x = 0 with
the rate ux = −1. Thus problem (5.23)− (5.28) arises when (at t = 0) we switch off the oxygen
supply.

We must remark that the statement of the above problem is not precise, unless we exclude a
priori that a new dead core is formed in the interval (0, s (t)) for all t ∈ (0, T ): equation (5.23)
applies only in the set {u > 0}.

Lemma 5.1 As long as s (t) > 0 the function u (x, t) does not vanish in (0, s (t)).

Proof.
Let us consider the initial-boundary value problem satisfied by v = u (x):

vt − vxx = 0,(5.29)

v (x, 0) = u′0 (x) = − (1− x) ,(5.30)

v (s (t) , t) = 0,(5.31)

v (0, t) = 0(5.32)

(discontinuous at the origin). The strong maximum principle implies v < 0 at all inner points.
Thus u (x, t) is decreasing in x for all t and consequently positive in (0, s (t)).

Remark.
The proof above is valid for any u0 (x) with u′0 < 0. Releasing this assumption may pro-

duce the onset of a negativity set of u. This is nonphysical in the framework of the diffusion
consumption model and just says that one more dead core appears inside.

As we shall see, Problem (5.23) − (5.28) can be studied in the general framework of 1-D
problems with Cauchy data on the free boundary. However, still at the present level we can
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obtain some more a priori results. For instance, integrating (5.23) over 0 < x < s (τ), 0 < τ < t
leads to the mass balance equation

∫ 1

0
u0 (x) dx−

∫ s(t)

0
u (x, t) dx =

∫ t

0
s (τ) dτ

(showing that
∫ t
0 s (τ) dτ represents the total mass loss up to time t), from which we see that

either the solution is terminated in a finite time, or s (t) must be summable over (0,∞).
We can go deeper into this question if we look at the problem satisfied by ω = ut = uxx − 1

(supposing we have enough regularity):

ωt − ωxx = 0, 0 < x < s (t) , 0 < t < T,(5.33)

ω (x, 0) = ω0 (x) , 0 < x < 1, s (0) = 1,(5.34)

ωx (0, t) = 0, 0 < t < T,(5.35)

ω (s (t) , t) = 0, 0 < t < T,(5.36)

ωx (s (t) , t) = −ṡ (t) , 0 < t < T,(5.37)

where the last condition is obtained by differentiating (5.28). Now the conditions on the free
boundary are precisely the Stefan conditions. Let us discuss the initial condition (5.34). If u0 is

twice differentiable, then ω0 (x) = u′′0 (x)− 1. This seems to imply ω0 (x) = 0 if u0 =
1
2

(1− x)2

(the stationary solution). Indeed, if we had assumed ux (0, t) = −1 instead of ux (0, t) = 0,
we would have obtained precisely (5.33) − (5.37) with ω0 ≡ 0 (i.e. the equilibrium solution).
However, as we have noted, (5.26) implies a discontinuity for ux and a singularity for uxx. By
reflection around x = 0 we see that the initial concentration for the reflected problem is

u0(x) =
1
2
(1− |x|)2

so that u′′0 (x) = 1 − 2δ (x), δ being the Dirac distribution. Hence in (5.34) we have ω0 (x) =
−2δ (x), for the extended problem, which makes the solution nontrivial.

Now we realize that if ω0 (x) ≤ 0 (as in the latter case), (5.33) − (5.37) is nothing but a
supercooled Stefan problem with ṡ < 0.

We can also perform the usual global balance, obtaining

s (t) = 1 +
∫ 1

0
ω0 (x) dx−

∫ s(t)

0
ω (x, t) dx.(5.38)

It is worth noting that in all cases related to the oxygen diffusion-consumption problem we
have

1 +
∫ 1

0
ω0 (x) dx = 0.(5.39)

Indeed, either u′0 (0) = 0, in which case
∫ 1
0 u′′0dx = 0, or u′0 (0) 6= 0, and then ω0 (x) =

u′′0 (x)− 1 + 2u′0 (0) δ (x), so that (5.39) is satisfied.
Thus (5.38) is in fact

s (t) = −
∫ s(t)

0
ω (x, t) dx,(5.40)

which allows us to deduce the following:
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Theorem 5.2 There exists some finite time T > 0 such that for Problem (5.23)− (5.28)

lim
t↑T

s (t) = 0.(5.41)

Proof.

We know that Γ (x, t) =
1√
2πt

e−
x2

4t satisfies the heat equation and tends to zero as t ↓ 0,

∀x 6= 0. In addition Γx (0, t) = 0, −Γ (s (t) , t) < 0, and
∫ s(t)

0
Γ (x, t) dx =

1√
π

∫ s(t)

2
√

t

0
e−η2

dη → 1
2

as t ↓ 0.
Therefore we may conclude that ω (x, t) > −2Γ (x, t), and from (5.40)

s (t) < 2
∫ s(t)

0
Γ (x, t) dx =

2√
π

∫ s(t)

2
√

t

0
e−η2

dη.(5.42)

Clearly s (t) cannot have a positive limit for t →∞ (the r.h.s. tends to 0).

In addition, from (5.42) we deduce 1 <
1√
πt

, which prevents t from going to∞ and provides

the estimate T <
1
π

for the extinction time.

Bibliographical remarks. The general question of existence or non-existence of free boundary
problems for the heat equations with a shrinking phase (e.g. oxygen diffusion-consumption,
supercooled Stefan problem) has been treated for the one-dimensional case in the papers quoted
at the end of this chapter. In particular the conditions leading to blow-up have been identified
and the possibility of continuing the solution beyond the blow-up point has been discussed.

The question of the occurrence of singularities in free boundary problem in more than one
dimension has been treated extensively in several papers. We just quote [1].

5.3 Bingham flows

It is well known that in Newtonian fluids the stress tensor is defined as

Tij = −pδij + σij(5.43)

with p pressure, δij Kronecker symbol, and, for incompressible fluids

σij = η

(
∂vi

∂xj
+

∂vj

∂xi

)
,(5.44)

where ~v is the velocity field and η > 0 is the fluid viscosity.
The corresponding momentum balance equation ρ

(
~f − ~a

)
+ div ~T = 0 (~f = body force

density, ~a =
d~v

dt
), is the Navier-Stokes equation

∂~v

∂t
+ curl ~v × ~v = −∇B + ν∆~v,(5.45)

where B (after Bernoulli) plays the role of the total energy density

B =
1
2
v2 + u +

p

ρ
(5.46)
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(
1
2
v2 kinetic energy, ~f = −∇u,

p

ρ
potential energy due to pressure), and ν =

η

ρ
is the kinematic

viscosity. We have assumed η = const., which is true in several applications, but not always (e.g.
η depends on temperature).

For a one-dimensional flow ~v = v~e, if we take x1 in the direction of the unit vector ~e,

we have necessarily v = v (x2, x3), because of incompressibility (div~v =
∂v

∂x1
= 0). Hence

~σ = η




0 ∂v
∂x2

∂v
∂x3

∂v
∂x2

0 0
∂v
∂x3

0 0


 and the stress on the planes with normal vector ~n orthogonal to the

flow is ~σ · ~n = η
∂v

∂n
~e. Usually one sets γ̇ =

∣∣∣∣
∂v

∂n

∣∣∣∣ (strain rate) and calling τ the stress we have

τ = ηγ̇(5.47)

expressing proportionality of the stress modulus to the strain rate intensity usually denoted by
γ̇.

This explains why (5.47) is referred to as the constitutive relationship for Newtonian fluids
in condition of laminar flow.

A Bingham (or viscoplastic) fluid in the same situation is described by the nonlinear law

(τ − τ0)+ = η
·
γ,(5.48)

exhibiting the presence of a threshold τ0 (called the yield stress), below which γ̇ = 0, i.e. there
is no deformation.

γ̇

τo

τ

Figure 5.3: Constitutive law for Bingham fluids.

As a consequence the regions in which τ < τ0 move like a rigid body.
For general flows the relationship defining σij in terms of the velocity gradient is much more

complicated, but here we are interested only in Bingham flows of simple type, like for instance
the flow in a horizontal cylinder of circular cross section.
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τ = τo

Figure 5.4: Bingham flow in a cylinder exhibiting the undeformed core.

Such a flow is characterized by the presence of a core moving with uniform velocity and
coinciding with the region 0 ≤ τ < τ0 (on the axis τ = 0 by symmetry).

In this geometry we can easily see that ~v, parallel to the axis, can depend only on time and

on the radial coordinate r, because of incompressibility, and moreover ~a =
∂~v

∂t
, so that for the

pair of scalar unknowns p,v we get the system

∂v

∂t
= − ∂

∂z

(
u +

p

ρ

)
+ ν∆rv, ∆rv =

∂2v

∂r2
+

1
r

∂v

∂r
, τ > τ0,(5.49)

0 = −∇~t

(
u +

p

ρ

)
,(5.50)

where z is the coordinate along the flow and ∇~t is the component of the gradient transversal
to the flow. From (5.50) we deduce that u +

p

ρ
may depend on z, t only, and separating the

variables in (5.49) we see that − ∂

∂z

(
u +

p

ρ

)
= G (t), representing the driving force, i.e. the

longitudinal pressure gradient (that has to be prescribed), divided by ρ.
Thus (5.49) writes

∂v

∂t
− ν

(
∂2v

∂r2
+

1
r

∂v

∂r

)
= G (t) ,(5.51)

to be solved in s (t) < r < R, t > 0, with initial conditions (actually just one condition: see
Remark 3.1 below)

s (0) = s0 ∈ (0, R) ,(5.52)

v (r, 0) = v0 (r) , s0 < r < R,(5.53)

and the no-slip condition at the pipe wall:

v (R, t) = 0.(5.54)

The boundary r = s (t) of the rigid core is the free boundary of the problem and in order to
complete the model we have to find out the free boundary conditions.
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The first condition expresses the fact that r = s (t) bounds the no-deformation zone:

∂v

∂r

∣∣∣∣
r=s(t)

= 0.(5.55)

The second condition is obtained by writing down the equation of motion of the unit length
of the core.

The acceleration of this body is due to the combined action of the pushing force πs2Gρ and
of the drag force 2πsτ0. The mass of the body is ρπs2.

Note: in order to evaluate the rate of change of momentum it must be observed that (if
ṡ < 0) the velocity gradient arising in the “skin” of the element in an infinitesimal time interval
dt has no influence on the momentum balance (if ṡ > 0 there is a slight change of the stress,
equally immaterial). Thus we have the second free boundary condition

∂v

∂t

∣∣∣∣
r=s(t)

=
1
ρ

(
ρG− 2τ0

s

)
.(5.56)

Note that (5.55), (5.56) are neither of Stefan, nor of Cauchy type.
A natural choice for the initial conditions (5.52), (5.53) is the steady state solution corre-

sponding to G (0) = G0. The steady state solution has a core of radius

s0 =
2τ0

ρG0
,(5.57)

requiring the condition

ρG0 >
2τ0

R
,(5.58)

while the velocity field is obtained by integrating

d

dr

(
r
dv0

dr

)
= −G0

ν
r, s0 < r < R(5.59)

and imposing v0 (R) = 0, v′0 (s0) = 0. The result is

v0 (r) =
G0

2ν

[
R2 − r2

2
−

(
2τ0

ρG0

)2

log
R

r

]
.(5.60)

Note that for τ0 → 0 we obtain the velocity profile for the flow of a Newtonian fluid in a pipe
(Hagen-Poiseuille).

Exercise: Compute the discharge Q corresponding to (5.60).
Hint: Q = 2π

∫ R
0 rv0 (r) dr + πs2

0v0 (s0).
Remark 3.1. In the evolution problem the initial value of s is deducible (if the data are

prescribed correctly) imposing compatibility of (5.51), (5.53), (5.55), (5.56) for t = 0, r = s0,

obtaining s0 = − 2τ0

ηv′′0 (s0)
. Check that (5.57), (5.60) satisfy this condition.

Rescaling.
A typical procedure for rescaling the Navier-Stokes equation is to select a characteristic length

L and a characteristic velocity v0 (e.g. the dischange over the cross section area) to rescale space

coordinates and ~v, respectively. Time is rescaled by t0 =
L

v0
. Setting

~v′ =
~v

v0
, t′ =

t

t0
, u′ =

u

v2
0

, p′ =
p

ρv2
0



5.3. BINGHAM FLOWS 85

and defining the operators curl′, ∇′, ∆′ corresponding to the non-dimensional space coordinates,
we can write

∂~v′

∂t′
+ curl′~v′ × ~v′ = −∇′

(
1
2
v′2 + u′ + p′

)
+

1
Re

∆′~v′,(5.61)

where
Re =

Lv0

ν
=

Lρv0

η
(5.62)

is the Reynolds number.
If Re ¿ 1 we can neglect the inertia terms. If we also neglect body forces we arrive at the

simplified quasi-steady (Stokes) equation:

1
Re

∆′~v′ = ∇′p′.(5.63)

When the same approximation is applicable to the Bingham flow problem, equations (5.57),
(5.60), with G (slowly) varying with t, provide the quasi-steady solution.

Reducing the Bingham flow problem to a problem with Cauchy data.
If we set vr = ξ, assuming enough regularity we can reformulate the problem as follows

ξt − ν

(
ξrr +

1
r
ξr

)
+

ν

r2
ξ = 0, s (t) < r < R, t > 0(5.64)

ξ (r, 0) = v′0 (r) ,(5.65)
(

ξr +
1
R

ξ

)

r=R

= −G

ν
,(5.66)

ξ (s (t) , t) = 0,(5.67)

ξr (s (t) , t) = − 2τ0

ηs (t)
.(5.68)

Condition (5.66) comes from vt (R, t) = 0 and (5.51).
We use again (5.51) to derive (5.68) from (5.56).
The system (5.64) − (5.68) is a free boundary problem with Cauchy data prescribed on the

free boundary.
Reducing the Bingham flow problem to a Stefan problem.
We assume some more regularity and we take the acceleration as a new unknown:

ω = vt.(5.69)

The system satisfied by ω is

ωt − ν

(
ωrr +

1
r
ωr

)
= Ġ, s (t) < r < R, t > 0,(5.70)

s (0) = s0,(5.71)

ω (R, t) = 0,(5.72)

ω (r, 0) = G (0) + ν

(
v′′0 +

1
r
v′0

)
, s0 < r < R,(5.73)

ω (s (t) , t) = G− 2τ0

ρs
,(5.74)
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ωr (s (t) , t) =
2τ0

η

ṡ

s
.(5.75)

The last pair of conditions is of Stefan type, although with space dependent “melting tem-
perature” and “latent heat”.

Note that (5.71) is now really necessary, while it was not for the original problem (see Remark
3.1), nor for problem (5.64)− (5.68).

Bibliographical remarks.
The derivation of the model can be found in [74].
The 1-D Bingham flow (classical statement) was studied for the first time in [18].

5.4 Appendix to Sect. 3

.
Some a priori properties for the problem

vt − ν

(
vrr +

1
r
vr

)
= G (t) > 0, s (t) < x < L, 0 < t,

v (R, t) = 0, 0 < t,

v (r, 0) = v0(r), s0 < x < L,

vr (s (t) , t) = 0,

with v0 (L) = 0, v′0 (r) ≤ 0,

[
v′′0 +

1
r
v′0 ≤ 0

]
.

Lemma 5.2 v ≥ 0, vr ≤ 0.

Proof.
Use the maximum principle for v and for ξ. 2

Lemma 5.3 For a pair of problems with data (si (0) , vi (r, 0)) such that s1 (0) > s2 (0), 0 ≥
v1r (r, 0) ≥ v2r (r, 0) we have s1 (t) > s2 (t).

Proof.
Define w = ξ1− ξ2, where ξ1, ξ2 are the corresponding solutions of (5.64)-(5.68). At least for

some time s1 > s2. Suppose
_
t is the first time instant such that s1

(_
t
)

= s2

(_
t
)
.

The function w satisfies the following set of equations in s1 (t) < r < L, 0 < t <
_
t :

wt − ν

(
wrr +

1
r
wr

)
+ ν

r2 w = 0,

w (r, 0) ≥ 0,(
wr +

1
R

w

)

r=R

= 0,

w (s1 (t) , t) = −ξ2 (s1 (t) , t) > 0,

wr

(
s1

(_
t
)

,
_
t
)

= 0.

Owing to the maximum principle w > 0 inside and it takes its absolute minimum for x =
s1

(_
t
)
, t =

_
t . Thus the boundary point principle is contradicted.

We conclude that s1 (t) > s2 (t) in the common existence time interval. 2

Lemma 5.4 Suppose

(*) v0 (R) = 0, v′0 (r) ≤ 0, v′′0 +
1
r
v′0 ≤ 0.

Then ω −G ≤ 0.
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Proof.

Use the maximum principle. 2

Lemma 5.5 Add the assumption G = constant and

(**)
(

v′′0 +
1
r
v′0

)′
≤ 0,

d

dr

(
v′′0 +

1
r
v′0

)∣∣∣∣
r=s0

< 0.

Then ṡ (t) < 0.

Proof.
The function z = ωr = vrt satisfies the problem

zt − ν

(
zrr +

1
r
zr

)
+

ν

r2
z = 0,

z (r, 0) = ν

(
v′′0 +

1
r
v′0

)′
≤ 0,

zr (R, t) = − 1
R

z (R, t),

z (s (t) , t) =
2τ0

ηs
ṡ,

νzr (s (t) , t) = −2τ0ṡ
2

ηs
,

Having supposed z (s0, 0) < 0 we have ṡ (0) < 0 and therefore ṡ (t) < 0 at least up to some
time

_
t . For 0 < t ≤

_
t we have z(r, t) < 0 for s(t) < r ≤ R, because of the maximum principle

and Hopf’s lemma. Suppose there exists
_
t such that ṡ

(_
t
)

= 0. Hence z
(
s
(_

t
)

,
_
t
)

= 0 is the
absolute maximum. However the last equation in the above system provides a contradiction to
the boundary point principle. 2

5.5 One-dimensional free boundary problems with Cauchy data

As we have seen in the previous sections, the oxygen diffusion-consumption problem and the
Bingham flow problem (both in 1-D) can be reduced to a Stefan problem. The former is formu-
lated directly as a free boundary problem with Cauchy data, the latter can be also recast into
such form.

Here we want to address the question of reducing 1-D free boundary problems with Cauchy
data to Stefan-like problems in a more general framework.

Problem 4.1: Let f , g be two given functions in the quarter plane x > 0, t > 0, which are
at least continuous, find a pair (s, u), with u (x, t) in the usual class and s (t) continuous for
t ∈ [0, T ], T > 0 being also unknown, such that

ut − uxx = q (x, t) , 0 < x < s (t) , t ∈ (0, T ),(5.76)

u (x, 0) = h (x) , 0 < x < s (0) , if s (0) > 0,(5.77)

u (0, t) = ϕ (t) , [ux (0, t) = ψ (t)] , 0 < t < T,(5.78)

u (s (t) , t) = f (s (t) , t) , 0 < t < T,(5.79)

ux (s (t) , t) = g (s (t) , t) , 0 < t < T.(5.80)

Remark 4.1(Assumptions).
The data h, ϕ [ψ] are also continuous and q is in a Hölder class. Matching conditions are

required.
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Remark 4.2.
The value s (0) is defined (possibly not uniquely) by the matching condition

h (s0) = f (s0, 0) .(5.81)

Existence of s0 must be assumed.
Remark 4.3.
The need of having ux continuous on the free boundary usually requires more regularity on

f and also more regularity is expected for s, although this may not be necessarily true.
Remark 4.4.
What we are going to say is confined to the case in which the coefficients of the derivatives

in the governing p.d.e. are constant (a slightly more general form of the equation -e.g. in radial
symmetry-is instead allowed).

The most convenient way of studying Problem 4.1 is to reduce it to a Stefan problem. In the
following we want to investigate this possibility. We remark that:

(i) in (5.78) we choose the Dirichlet condition, leaving the other case as an exercise
(ii) we will tacitly suppose that the data and the solutions have all the regularity required.

Lemma 5.6 Suppose
fx − g 6= 0.(5.82)

The Problem 4.1 is reducible to a Stefan problem.

Proof.
We take

v = ux(5.83)

as a new unknown. The problem satisfied by v is

vt − vxx = qx,(5.84)

v (x, 0) = h′ (x) , s (0) = s0,(5.85)

vx (0, t) + q (0, t) =
·
ϕ (t) ,(5.86)

v (s (t) , t) = g (s (t) , t) ,(5.87)

(fx − g)
·
s= vx + q − ft for x = s (t) .(5.88)

Therefore, thanks to (5.82), all solutions of Pb. 4.1 that are sufficiently regular, satisfy a
Stefan problem. 2

Lemma 5.7 Let (s, v) be a solution of (5.84)− (5.88). Then

u (x, t) = −
∫ s(t)

x
v (ξ, t) dξ + f (s (t) , t)(5.89)

solves Problem 4.1.

Proof.
Just check. 2

Thus, within the chosen class of regularity, Problem 4.1 and Problem (5.84) − (5.88) are
equivalent.
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For the problem of oxygen diffusion-consumption we have f = g = 0, so that (5.82) is not
satisfied.

For the Bingham flow problem in the Cauchy form (see (5.64)-(5.68)) we have f = 0, g =
2τ0

µx
and (5.82) is satisfied.

Let us now work with the opposite assumption.

Lemma 5.8 Suppose
fx ≡ g(5.90)

and that
ft − fxx 6= q.(5.91)

Then Problem 4.1 is reducible to a Stefan problem.

Proof.
We take

w = uxx = vx(5.92)

and we note that conditions (5.87), (5.88) are once more of Cauchy type

v (s (t) , t) = fx (s (t) , t) ,(5.93)

vx (s (t) , t) = (ft − q)x=s(t) .(5.94)

Therefore the procedure followed in Lemma 4.1a works, provided that fxx 6= ft − q, i.e. if
(5.91) is satisfied. The resulting problem of Stefan type is

wt − wxx = qxx(5.95)

w (x, 0) = h′′ (x) , s (0) = s0,(5.96)

w (0, t) = ϕ̇ (t)− q (0, t) ,(5.97)

w (s (t) , t) = (ft − q)x=s(t) ,(5.98)

(fxx − ft + q) ṡ = wx + qx − fxt for x = s (t) . 2(5.99)

Conversely we have

Lemma 5.9 Let (s, w) solve (5.95)− (5.99). Then

u (x, t) = f (s (t) , t) + fx (s (t) , t) (x− s (t)) +
∫ s(t)

x
(η − x) w(η, t)dη(5.100)

is a solution of Problem 4.1.

Proof.
Elementary. 2

At this point the natural question arises on how to proceed is f is a solution of the governing
p.d.e. in the original problem, namely

ft − fxx = q.(5.101)

If we try to iterate the procedure setting z = wx, we start with the free boundary conditions
(obtained from (5.98), (5.99))

w (s (t) , t) = fxx (s (t) , t) ,(5.102)
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wx (s (t) , t) = fxxx (s (t) , t) ,(5.103)

with fxx satisfying the differential equation (5.95) and we see that we are back to the situation
(5.90). It means that we cannot modify the Cauchy character of the boundary conditions.

Thus the cases contemplated in Lemmas 4.1, 4.2 are the only ones in which Problem 4.1 is
equivalent to a Stefan problem (in some regularity classes).

It is little surprise that (5.101) + (5.90) is a critical case. Indeed, take u = f in Problem
4.1. For any arbitrary s (t) (irrespectively of the regularity), equations (5.76), (5.79), (5.80) are
satisfied. Therefore either we have h (x) = f (x, 0) and ϕ (t) = f (0, t), implying that (s, f) is a
solution with arbitrary s, or the problem has no solution.

Remark.
Lemma 4.2 applies to the oxygen diffusion-consumption case. The equivalent problem for

v = ux (see (5.29)− (5.32) with the addition of vx (s (t) , t) = 1) falls in the category of Lemma
4.1.

Bibliographical remarks .
More on the problems discussed in this chapter can be found in the papers [39], [40], [41].

See also [46], [47].



Chapter 6

Some processes in porous media with
free boundaries

6.1 Flows through porous media

A porous medium is made of a solid matrix with a distribution of pores (i.e. voids). The case
we are interested in is the one in which pores are connected, so that a fluid can flow through the
system.

In the case of an incompressible liquid the pores can be totaly filled or only partially filled. We
say that the medium is saturated or unsaturated, respectively. It is important to understand that
the structure of a porous medium is characterized by two scales: the scales of the pores, in which
the laws of fluid dynamics can be applied, and the macroscale, in which the flow exhibits some
average behavior. Macroscopic quantities are defined as averages on a representative elementary
volume, containing a large number of pores, but still being “small” with respect to the size of
the system. A typical macroscopic quantity is the medium porosity n, i.e. the volume fraction
occupied by the pores.

The process leading from the study of the fluid dynamics at the microscopic level to the
macroscopic laws of the flow is a well developed branch of mathematics (also applied to different
contexts), known as homogenization (se e.g. [69]).

For a general introduction to porous media, to homogenization and to some important ap-
plications (e.g. oil recovery from reservoirs) see [27].

Basic books in porous media are [6], [7], [5].
Historically homogenization came relatively recently to provide a rigorous justification of the

laws commonly used for describing the flow through porous materials. As we said in the preface,
the first experimental law for incompressible, saturated flows was given by H. Darcy (1855): let ~q
be the volumetric velocity of the flow (~q ·~n the volume of liquid crossing the unit area of normal
~n per unit time) and γ, µ be the specific weight and the viscosity of the liquid; then

~q = −K

µ
(∇p + γ~e)(6.1)

where p is the pressure, ~e is the vertical upward directed unit vector, and K is a constant called
the medium permeability.

The presence of the term γ means that no motion takes place when the pressure field coincides
with the hydrostatic one.

Assuming for instance that a dry medium is penetrated by a fluid supplied at its surface
(supposed horizontal: z = 0), that the fluid moves under the effect of gravity, and that (6.1)
holds throughout the wet region, mass balance reduces to div~q = 0, i.e.

∆p = 0.(6.2)

91
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If everything depends only on the vertical coordinate z, (6.2) means that p is linear in z and
we can set it equal to zero at the penetration front z = s (t). The velocity of the front coincides
with the molecular velocity. The latter is obtained dividing q by the porosity n, thus

ṡ (t) = −K

nµ

(
∂p

∂z
+ γ

)
, s (0) = 0.(6.3)

This simple problem is known as the Green-Ampt problem and its solution depends on the

condition prescribed at z = 0. For instance, if p (0, t) = p0 > 0, then
∂p

∂z
= − p0

s (t)
and (6.3)

writes

ṡ +
K

nµ

(
p0

−s
+ γ

)
= 0(6.4)

yielding the solution

s +
p0

γ
log

(
1− γ

p0
s

)
= −K

nµ
γt.(6.5)

This formula suggests the appropriate length scale L =
p0

γ
and time scale t0 =

µL

nKγ
, according

to which it reduces to
σ + log(1− σ) = −τ,

where σ = s/L, τ = t/t0. Thus the short and long time behaviour corresponds to τ ¿ 1 ⇔ σ ¿
1, and to τ À 1 ⇔ σ À 1, respectively. For τ ¿ 1 expanding the l.h.s. up to the second order

in σ leads to σ2 ' 2τ , which means s(t) '
(2nKp0

µ
t
)1/2

. Thus gravity has no role during the

first stage of the process, which is dominated by the injection pressure p0. For τ À 1 we can use

the approximation σ ' −τ , i.e. s(t) ' −nKγ

µ
t, where the influence of p0 has disappeared and

gravity dominates.
For further discussions and generalizations see [28].
The case just examined is an extreme situation in which capillarity is neglected. The presence

of capillarity eliminates the sharp interface between the saturated and the dry region. It acts
through the capillary pressure, which is a given decreasing function of the saturation S (the
volume fraction of the pores occupied by the liquid). Capillary pressure is the difference between
the pressure of air in the pores (which we can set equal to zero) and the pressure of the liquid.
Thus we may write pc = −p in the unsaturated zone and consequently we may consider p as a
given increasing function of S.

Dividing pressure by the specific weight γ we define the length

ψ = p/γ = f (S) ,(6.6)

f being invertible. Now we write mass conservation in the form

∂θ

∂t
+

∂q

∂z
= 0, θ = nS(6.7)

and we replace (6.1) (in one space dimension) with

g′ (ψ)
∂ψ

∂t
− ∂

∂z

[
κ (ψ)

(
∂ψ

∂z
+ 1

)]
= 0,(6.8)

(Richard’s equation) where g = f−1 and we let κ depend on ψ in some smooth way (various
proposals can be found in the literature). The condition g′ (ψ) > 0 implies that it is parabolic,
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although when ψ ↑ 0 (i.e. in the saturation limit) g′ may not be bounded and the equation is in
that case degenerate.

This simple framework can be complicated in several ways. For instance the liquid may
solidify or polymerize becoming extremely viscous (both phenomena are found in the manufac-
turing of composite materials [71]). Or the structure of the porous medium may change during
the process (for instance if it contains granules which absorb water, increasing their volume and
changing the medium porosity, like in diapers [34]). Another case is the displacement of free
solid particles in the medium induced by the flow (this has been analyzed in connection with the
modelling of the espresso-coffee brewing [49]). Another very important case is when we have two
immiscible fluids moving in the medium (displacement of oil by water in reservoirs, see [27] and
the references therein). A large class of problems is provided by those processes in which the
medium chemically reacts with the flowing materials (i.e. combustion [13], [14]). Many industrial
applications have been described in the book [29] and in [28].

More recently the model proposed in [38] for frying processes includes massive evaporation
and vapour flow.

These generalizations are invariably very difficult. Here we want to deal with two more
problems, whose structure is not too far from what we have already illustrated.

6.2 Penetration of rain water into the ground

Obviously this problem is quite classical, but it contains some very delicate aspects concerning in
particular the boundary conditions at the inflow surface that have been considered only recently.
In the one-dimensional setting the problem has to be solved in a layer between z = 0 (the
so-called water table, bounding the aquifer), where saturation is the natural condition

ψ (0, t) = 0,(6.9)

and z = Z (the ground surface), exposed to the action of rain. It is exactly the condition to be
specified at z = Z that we want to discuss. The basic reference is [12].

We may suppose that at time t = 0 (when rain starts falling) moisture is distributed in (0, Z)
according to the equilibrium solution of (6.8)

ψ (z, 0) = −z.(6.10)

In this way the whole region is initially unsaturated.Thus it is natural to impose that the
inflow boundary condition for t > 0 is

κ (ψ)
(

∂ψ

∂z
+ 1

)∣∣∣∣
z=Z

= N (t) ,(6.11)

when N (t) is the rainfall rate (water volume per unit surface of the ground, per unit time, can
be measured in mm/sec).

However, this situation cannot go on for all times. Indeed by solving the Richards’ equation
with the given initial and boundary data the function ψ (Z, t) can reach the saturation value
ψ (Z, t) = 0 at some time

_
t .

For t > t the first thing to be observed is that once saturation is reached, a saturation front
z = s (t) (free boundary) will propagate in the ground, carrying the conditions

ψ (s (t) , t) = 0(6.12)
[
∂ψ

∂z

]
= 0,(6.13)



94 CHAPTER 6. SOME PROCESSES IN POROUS MEDIA WITH FREE BOUNDARIES

the symbol [·] denoting the jump, as usual.
The mass balance in the saturated region s (t) < z < Z yields simply

κ (0)
∂ψ

∂z
+ 1 = N (t) ,(6.14)

as long as the ground is able to absorb all the incoming water.
Thus we need a correct criterion to establish when N (t) exceeds the maximum flow rate that

the ground can allow. This criterion can be translated into an upper bound for the pressure at
z = Z. Indeed rain drops hitting the ground in an anelastic way transfer to it their momentum.
The momentum transfer rate per unit surface is a pressure, that has been introduced in [12] with
the name of rain pressure

prain = ρvN (t) 1(6.15)

(ρ = water density, v = velocity of the rain drops). Dividing prain by γ we obtain the desired
upper bound ψrain for ψ (Z, t)

ψ (Z, t) ≤ ψrain =
prain

γ
.(6.16)

Therefore the boundary condition (6.14) applies as long as the constraint (6.16) is satisfied.
When solving the problem with condition (6.14) the constraint (6.16) is violated it is necessary
to change the boundary condition. The way to perform this change must be in agreement with
the physical process really taking place at the ground surface. Two extreme situations can arise
(intermediate cases are also possible):

(i) all excess water accumulates on the ground surface, creating a pond 2,
(ii) complete runoff of excess water.
The boundary condition for the complete runoff is obvious:

ψ (Z, t) = ψrain.(6.17)

However we must keep in mind that this new problem is in turn subject to a constraint, since
in no case the water flux can exceed the incoming rain water flux.

(
κ (0)

∂ψ

∂z
+ 1

)∣∣∣∣
z=Z

≤ N (t) .(6.18)

Violating this constraint forces the return to the previous regime.
The corresponding doubly constrained free boundary problem has been studied in [12].
Complete ponding is more complicated, since we can say that the pressure at z = Z exceeds

prain by an amount corresponding to the hydrostatic pressure of the pond which is created. The
latter however is an additional unknown of the problem, since the growth rate of the pond is in
turn determinated by the difference between the rainfall rate and the actual absorption rate of
the ground. Of course the existence of the pond is temporary and when it disappears the usual
flux condition has to be imposed (possibly with N = 0 if rain stopped).

We stress that in all the analysis we have performed evaporation has been neglected as well
as the migration of water vapour within the porous medium.

There are situations in which on the contrary these processes are the leading ones, as it
happens very typically in drying.

1This quantity is usually rather small, being of the order of a few mm H2O
2The first model with ponding was proposed in [54]
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6.3 Degradation of marble by sulphur dioxide

It is unfortunately well known that many marble (and even more sandstone) monuments have
been badly damaged (sometimes devastated) by air pollution. An interesting reference is [63].

One of the main processes responsible for marble degradation is sulphation, a process in which
SO2 and water vapour transform CaCO3 (the basic ingredient of marble) into CaSO4 (gypsum)
through a chain of chemical reactions, also involving air oxygen the atom of carbon goes into a
CO2 molecule. Gypsum has a higher porosity, a much lower mechanical resistance and can be
removed by rain and wind. A mathematical model for this process has been proposed only very
recently [4] (although here we follow a slightly different approach). In its simplest form it has
the structure of a Stefan problem.

Indeed, if we suppose that the reaction is “infinitely fast” (i.e. the reciprocal of the kinetic
constant of the slowest of the reactions in the chain leading from CaCO3 to CaSO4 is much
smaller than the typical “diffusion time” (see Sect. I, 3) of SO2 in air), then we can say that
there exists a reaction front penetrating the pure marble and leaving behind the gypsum, whose
pores are filled with air and impurities SO2, CO2, etc.

We have implicitly admitted that diffusion is the transport mechanism for SO2. Indeed SO2

is an extremely diluted component of the gas mixture which consists almost totally of air and
it is quite obvious that Fickian diffusion comes into play. If we select the frame of reference in
which marble is at rest, we should also consider two other phenomena generated by the volume
production rate accompanying the reaction: the displacement of gypsum and the flow of air
within the gypsum.

In a one-dimensional geometry the velocity of gypsum is proportional and opposite to the
velocity ṡ (t) of the penetration front x = s (t), the proportionality constant being the ratio
between the molar density of gypsum and the one of marble.

Not so simple is the flow of air, originated by the pressure drop associated to the volume
production at the reaction front. The air displacement can be described by Darcy’s law (in terms
of volumetric velocity)

ng (va − vg) = −κa
∂p

∂x
(6.19)

(va =molecular velocity of air, vg =velocity of gypsum, ng =porosity of gypsum) and the mass
balance equation is

∂ (ngca)
∂t

+
∂ (cavang)

∂x
= 0,(6.20)

where ca is the density of air in the pores, expressed in terms of pressure via the state equation

ca = ca (p)(6.21)

(we are supposing that the process is isothermal). Combining the equations above we obtain a
nonlinear parabolic equation for p

∂

∂t
[ngca (p)] +

∂

∂x

[
−κa

∂p

∂x
ca (p) + vgngca (p)

]
= 0.(6.22)

The external boundary x = σ (t) moves backward due to the volume change in the reaction,
hence

σ (t) = −mg

mm
s (t) ,(6.23)

where mm is the number of CaCO3 moles per unit volume in marble and mg is the analogous
quantity in gypsum.

On x = σ (t) pressure equals the atmospheric pressure (if the action of wind is neglected). On
the reaction front we must say that in the infinitesimal time interval dt the amount of air c0nmṡdt
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(where c0 is the pore density of air in the marble) is replaced by cang ṡdt and the difference has
to be supplied by the air flux. Thus the condition for p on the reaction front can be written as
follows

−κa
∂p

∂x
ca (p) + vgngca (p) = (ngca (p)− c0nm) ṡ.(6.24)

So the problem for p is well formulated, once the front reaction is known.
The core of the model is the problem for the pore concentration cs of SO2:

∂ (ngcs)
∂t

+
∂js

∂x
= 0, σ (t) < x < s (t) ,(6.25)

js = ng

[
−ds

∂cs

∂x
+ csva

]
,(6.26)

cs (σ (t) , t) = cs0 (t) ,(6.27)

cs (s (t) , t) = 0,(6.28)

−ds
∂cs

∂x

ng

Ms
=

ρm

Mm
ṡ.(6.29)

The first equation is mass balance. The expression (6.26) of the SO2 flux assumes that the
SO2 flow relative to air is of Fickian type with diffusivity ds. The free boundary conditions are
written supposing that the chemical reaction is ”infinitely fast” (all SO2 is consumed) and (6.29)
represents the mass balance in the reaction (Ms, Mm are molar weights), keeping into account
that, because of (6.28), the SO2 flux on the front is purely diffusive. The simple structure of the
diffusive transport of SO2 in air we have assumed is justified if the pressure field is sufficiently
flat.

Introducing non-dimensional variables it is possible to realize that this is indeed the case and
that the approximation

va ' vg

makes sense. If one performs the transformation to the Lagrangian coordinate ξ = x− σ (t) it is
immediately realized that problem (6.25)− (6.29) reduces exactly to the Stefan problem studied
in Sect. 2, Chapter III, so that if cs0 = const. we have the explicit solution. In our case we can
further simplify the problem exploiting the fact that the time scale of the front penetration is
by several order of magnitude larger than the time scale of diffusion, so that diffusion of SO2

within the gypsum may be considered quasi-stationary (i.e. the SO2 concentration is linear).
The problem however is not as simple as it may look at this stage, because the role that water

vapor plays in the process is intrinsically complicated. Indeed there is a threshold for moisture
below which the sulphation process stops completely. This is an intriguing phenomenon, which
we may try to explain.

The sulphation reaction requires the simultaneous presence of a molecule of SO2 and of two
molecules of H2O at the same point of the reaction front. If H2O is just at the gaseous state
such an event has an extremely low probability. If all incoming SO2 molecules have to react then
necessarily H2O must be present as a liquid film coating the reaction front. Indeed marble is
hygroscopic and the moisture threshold corresponds to the formation or dissolution of the film.
Of course there will be an intermediate regime in which the reaction is incomplete (humid spots
replace the continuous water film). In that case the correct boundary conditions are no longer
(6.28), (6.29), but they must be replaced by

1
Ms

js =
ρm

Mm
ṡ + ng

cs

Ms
ṡ,(6.30)

ρm

Mm
ṡ = αngcs,(6.31)
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where α ∈ [0, 1] is a function of the H2O concentration (and of temperature and pressure). The
first equation is the total molar balance. The r.h.s. contains not only the consumption rate, but
also the adventive flux of the residual SO2 on the moving front. The second equation specifies
the efficiency of the reaction though the coefficient α. When the H2O concentration approaches
the value of maximum efficiency α → +∞, forcing cs to go to zero. In that case we are back to
full speed boundary conditions (6.28), (6.29). On the contrary, if the relative humidity decreases
to the no-reaction threshold then α → 0, the front stops and the SO2 flux vanishes (meaning in

this case
∂cs

∂x
= 0).

During the intermediate regime it becomes important to study the transport of H2O within the
gypsum. If cw denotes the pore concentration of water vapour and dw is its diffusivity in air, the
vapour flux is given by

jw = ng

(
− dw

∂w

∂x
+ cwva

)
(6.32)

with the boundary condition w = w0 (concentration in air) at the outer surface.
The balance equation for H2O provides the governing differential equation

∂(ngcw)
∂t

+
∂jw

∂x
= 0.(6.33)

On the reaction front jw has to provide two moles for each mole of reacted CaCO3 and the
amount of H2O which is advected by the front, namely

jw

Mw
= 2

ρm

Mm
ṡ + ng

cw

Mw
ṡ(6.34)

(neglecting water content in the pristine marble).

We remark that when the typical time scale for diffusion
σ∗2

ds
(where σ∗ is a typical thickness

of the gypsum layer) is much smaller than the typical time scale of the penetration of marble

sulphation, then the SO2 transport can be considered quasi-steady:
∂js

∂x
= 0. In the regime of

complete reaction, this leads to conclude that

−ng

(
ds

∂cs

∂x
+ ωcsṡ

)
=

Ms

Mm
ρmṡ.(6.35)

Since s(t)− σ(t) = (1 + ω)s(t), we immediately get

cs = −Σ + (cs0 + Σ)e−c0ṡ(x−σ)/ds(6.36)

with Σ =
Msρm

Mmngω
. Imposing (6.28) we find an o.d.e. for s(t), leading to the solution

s(t) '
[ 2ds

ω(1 + ω)
1
Σ

∫ t

0
cs0(τ)dτ

]1/2
,(6.37)

where we have used
cs0

Σ
¿ 1.

In particular, if cs0 = constant (6.37) exhibits the typical
√

t behaviour of the self-similar
solutions of the Stefan problem (see Chapt. 3, Sect. 3). Thus we get the interesting information
that SO2 is particularly aggressive during the first stage of the process, while later the gypsum
layer has a protective action. Therefore it is not advisable to remove the gypsum layer too
frequently.
Also, from (6.37) we can derive a useful indication about the way of rescaling the whole problem.
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Taking e.g. the seasonal average c∗s0 of the SO2 concentration and for instance the time scale
t∗ = 3 months, the correct length scale is provided by (6.37):

σ∗ =
( 2dst

∗

ω(1 + ω)
c∗s0
Σ

)1/2
.(6.38)

For instance, taking ds = 0.1 · 10−4m2/sec, ng = 0.3, Σ ' 3 · 103, ω = 2, we obtain σ∗ = 23.6µm,
in agreement with experiments.



Chapter 7

Deposition of solid wax from crude oils

7.1 Waxy crude oils

It is well known that petroleum is a mixture of hydrocarbons. Oils with a high content of heavy
hydrocarbons are called Waxy Crude Oils (WCO’s). The rheological behaviour of WCO’s is
complicated by a series of factors.

(i) Below some temperature (cloud point or WAT = Wax Appearance Temperature) the com-
plex of heavy hydrocarbons (collectively called wax ) begins to crystallize. The crystals
segregate forming a suspension.

(ii) When a lower temperature (pour point) is reached the crystals develop a strong tendency
to become entangled generating a gel-like structure.

(iii) When the segregated phase is present, the rest of the system can be considered a saturated
solution of wax in oil. If a temperature gradient is applied, since the concentration of wax at
saturation is an increasing function of temperature, a gradient of concentration is generated,
parallel to the gradient of temperature. Consequently the dissolved wax migrates from the
warmer to the colder regions. This phenomenon is responsible for the formation of solid
wax deposits on the wall of pipelines exposed to a sufficiently cold environment.

The rheological implications of (i), (ii) have been studied in a number of papers (see the survey
paper [36]). The system can be considered a Bingham fluid (see Capt. 5, Sect. 3) whose yield
stress depends on the concentration of the segregated phase and on its degree of entanglement,
which evolves according to a kinetics driven by two contrasting phenomena: spontaneous aggre-
gation and disgregation induced by internal friction.
Here we want to discuss very briefly the phenomenon of deposition at the wall. Such a problem is
critical for the operation of pipelines, because it is necessary to remove the deposit periodically,
before it becomes too thick. The cleaning procedure is expensive and therefore predicting the
growth rate of the deposit is crucial.
Modelling wax deposition encounters several difficulties related to the impossibility of performing
direct measures of wax diffusivity in oil. As a matter of fact, diffusivity is measured indirectly,
precisely through the effect of solid wax deposition under a controlled thermal gradient. The
experimental apparatus devoted to it is known as the cold finger apparatus and there are several
very delicate questions in interpreting the data obtained in terms of deposited mass vs. time.
These aspects have been discussed at length in the papers [20], [21], treating the two cases of
the instrument with no agitation of the WCO sample and with agitation, respectively. Here we
will not deal with the cold finger problem, because of its complexity.

99
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The general framework of diffusion induced in saturated solutions by thermal gradients (not to
be confounded with the so-called Soret effect1) has been investigated in [FP1], [FP2], [FP3] for a
number of different scenarios. Here we will illustrate some basic ideas and we will briefly sketch
a mathematical model for wax deposition in pipelines.

7.2 The wax deposition problem

Let us refer for simplicity to a one-dimensional problem in which the sample has been prepared
at time t = 0 as follows. For t < 0 the layer 0 < x < L is occupied by a WCO at a uniform
temperature above WAT with a dissolved wax concentration ctot. Let cs(T ) be the saturation
concentration of wax in oil as a function of the temperature T . Typically c′s(T ) > 0. The walls
x = 0, x = L are cooled to the respective temperatures T1 < T2, both below WAT. Owing to the
fact that the thermal diffusivity of the system is by several orders of magnitude larger than the
wax diffusivity, the system can be brought to thermal equilibrium i.e. with the temperature

T0(x) = T1 +
x

L
(T2 − T1), 0 < x < L,(7.1)

in a time which is too short for any significant mass transfer to take place.
Thus we may assume that (7.1) is the thermal profile at time t = 0 and that the system is
initially composed by a saturated solution with concentration

c0(x) = cs(T0(x)) ≡: Cs(x), 0 < x < L,(7.2)

and by a suspension of crystallized segregated phase with concentration

G0(x) = ctot − Cs(x).(7.3)

Since c′0(x) = c′s(T0(x))
T2 − T1

L
> 0, diffusion in the solution is activated with the result of

transporting wax to the colder wall, where the incoming wax has to crystallize, forming the
deposit. In the following we will assume that all the components have the same density, so that
no volume change takes place in the system during the process.
As to the segregated phase we have various possibilities:

(a) we may consider it immobile (which is the most likely scenario if gelification has occurred)
or we can suppose it has some diffusivity,

(b) we may suppose that it is always in thermodynamical equilibrium with the solute or, on the
contrary, that mass exchange between the two phases occurs via some kinetics characterized
by a finite rate constant.

Each of these choices is going to influence the mathematical structure of the model, thus we are
faced with a multiplicity of problems. In addition:

(c) the wax diffusivity in the solution (provided Fick’s law is applicable) may or may not
depend on temperature and/or on the concentration of the segregated phase and the same
is true for the thermal conductivity of the mixture,

(d) the system oil+dissolved wax+crystallized wax should be treated as a mixture, unless wax
concentration is small enough (and the deposit growth is slow enough) to disregard the oil
displacement (a model including oil displacement has been presented in [FP2]),

1The Soret effect consists in the creation of dishomogeneities in fluid mixtures subject to a thermal gradient.
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(e) if the thermal conductivity of the deposit is different from the one of the mixture, the
temperature profile will change as the deposit grows.

The latter situation, discussed in [FP3], is the source of a considerable complication because it
continuously modifies the profile of the saturation concentration within the sample.

7.3 Statement of a specific problem

To be specific, let us select the following (largely simplified) situation:

- the dissolved wax has a constant diffusivity D,

- the segregated phase has a constant non-zero diffusivity DG < D,

- the difference between the thermal conductivity of solid wax and the one of the mixture is
negligible (hence the thermal field is described by (7.1) for all t > 0),

- the segregated crystallized phase is always in thermodynamical equilibrium with the solu-
tion (thus it exists only in the presence of saturation),

- the oil displacement can be neglected,

- the deposit has no oil inclusion,

- the saturation concentration cs is a linear function of T:

c′s(T ) = b > 0, constant.(7.4)

We will denote by G(x, t) the concentration of the segregated phase.
Owing to the assumptions listed above, the system will go through the following three stages.
Stage 1. G > 0 everywhere, the solution remaining saturated. This stage terminates at some
finite time t1, at which G vanishes at some point. We will consider a situation in which G is
decreasing in x for each t. Therefore G will first vanish at x = L.
Stage 2. For t > t1 the wax supply from the segregated phase replacing the dissolved wax leav-
ing the wall x = L by diffusion is discontinued. As a consequence a desaturation front proceeds
from x = L inwards. This will be a second free boundary, evolving simultaneously with the
deposition front. This stage too is bound to extinction in a finite time.
Stage 3. At the time t2 at which the whole solution becomes unsaturated we return to a prob-
lem with only one free boundary (the deposition front). The system will tend asymptotically to
equilibrium.

Let us write down the governing equations for the three stages under the largely simplifying
assumptions listed above.

Stage 1 (0 < t < t1).

∂G

∂t
−DG

∂2G

∂x2
= 0, σ(t) < x < L, 0 < t < t1,(7.5)

G(x, 0) = G0(x) = ctot − cs(x), 0 < x < L,(7.6)

DG
∂G

∂x
|x=L = −ω, 0 < t < t1,(7.7)
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∂G

∂x
|x=σ(t) = 0, 0 < t < t1,(7.8)

[ρ− Cs(σ(t))−G(σ(t), t)]σ̇ = ω, 0 < t < t1,(7.9)

σ(0) = 0,(7.10)

where ω = Db
T2 − T1

L
and Cs(x) = cs(T (x)).

The initial condition (7.6) is nothing but (7.3) with the assumption (7.4). Equation (7.7) is
the mass balance at x = L. Equation (7.8) says that no diffusive flux of the segregated phase
takes place at the deposition front. More generally one could suppose that only a fraction
χ ∈ (0, 1) of the incoming flux ω will give rise to the deposit. In that case (7.8) should be

modified to −DG
∂G

∂x
= (1 − χ)ω. We will continue our analysis with χ = 1. In writing (7.9)

we made the assumption that the advancing front x = σ(t) captures the wax crystals it finds
on its way. Similarly, the presence of Cs in (7.9) is motivated by the fact that (if we neglect
the oil displacement by the deposit) the mass Csdσ is replaced by the mass ρdσ. It must be
stressed however that ignoring oil displacement is consistent only with Cs ¿ ρ. Therefore it
would be admissible to write (7.9) without it. Of course Cs + G is always less than the common
density ρ of all the components (prove it as an exercise). Finally we note that equation (7.5)
is homogeneous, consistently with assumption (7.4). When (7.4) is not true (i.e. c′′s(T ) 6= 0)
the supposed thermodynamical equilibrium between the two waxy phases would imply a mass
exchange: if c′′s > 0 the solution tends to become super-saturated and part of dissolved wax has
to crystallized, leading to

∂G

∂t
−DG

∂2G

∂x2
= D

d2

dx2
cs(x).

If c′′s < 0 the solution tends to desaturate and the appropriate amount of G has to be dissolved
to maintain saturation (the equation is still the same).
We leave the proof of the following simple lemma to the reader:

Lemma 7.1 Let (σ,G) be a solution of (7.5)-(7.9). Then
∂G

∂x
< 0 for 0 < x ≤ L, 0 ≤ t ≤ t1.

This result guarantees that G vanishes for the first time at x = L.

Stage 2 (t1 < t < t2).

∂c

∂t
−D

∂2c

∂x2
= 0, s(t) < x < L, t1 < t < t2,(7.11)

s(t1) = L,(7.12)

∂G

∂t
−DG

∂2G

∂x2
= 0, σ(t) < x < s(t), t1 < t < t2,(7.13)

G(x, t1+) = G(x, t1−) =: G1(x), σ(t1) < x < L,(7.14)

ω = D
∂c

∂x
|x=s(t)+ −DG

∂G

∂x
|x=s(t)−, t1 < t < t2,(7.15)

[ρ− Cs(σ)−G]σ̇ = ω, σ(t1+) = σ(t1−), t1 < t < t2,(7.16)

c(s(t), t) = Cs(s(t)),(7.17)

G(s(t), t) = 0.(7.18)

Equation (7.11) describes diffusion in the unsaturated region. Equation (7.15) means that at
the desaturation front the segregated phase provides the mass flux compensating the unbalance
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between the incoming flux from the unsaturated region and the outgoing flux in the saturated
region.

Stage 3 (t2 < t < +∞).
The following scheme requires no particular comment:

∂c

∂t
−D

∂2c

∂x2
= 0, σ(t) < x < L, t2 < t,(7.19)

c(x, t2+) = c(x, t2−) =: c2(x), σ(t2) < x < L,(7.20)

∂c

∂x
|x=L = 0, t2 < t,(7.21)

c(σ(t), t) = Cs(σ(t)), t2 < t,(7.22)

(ρ− Cs(σ))σ̇ = D
∂c

∂x
|x=σ(t), σ(t2+) = σ(t2−), t2 < t.(7.23)

7.4 Analysis of the three stages of the process

Stage 1. Problem (7.5)-(7.10) is not in the class of Stefan-like problems, because
∂G

∂x
(and not

G) is prescribed on the free boundary and the velocity σ̇ is related to G (and not to
∂G

∂x
), which

makes the problem usually more complicated. A possible method for proving well-posedness
stems from the global mass balance equation, which is obtained by integrating equation (7.5)
over each domain σ(τ) < x < L, 0 < τ < t:

ρσ(t) =
∫ σ(t)

0
Cs(x)dx +

∫ L

0
G0(x)dx−

∫ L

σ(t)
G(x, t)dx.(7.24)

The latter has an obvious interpretation: although the deposit is created by the crystallization
of the incoming solute flux, the ultimate source of the mass needed to reach the amount ρσ is
the segregated phase.
Conversely, if (σ,G) solves (7.5)-(7.8) and (7.24), then it solves also the original problem, as it
can be seen by differentiating (7.24). In other words, (7.9) can be replaced by (7.24). This fact
suggests the following fixed point argument.

(i) Define the set

Σ = {σ ∈ C([0, ϑ])|σ(0) = 0, 0 ≤ σ̇(t) ≤ Db

ρ− ctot
, 0 ≤ |σ̇(t′)− σ̇(t′′)|

|t′ − t′′|α ≤ K, ∀t′ 6= t′′},

with ϑ > 0, K > 0 to be determined, and α ∈ (0,
1
2
). For the moment we can take

0 < ϑ ≤ L
ρ− ctot

Db
.

(ii) Take σ ∈ Σ and solve (7.5)-(7.8) to find G(x, t).

(iii) Define the mapping Mσ = σ̃ via

ρσ̃(t) =
∫ σ(t)

0
Cs(x)dx +

∫ L

0
G0(x)dx−

∫ L

σ(t)
G(x, t)dx.(7.25)
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Solutions of the original problems are found in correspondence of fixed points of the map-
ping M , thanks to (7.24). It is easily seen that σ̃ has the same regularity as σ and that K,
α can be chosen so that M(Σ) ⊂ Σ.

The underlying idea for the selection of the set Σ is that it is easy to prove that any G(x, t)
calculated by means of the above procedure will be decreasing in x and bounded above by G0(0),

which in turn provides an a-priori uniform estimate for
dσ̃

dt
and at the same time a lower bound

for the extinction time t1.
Thus applying Schauder’s fixed point theorem is now equivalent to showing the continuous de-
pendence (in the sup-norm) of the solution G(x, t) of (7.5)-(7.8) on the C1-norm of the boundary.
We sketch how to prove that the mapping is indeed contractive if ϑ is sufficiently small.

Lemma 7.2 The mapping M : Σ → Σ is contractive in the C1-norm for ϑ sufficiently small.

Proof.
From (7.25) for any pair σ1, σ2 ∈ Σ, setting α(t) = min(σ1(t), σ2(t)), β(t) = max(σ1(t), σ2(t)),

we have

σ̃1 − σ̃2 =
1
ρ
{
∫ β(t)

α(t)
Cs(x)dx+

−
∫ L

β(t)
[G1(x, t)−G2(x, t)]dx + (−1)j+1

∫ β(t)

α(t)
Gj(x, t)dx},

where j is the index of the minimum between σ1, σ2. Considering that
Cs

ρ
< 1, the nontrivial

part of the proof is to find estimate of G1 −G2.
To simplify notation we rescale x, t (without changing any symbol) so that x = L becomes x = 1
and we can set DG = 1 in (7.5).
Since G0 is a linear function of x, the function

V (x, t) = G(x, t)−G0(x)(7.26)

satisfies
∂V

∂t
− ∂2V

∂x2
= 0, σ < x < 1, 0 < t < ϑ,(7.27)

V (x, 0) = 0, 0 < x < 1,(7.28)
∂V

∂x
|x=σ(t) = h1 0 < t < ϑ,(7.29)

∂V

∂x
|x=1 = h2 0 < t < ϑ,(7.30)

where h1, h2 are known constants.
Now we use the representation formula (see Chapter II)

V (x, t) =
∫ t

0
µ1(τ)Γ(x, t; σ(τ), τ)dτ +

∫ t

0
µ2(τ)Γ(x, t; 1, τ)dτ(7.31)

by means of heat potentials, with µ1, µ2 satisfying the system

h1 = −1
2
µ1(t) +

∫ t

0
µ1(τ)Γx(σ(t), t;σ(τ), τ)dτ +

+
∫ t

0
µ2(τ)Γx(σ(t), t; 1, τ)dτ,(7.32)
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h2 =
1
2
µ2(t) +

∫ t

0
µ1(τ)Γx(1, t; σ(τ), τ)dτ,(7.33)

obtained by imposing (7.29), (7.30), which we know to possess a unique continuous solution
(µ1, µ2).
At this point, if we take σ ∈ Σ and a perturbation δσ such that σ + δσ ∈ Σ, we can evaluate the
corresponding variations δµ1, δµ2 by taking the differences in (7.32), (7.33).
We invite the reader to write down the whole resulting system of Volterra integral equations and
we just point out that, as in equations (7.32), (7.33), the kernels have a singularity of Abel type
(i.e. of the order (t− τ)−1/2) and the free terms are in absolute value dominated by

M

∫ t

0

‖ ˙δσ‖τ√
t− τ

dτ

with M denoting a constant dependent on the data only and ‖f‖τ = sup
η∈(0,τ)

|f(η)|. We conclude

that |δµ1|, |δµ2| possess a similar estimate and consequently the change δV of V can be estimated
in the sup-norm up to time t = ϑ

‖δV ‖C ≤ N
√

ϑ‖δσ‖C1 ,

which proves the Lemma. 2

Existence and uniqueness follow, as well as the possibility of extending the solution up to the
extinction time of Stage 1.

Stage 2. Stage 1 terminates at a time which is less than the time needed for consuming the

wax amount
∫ L
0 G0(x)dx at the rate ω. In other words t1 <

1
ω

∫ L

0
G0(x)dx. More precisely, in

our conditions, t1 is the time at which G(L, t) vanishes.
By integrating (7.13), (7.11) in the respective domains and using the free boundary conditions,
the new mass balance is obtained:

ρ(σ(t)− σ(t1)) =
∫ L

σ(t1)
G1(x)dx−

∫ s(t)

σ(t)
G(x, t)dx +

+
∫ σ(t)

σ(t1)
Cs(x)dx +

∫ L

s(t)
[Cs(x)− c(x, t)]dx.(7.34)

This equation shows that, besides the contribution of the segregated phase similar to the one in
(7.24), we have the additional wax amount coming from desaturation.
As it was shown in [FP1], [FP2], adopting as a new variable the concentration of wax in excess
or defect with respect to saturation, namely

u = G, if G > 0, u = c− cs, if G = 0,(7.35)

for a given σ the problem including the desaturation front can be formulated in a weak form, in
which existence and uniqueness is not difficult to be proved. Next a fixed point argument can
be set up to prove existence and uniqueness for the whole problem. We omit the details.
Like in Stage 1, it is easy to see that Gx(x, t) < 0 in σ(t) < x < s(t). The inequality c < cs in
s(t) < x < L is guaranteed by the maximum principle.
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Stage 3. Problem (7.19)-(7.23) has the simple structure of a Stefan problem, therefore there is
no need to discuss it. We just report the mass balance

ρ[σ(t)− σ(t2)] =
∫ L

σ(t2)
c2(x)dx−

∫ L

σ(t)
c(x, t)dx(7.36)

whose interpretation is obvious.
Since as t →∞ the residual concentration tends to Cs(σ∞), from (7.36) we deduce

ρ[σ∞ − σ(t2)] =
∫ L

σ(t2)
c2(x)dx− (L− σ∞)Cs(σ∞).(7.37)

Going back to (7.34)

ρ[σ(t2)− σ(t1)] =
∫ L

σ(t1)
G1(x)dx−

∫ L

σ(t1)
Cs(x)dx−

∫ L

σ(t2)
c2(x)dx,(7.38)

and to (7.24)

ρσ(t1) =
∫ σ(t1)

0
Cs(x)dx +

∫ L

0
G0(x)dx−

∫ L

σ1

G1(x)dx,(7.39)

and summing up (7.37)-(7.39) we obtain the final equation

ρσ∞ =
∫ L

0
Cs(x)dx +

∫ L

0
G0(x)dx− (L− σ∞)Cs(σ∞),

i.e.
ρσ∞ = ctotL− (L− σ∞)Cs(σ∞)(7.40)

which could have been written from the very beginning.
Since the function ρσ∞ + (L − σ∞)Cs(σ∞) is increasing from LCs(0) < Lctot to ρL > Lctot for
σ∞ ∈ [0, L], equation (7.40) provides a unique determination of σ∞.

7.5 Application to the pipelining of waxy crude oils

In [19] a model is presented to predict the amount of wax deposited during the pipelining of a
wax-saturated oil when the outside temperature is below WAT.
The specific case of turbulent regime (for which some field data are available) has been studied.
If R is the pipe radius and σd(z, t) is the deposit thickness (z is the longitudinal coordinate along
the pipe, t is time), the pipe lumen is ν = R−σd. In the turbulent regime we have to consider a
mechanical boundary layer of thickness σm (so that Rm = ν − σm is the radius of the turbulent
core possessing a velocity V ) and a thermal boundary layer of thickness σT (so that temperature
can be considered homogeneous over cross sections of radius RT = ν − σT ).
The thickness of the mechanical boundary layer in a quasi-steady flow can be grossly estimated
by means of a simple momentum balance and it turns out to be σm = εmν with

εm =
2ηQ

Gπν4
,

where G is the pressure gradient, η the oil viscosity, Q the pipe discharge. In the applications
considered in [19] εm ' 0.1. Therefore, when convenient, the approximation ν ' R can be



7.5. APPLICATION TO THE PIPELINING OF WAXY CRUDE OILS 107

justified, e.g. to express Q ' πν2V . Using classical correlations expressing G by means of
geometrical and dynamical flow quantities the final expression

εm =
16
Re

ln2
[0.27χ

R
+

( 7
Re

)0.9]
(7.41)

is found, where Re =
ρV R

η
is the Reynolds’ number and χ is the so-called roughness of the

wall (typical values are R = 0.2m, Re = 6000, χ = 4.5 · 10−5m). The thermal boundary layer
thickness σT = εT ν is given by classical correlations which lead to conclude εT = 0.41εm for our
purposes. For the details and references we refer to [19].

The steady state profile in the thermal boundary layer can be found on the basis of a simple
thermal balance (in which latent heat can be safely neglected) and it turns out to be

T (r, z) = (T0 − Te) exp
{
− 2πα

µQ
z
}{

1− 1
µ

ln
( r

R

)}
+ Te,(7.42)

where T0 is the inlet temperature of the oil (T0 > Tcloud), Te is the outside temperature (Te <

Tcloud), α is the thermal diffusivity of the oil, and µ =
k

hR
(k =thermal conductivity, h =heat

transfer coefficient through the pipe wall).
Thus we can express the temperature gradient

∂T

∂r
= −(T0 − Te) exp

{
− 2πα

µQ
z
} 1

µr
,(7.43)

which is the driving force for deposition.
Deposition may start when T (r, z) drops below Tcloud and its rate results from two contrasting

phenomena:

(i) molecular diffusion:

jdep = −DC ′
s(T )

∂T

∂r

1
ψ

,(7.44)

(ii) ablation:

jabl = −A

ψ

ηQ

πεmν3
,(7.45)

where ψ is the solid wax fraction in the deposit (typically ψ ' 0.2), A is the ablation coefficient

(possibly depending on ψ) and the factor multiplying
A

ψ
in (7.45) is the stress at the wall. The

deposit is subject to progressive consolidation (aging) according to the kinetics

∂ψ

∂t
=

1
ta

(1− ψ), ψinitial = ψ0,(7.46)

(ta is a characteristic time, much larger than the typical time scale for deposition).
In order deposition to take place two conditions must be verified:

1. T (R, z) < Tcloud

2. jabl < jdep

The first condition requires z > zf , with

zf =
µQ

2πα
ln

[ T0 − Te

Tcloud − Te

]
.(7.47)
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The second condition requires z < ze, with

ze =
µQ

2πα
ln

[(T0 − Te)πεmDbR2

µAηQ

]
,(7.48)

with b =
dCs

dT
, considered constant.

Accordingly, if L is the pipe length, we have the following cases:

(a) ze > L: deposition takes place for zf ≤ z ≤ L,

(b) zf < ze < L: deposit is formed in the pipe segment zf ≤ z ≤ ze,

(c) ze < zf : deposition never starts.

The fact that
R

L
¿ 1 greatly simplifies the computation of the deposition rate.

Indeed the mass balance at the deposit interface (when deposition is active) can be written

ρ
∂ν

∂t
+

(Db

ψ

∂T

∂z

)∂ν

∂z
=

D

ψ

∂T

∂r
+

AηQ

ψπεmν3
,(7.49)

where ρ is the density of the wax.

After suitable rescaling it becomes apparent that the term with
∂ν

∂z
can be neglected (except

for intervals in which
∂ν

∂z
is of the order of

(L

R

)2
). If aging is disregarded (ψ ' ψ0), then the

following expression is obtained for the deposit thickness for zf ≤ z ≤ min(ze, L)

σd = R
t

t0

[
T0 − Te

µ
exp

{
− 2πα

µQ
z

}
− AηQ

πεmDbR2

]
1

Tcloud
(7.50)

where t0 is the typical time scale of the phenomenon, namely

t0 =
ψ0ρR2

DbTcloud
.(7.51)

Using the values ψ0 = 0.2, ρ =800 Kg·m3, R =0.2m, D = 1.5·10−9m2sec−1, b = 10−2Kg·m−3◦K−1,
Tcloud = 300◦K, we have t0 ' 7.7 · 106sec (about 3 months).
Formula (7.50) is in good agreement with experimental data.
For more details and numerical examples see [19].



Chapter 8

Diffusive processes in tumour cords

8.1 Introduction

Tumour cords are systems of tumor cells growing around blood vessels, from which they receive
(by means of various transport mechanisms including diffusion) all substances needed for prolif-
eration. At some distance from the vessel the concentration of oxygen and other nutrients within
a cord is too low to sustain life and a necrotic region is formed. Here we consider the ideal case
in which we have a regular array of tumor cords (formed only by tumor cells) which are parallel
and identical, so that we may concentrate our attention on one of them, supposing that it is
surrounded by a surface which, because of symmetry, prevents any exchange of matter with the
neighboring cords.

For references on previous papers on tumour cords, and on mathematical models of tumours
in general, we refer to [35], which illustrates the recent trends in this fields. See also [17], [2] and
the recent book [72].

As we shall see, the model we are going to present is far from being a precise picture, even
for the idealized system described above. We will introduce a number of simplifications, which
however respect the main qualitative features and allow to point out some aspects, which are
common to other types of tumors, but have been rarely considered in the literature, despite their
crucial influence. This is particularly true when, because of cell killing treatments, the tumor
undergoes a volume reduction, followed by regrowth.

The simplifications we impose are of various kinds:

(i) The cord has rotational symmetry around its axial blood vessel.

(ii) Living cells can be in two states: proliferating (P) or quiescent (Q). Transition from P to
Q takes place at a rate λ(σ), σ denoting the oxygen concentration. The inverse transition
is also possible with a rate γ(σ). The two functions λ, γ are continuous and piecewise
differentiable. More precisely γ = γmin ≥ 0 for σ below a threshold σQ, γ = γmax > γmin

above a threshold σP > σQ and γ(σ) is increasing in (σQ, σP ), while λ(σ) is decreasing in
the same interval from λmax (its value below σQ) and λmin ≥ 0 (its value above σP ). Cells
die when σ reaches the value σN < σQ.

(iii) The cell velocity u is radial.

(iv) All the relevant quantities depend on space only through the radial coordinate r. A first
consequence is that the two main free boundaries in the problem, namely the boundary of
the region containing viable cells (i.e. the internal boundary of the necrotic region) and
the external boundary of the necrotic region are cylindrical.
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(v) The concentration of oxygen and of other chemicals relevant to the process has locally the
same value in the interstitial fluid and in the cells.

Even in this reduced framework there are several difficulties. First of all, there is a clear
coupling between the evolution of the living cells and the oxygen diffusion-consumption process.
Moreover the cells die, either spontaneously or because of the presence of cytotoxic substances
(whose evolution has also to be modelled) and dead cells lose volume (possibly at different rates
in the necrotic and non-necrotic regions). Then we must consider the flow of the interstitial
liquid, whose velocity v cannot be just radial (it enters the cord from the blood vessel and leaves
the system from the far ends, carrying to the cells the material needed for their replication and
carrying away the waste products). Determining the motion of the various components should
take into account their mutual mechanical interactions. This fact has been clearly pointed out in
[9]. However, as we shall see, we can circumvent the study of the internal stresses and of the full
dynamics of the interstitial fluid if we further simplify our approach computing just the average
flux through each cylindrical surface in the cord, coaxial with the blood vessel. As we shall see,
the evolution of the region occupied by living cells and the evolution of the surrounding necrotic
region are characterized by the presence of a pair of unilateral constraints which produce the
switch between two different evolution regimes. Here lies one of the most peculiar mathematical
aspects of the problem. This model has been developed through several stages. We just quote
the papers [10], [8], [11], [9]. The proofs are too long and complicated to be reported here. We
will confine ourselves to sketching some basic ideas.

8.2 The mathematical model: the oxygen consuming region

We start by modelling the region close to the blood vessel, containing living cells.
We denote by νP , νQ the volume fractions of the proliferating and quiescent cells. Dead cells
occupy a fraction νA and the rest of the space is filled by extracellular liquid, whose volume
fraction is νE :

νP + νQ + νA = ν∗ = 1− νE .(8.1)

All components are assumed to have the same density, so that conversions from one to another
are not accompanied by volume change.
The equations describing the evolution of νP , νQ, νA are

∂νP

∂t
+∇ · (νP u) = χνP + γ(σ)νQ − λ(σ)νP − µP (r, t)νP ,(8.2)

∂νQ

∂t
+∇ · (νQ u) = −γ(σ)νQ + λ(σ)νP − µQ(r, t)νQ,(8.3)

∂νA

∂t
+∇ · (νA u) = µP (r, t)νP + µQ(r, t)νQ − µAνA.(8.4)

In (8.2) χ is the proliferation rate, µP , µQ are the death rates of the corresponding species,
µA is the conversion rate of dead (apoptotic) cells into liquid by degradation. We have already
illustrated the role of the transition rates γ, λ. We remark that µP , µQ are here prescribed as
functions of r, t in order to simplify the problem. Since they represent the effect of treatments, in
real cases they must be expressed e.g. as functions of drugs concentration or radiation intensity.
Another simplifying assumption is that νE is constant. Thus, denoting by v the fluid velocity,
the fluid mass balance writes

νE∇ · v = µAνA − χνP .(8.5)
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Now the quantity ν∗ in (8.1) is constant and from (8.2)-(8.4) we deduce

ν? 1
r

∂

∂r
(ru) = χνP − µA(ν? − νP − νQ),(8.6)

where u(r, t) is the radial component of the cell velocity, which has to satisfy the boundary
condition

u(r0, t) = 0(8.7)

at the boundary r = r0 of the central blood vessel.
From the modelling point of view, we stress that we have supposed that all the cellular species

(including dead cells) move with the same velocity. This confines the validity of the model to a
situation in which dead cells are entrapped in a relatively coherent structure of living cells.
Now we write down the equation for oxygen consumption

∆σ = fP (σ)νP + fQ(σ)νQ(8.8)

in a quasi-steady form, with fP , fQ consumption rates of the respective species. This is justified

because the typical diffusion time for oxygen in the tumour is td =
L2

D
with L ' 100µ, D '

10−5cm2/sec, i.e. td ' 10sec, to be compared with the basic time scale of tumour growth
χ−1 ' 1 day. For the same reason no advection term appears in (8.8).
Functions fP , fQ are such that fP (σ) ≥ fQ(σ) (e.g. of Michaelis-Menten type). An important
condition is fQ(σN ) > 0.
Equation (8.8) must be solved in the region occupied by living cells, whose size is not known
a-priori. Thus we have a free boundary problem. The unknown interface r = ρN (t) separates
the oxygen consuming region from the necrotic region.
At the blood vessel wall we prescribe the oxygen concentration

σ(r0, t) = σb.(8.9)

At the interface r = ρN (t) a typical situation (occurring e.g. when the tumour is in a steady
state) is represented by the conditions

σ(ρN (t), t) = σN ,(8.10)

∂σ

∂r
|r=ρN (t) = 0,(8.11)

expressing the fact that the necrotic threshold σN has been reached and that no oxygen is
exchanged with the necrotic region.
However, a crucial aspect of the phenomenon is that it may evolve in such a way that (8.10)
has to be replaced. Roughly speaking, we can say that if a sufficiently intense killing action is
exerted on the cells then, as long as (8.8)-(8.11) are satisfied, the corresponding sharp reduction
of oxygen consumption tends to shift the interface r = ρN (t) so fast far from the blood vessel
that its velocity tends to exceed the cellular velocity u (which is of the order of 1µ/hour). On
the other hand, the inequality ρ̇N ≤ u cannot be violated on physical grounds (dead cells cannot
be recruited in the population of living cells). The way out is to allow σ(ρN (t), t) to increase
freely above σN , imposing that the interface becomes a material surface, moving with the same
velocity of the cells:

ρ̇N = u(ρN (t), t),(8.12)

which replaces (8.10).
After the treatment the tumour tends to regrow and if we keep the conditions (8.11), (8.12) on
the free boundary the oxygen concentration at the interface will eventually fall below σN . This
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too must be forbidden, imposing the constraint σ ≥ σN and reverting to the former interface
conditions.

In summary, the problem itself selects the correct free boundary conditions during the tu-
mour evolution, according to the unilateral constraints ρ̇N ≤ uN , σ ≥ σN .

8.3 The fluid flow

We assume Darcy’s law as the governing equation of the flow relative to the cells

(1− ν∗)(v − u) = −κ∇P(8.13)

(P=pressure, κ=hydraulic conductivity). From (8.1)-(8.5) we get

∇ · (v +
ν∗

1− ν∗
u) = 0.(8.14)

The velocity v has a radial and a longitudinal component, denoted by vr(r, z, t), vz(r, z, t). The
analysis of the flow can be greatly simplified if we are mainly interested in knowing the total
fluid discharge through cylindrical surfaces r =constant. To this end we introduce the average

v(r, t) =
1

2H

∫ H

−H
vr(r, z, t)dz

(2H is the cord length) and we take the same average in equation (8.14), obtaining

1
r

∂

∂r
(rv) +

1
2H

[vz(r,H, t)− vz(r,−H, t)] = − ν∗

1− ν∗
1
r

∂

∂r
(ru),(8.15)

where (1− ν∗)[vz(r,H, t)− vz(r,−H, t)] represents the local outflow rate of liquid from the cord
sides. We assume that the latter is proportional to the difference p(r, t) − p∞ between the
longitudinal average of pressure and a far field pressure p∞, representing the pressure in the
lymphatic vessels. Thus

1
r

∂

∂r
(rv) = − 1

1−ν∗

[
χθνP − µA(ν∗−νP−νQ) +

ζout

H
(p− p∞)

]
,(8.16)

with ζout > 0, constant.
After averaging (8.13) we arrive at the equation

p(r, t) = p0(t)−
1−ν∗

κ

∫ r

r0

[v(r′, t)− u(r′, t)] dr′,(8.17)

where one more unknown appears, namely p0(t) = lim
r→r0

p(r, t). The knowledge of p0(t) is

necessary in order to specify the fluid inflow rate from the blood vessel

(1− ν∗)v(r0, t) = ζin(pb − p0(t)),(8.18)

with ζin > 0, constant, and pb equal to the longitudinally averaged blood vessel.
Concerning the question of prescribing both σb and pb as given constants, a few remarks

are in order. Both σ and p do vary along the blood vessel: the former because of progressive
consumption, the latter in order to provide the pressure gradient forcing the blood along the
vessel. Keeping the variation of σ low requires a sufficiently fast blood flow, hence a sufficiently
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large pressure gradient. Thus having a small variation of σ and a small variation of p along
the vessel are contrasting requirements. However, the analysis performed in [8] proves that for
the typical cord dimensions (2H'1mm, r0 ' 20µm) and perfusion rates there is a reasonable
compromise.

The role of equation (8.17) is to determine the average pressure profile within the cord once
the difference v − u and p0(t) are known. Finding p0 is one of the most delicate aspects of the
problem, even in the stationary case.

8.4 The necrotic region

The necrotic region occupies at each time the hollow cylinder (ρN , B) × (−H, H). The radius
B(t) is unknown and we recall that the outer boundary r = B(t) is a no flux surface. Modelling
the necrotic region is by no means a simple task, because we are dealing with a mixture of liquid
and of a solid material degrading to a liquid. Excluding abnormal situations, both components
enter the necrotic region from the interface r = ρN (t) and the liquid leaves from the boundaries,
z = ±H. The picture adopted here is based on the arguments presented in [10], [8].
We suppose that pressure has a uniform value pN (t), of course unknown, throughout the region
and that the residual cellular component and the liquid occupy the respective volumes V c

N , V l
N ,

filling the whole space:
VN = V c

N + V l
N = 2πH(B2 − ρ2

N ).(8.19)

Two situations are possible:

(i) the solid component is floating within the liquid,

(ii) the solid component is fully packed (with the volume fraction ν∗).

The mechanical behaviour is very different in the two cases. The second case may occur when
too much solid is supplied and/or too much liquid is removed. The first case is characterized by
the inequality

νN =
V c

N

2πH(B2 − ρ2
N )

< ν∗.(8.20)

The unilateral constraint νN ≤ ν∗ must be imposed and when it becomes active we shift to case
(ii).

The volume balance reads as follows

V̇ c
N = 4HπρNν?[u(ρN , t)− ρ̇N ]− µNV c

N ,(8.21)

V̇ l
N = 4HπρN (1− ν?)[v(ρN , t)− ρ̇N ] + µNV c

N − qout(t),(8.22)

where µN is the volume loss rate of the solid and qout(t) expresses the liquid outflow rate from
z ±H:

qout = 2ζN
out(1− νN )π(B2 − ρ2

N )(pN − p∞)(8.23)

with ζN
out > 0.

From (8.19)-(8.22) the total volume evolution can be found

dB2

dt
= 2ρN [(1− ν?)v(ρN , t) + ν?u(ρN , t)] +

− ζN
out

H
(B2 − ρ2

N − V c
N

2Hπ
)(pN − p∞).(8.24)
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Now we have to distinguish between (i) and (ii).
In case (i) we may suppose that the larger is the total volume occupied by the system, the larger
is the pressure. The underlying idea is that the pressure is created by the displacement of the
surrounding tissue. Thus we assume that

pN (t) = Ψ(B(t)),(8.25)

where Ψ(B) is a smooth increasing function (never less than p∞).
Thus (8.24) together with (8.25) and (8.21) can be seen as the evolution law for B.
In case (ii) it is the solid part which takes on the stress (it will ultimately compress the blood
vessel, even to the limit of collapse, but we disregard this phenomenon here). Now V l

N is known
in terms of V c

N

V l
N (t) =

1− ν∗

ν∗
V c

N(8.26)

and

B(t) =
(

ρ2
N +

V c
N

2Hπν∗

)1/2

.(8.27)

As a consequence, equation (8.22) has now the task of defining qout and through (8.23) we can
find the expression

pN (t) = p∞ +
H

ζN
out

(
2ρN [v(ρN , t)− u(ρN , t)]

B2 − ρ2
N

+
µN

1− ν∗

)
,(8.28)

replacing (8.25).
The regime (ii) may also come to an end. This happens precisely when pN calculated through

(8.28) tends to exceed Ψ(B(t)). In other words, besides the constraint νN ≤ ν∗, we have to impose
the constraint pN (t) ≤ Ψ(B(t)). When pN reaches the constraint it means that the liquid takes
over the supporting action and we go back to (i). Thus also the evolution of the necrotic region
takes place via a doubly constrained mechanism.
The coupling between the two system of equations in the necrotic and in the non-necrotic region
is provided by the pressure pN , which has to match the pressure value for r = ρN provided by
(8.17).

8.5 Mathematical results and open questions

Global existence and uniqueness have been proved in the quoted papers. Two distinct approaches
are needed for the stationary and for the evolution problem. Demonstrations are too long to be
presented here.
The main open questions remain:

(a) The drugs kinetics. In [9] this problem was considered in the framework of rather severe
restrictions (e.g. disregarding advection due to the fluid motion). However the problem of
completing the model here illustrated with the equations describing the transport and the
action of the drugs remains open.

(b) The case in which the tumoral mass breaks down and we can no longer adopt the simplified
picture of a cell population moving with the radial velocity u of a fluid moving with the
velocity v.
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(c) The study of more complicated geometrics, which requires the description of the mechanical
behaviour of the full system (in particular of the cell-cell interactions).

(d) The possibility of the collapse of the central blood vessel, that we have envisaged during
the regime of the fully packed necrotic region. The question of vascular collapse has been
considered e.g. in [3] and may have important consequences.

This chapter may give an idea of the complexity of the mathematical problem, but it is certainly
far from describing the intricate set of phenomena which lead from the early stage to the invasive
phase of a tumour. Moreover, referring to a tumour is hardly appropriate, because there is
an enormous variety of tumours (even within a class affecting the same organ), each with its
own phenomenology. Therefore, models referring to a generic tumour are necessarily idealized,
although they may help to understand some basic features. Our feeling is that the mathematical
modelling of tumour is still far from its target and for this reason it is a particularly fascinating
and challenging research field.



Chapter 9

Modelling the Ziegler-Natta
polymerization process

9.1 The general features of the process

The names of Ziegler and Natta (who got the Nobel prize in 1954) are linked to the creation of
polypropylene. The most recent industrial process based on their ideas uses spherical aggregates
of catalytical particles which are circulated in a reactor where they are kept in contact with
propylene either in the gaseous or the liquid state, depending on pressure. The same process is
used for producing polyethylene from the corresponding monomer ethylene. In both cases the
action of the catalyst is to break a double bond between two carbon atoms in the monomer
molecule, creating a bond between two monomer molecules. Such a reaction is repeated indef-
initely, creating a polymer chain, which may contain thousands of the basic constituents. The
reaction is usually highly exothermal. The final product is a spherical pellet with a diameter
of few millimeters, which (differently from what happens with other polymerization processes)
needs no further processing.

Figure 9.1: Pellets of polypropylene.
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The agglomerate is a sphere of 70µm radius and contains a huge number (of the order of
1011) of catalytic particles which are really very small (diameter of the order of 5nm). The
first exposure of the aggregate to the monomer requires some care, because if the temperature
is not low enough the reaction is too violent and the aggregate can be damaged or deformed,
largely reducing the process efficiency. During the very first stage of the process (which is very
fast) around the catalytic particles reached by the monomer a polymer shell is created and a
fragmentation front proceeds quickly towards the center, leaving behind a porous structure which
is essential for the smooth development of the subsequent process. Fragmentation is followed
by the so called pre-polymerization, in which the reaction temperature is still controlled so to
reduce the reaction speed. Next, temperature is allowed to raise and full speed is achieved.
The whole process has a duration of about 2 hours. From the point of view of modelling there
is no difference between the last two stages, so we will discuss them under the common title
polymerization.

The physics is very different if we deal with the low pressure (gaseous monomer) or with the
high pressure (liquid monomer) reactor. In the former case the monomer transport mechanism
is diffusion (i.e. the driving force is concentration gradient), in the latter it can be described by
Darcy’s law (the driving force is pressure gradient).

Here we will deal only with low pressure reactors. The basic reference is [31], where more
information about the process and bibliography is contained. More recently a much more complex
model has been proposed for high pressure reactors [37], based on mixture theory [73].

Polymer science is an immense source of fascinating mathematical problem. Other very
important areas are crystallization (see the book [16] and the survey paper [32]) and the fluid
dynamics of polymer melts (see e.g. [66], [24], [61]).

9.2 The two-scale approach

During the normal regime of the process we describe the agglomerate as a collection of growing
microspheres. Growth is due to the monomer-polymer conversion which takes place at the
surface of the catalytic particles, located inside the microspheres. In order to reach the reaction
site the monomer diffuses through the pores of the agglomerate and then through the polymeric
body of the microsphere, which behaves as another porous material, with lower porosity. The
final product is very compact, thus we may assume that at each time the microspheres are
ideally packed in a spherically symmetric arrangement. In this arrangement adjacent layers of
microspheres have very similar history, so that they grow at the same rate and they have basically
the same radius. Therefore, even if the microspheres in the outer layers in the agglomerate are
larger than the ones in the inner layers, we may say that locally the agglomerate keeps the
structure of an ideal porous medium made of spheres of equal radius with the minimum possible
porosity (rombohedric configuration). In this condition porosity is independent of the radius of
the grains (its value is easily computable and is about 0.26).
Thus we conclude that, despite the dishomogeneous distribution of radii, the agglomerate porosity
is uniform and constant in time.

A very important property of the system is that during the entire process the size of the ag-
glomerate is always much larger than the size of the largest microspheres (the ratio of diameters
is of the order of 104). This circumstance suggests the two-scale approach (see fig. 9.2): the
agglomerate is treated as a continuum with a density of catalytic sites. In this way we have a
large (or macro) scale and a small (or micro) scale, on which we describe the evolution of the
agglomerate and of the microspheres, respectively.
Typical variables on the large scale are:
porosity ε (constant),
radial coordinate r,
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Figure 9.2: The two-scale approach.

microsphere density ρ(r, t),
temperature T (r, t),
monomer concentration in the pores M(r, t),
expansion velocity field v(r, t)
outer radius R(t).
On the small scale all quantities depend also on the macro-variable r (even if not explicitly
stated):
porosity εp,
radial coordinate y,
temperature Tp(y, t),
monomer pore concentration Mp(y, t),
radius of microspheres s(t),
expansion velocity field vp(y, t).

Phenomena occurring at the two scales are strictly coupled:

• the density ρ of the microspheres is determined by their local size:

4
3
πs3ρ = 1− ε,(9.1)

• the expansion of the agglomerate is a consequence of the expansion of the microspheres,

• the heat generated at the microscale (proportional to polymerization rate) is perceived as
a heat source on the macroscale,

• the monomer consumption at the catalytic sites is seen as a monomer sink on the macroscale.
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9.3 The governing equations

A) Macroscale

Due to the constancy of porosity the overall expansion rate equals the growth rate of the

solid component. The latter can be calculated as the ratio
d

dt
(
4
3
πs3)/

4
3
πs3 = 3

ds

dt
/s, where

d

dt
denotes the Lagrangian derivative. Hence

( ∂

∂r
+

2
r

)
v = 3

1
s

ds

dt
.(9.2)

It is easy to write down the heat and mass balance equations:

C
∂T

∂t
−

( ∂

∂r
+

2
r

)(
k
∂T

∂r
− CTv

)
= ρS,(9.3)

∂M

∂t
−

( ∂

∂r
+

2
r

)(
D

∂M

∂r
−Mv

)
= −1

ε
ρQ,(9.4)

where C is the macroscopic average of the product of specific heat by mass density, k is the
macroscopic average of thermal conductivity (both quantities can be taken constant, consistently
with ε=constant), D the monomer diffusivity in the pores, S is the heat release rate by the
microparticles with macro-coordinates (r, t), Q is the mass absorption rate by the same particles.

Initial and boundary conditions are

v(0, t) = 0(9.5)

(corresponding to the choice of the frame of reference),

Ṙ(t) = v(R(t), t), R(0) = R0,(9.6)

(the outer surface is a material surface),

M(r, 0) = 0, 0 < r < R0(9.7)

(this is a simplification: as a matter of fact M(r, 0) for pre-polymerization is the mass distribution
at the end of the fragmentation stage),

∂M

∂r
(0, t) = 0,(9.8)

M(R(t), t) = MR(t),(9.9)

MR(t) being the monomer concentration in the reactor,

T (r, 0) = T0, 0 < r < R0(9.10)

(T0 is the temperature of the reactor, although -more precisely- the initial temperature should
be identified with the temperature after fragmentation),

∂T

∂r
(0, t) = 0,(9.11)

−k
∂T

∂r
(R(t), t) = h[T (R(t), t)− T0],(9.12)

where h is the heat transfer coefficient.
The free terms S, Q in equations (9.3), (9.4) must be found by solving the set of equations at



120 CHAPTER 9. MODELLING THE ZIEGLER-NATTA POLYMERIZATION PROCESS

the microscale.

B) Microscale

The most difficult equation concerns the evolution of porosity εp. It must be present to our
mind that microspheres are not accessible to observation, particularly during the process. This
is one of the cases in which mathematics is the only tool we have to inspect the inner structure
of the system. Setting up a model for the evolution of the growing polymer shells requires a full
mechanical description, including the analysis of stresses and deformations. Even in spherical
symmetry this is enormously complicated, particularly because new polymer is constantly cre-
ated. This difficult task has been carried out very recently in [37] and it leads to an exceedingly
complicated nonlinear hyperbolic system with free boundaries.
In principle one could tackle that level of complexity, but -as a general rule- when a model gets
too complicated the question arises about whether or not this is a honest price to pay: does the
additional difficulty produce more precision? The answer is often linked with the availability
and reliability of the physical parameters involved. In our case such parameters are the ones
entering the constitutive relationships defining the mechanical behaviour of the system. They
can hardly be provided by experiments. Therefore we may conclude that the interest of the
nonlinear hyperbolic model is mostly theoretical (in the sense that it can give a closer idea of
the real behaviour of the polymer), but of not great practical importance.
This is a typical situation in which the modeller is allowed to take a shortcut. On the basis of
this motivation we take εp =constant, being conscious that we are introducing a weak point in
the model.

A first consequence of this assumption is that mass conservation implies

( ∂

∂y
+

2
y

)
vp = 0, y0 < y < s(t), t > 0,(9.13)

where y0 is the radius of the catalytic core, and y = s(t) is a free boundary.
We can also write down heat and mass conservation laws, but after suitable rescaling, taking into
account the really small size of the microspheres, we conclude that both heat and mass transport

are quasi-steady processes by far dominated by diffusion, i.e. the products y2 ∂Tp

∂y
and y2 ∂Mp

∂y
,

with Tp temperature and Mp monomer concentration in the pores of the polymer, are independent
of y, meaning that heat flux and monomer flux are constant through the microspheres.
If we neglect the fragmentation stage we can set s(0) = y0 and take the conditions

vp(s(t), t) = ṡ(t),(9.14)

vp(y0, t) = λ(Tp)Mp(y0, t),(9.15)

∂Mp

∂y
(y0, t) ' 0.(9.16)

Condition (9.14) says that the free boundary is a material surface. However in this peculiar
problem the necessary extra condition is prescribed not on the free, but on the fixed boundary
y = y0. Here we have (9.15) expressing polymerization rate: 4πy2

0(1 − εp)vp is the polymer
volume produced on the site per unit time, which is supposed to be proportional to Mp(y0, t)
with a temperature dependent coefficient. The last condition should express the monomer mass

balance, equating the incoming monomer flux εp

(
D

∂Mp

∂y
− vpMp

)
to the monomer consumption

rate per unit surface of the catalyst, again proportional to Mp. The fact that diffusion largely
dominates the monomer transport justifies (9.16).
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Now we may identify Mp throughout the microsphere with the value taken at its outer surface.
The latter value is set equal to a given fraction of the concentration M in the agglomerate:

Mp = KM(r, t),(9.17)

with the partition factor K ∈ (0, 1] (experimentalists suggest K = 0, 3).

9.4 The final scheme on the macroscopic scale

The analysis just performed allows to express the basic microscopic quantities as functionals of
the macroscopic quantities.
Although the temperature gradient across the microspheres is not small, the total temperature
drop over their radius is negligible. Hence in (9.15) we can take Tp = T . In addition the rate of
volume increase of a microsphere is 4πs2ṡ and it is also equal to 4πy2

0vp(y0, t). Hence, according
to (9.15), (9.17)

s2ṡ = y2
0λKM(r, t),(9.18)

which is nothing but the integral of (9.13), which says that the product y2vp is independent of
y. Eliminating ṡ between (9.18) and (9.2), we find that the latter takes the form

∂

∂r
(r2v) = 3y2

0λKr2M(r, t)
1
s3

.(9.19)

In order to express s as a functional of macroscopic quantities it is convenient to introduce the
Lagrangian coordinate

x = ξ(r, t)(9.20)

representing the radial position in the agglomerate at time t = 0 of the particle having the radial
coordinate r at time t. Conversely we have

r = η(x, t)(9.21)

where η = ξ−1. Since v =
∂η

∂t
,

∂

∂r
=

(∂η

∂x

)−1 ∂

∂x
, we may rewrite (9.2) as

∂2η

∂t∂x

(∂η

∂x

)−1
+

2
η

∂η

∂t
= 3

ṡ

s
.(9.22)

We can integrate this expression w.r.t. t, remembering that η(x, 0) = x:

η2 ∂η

∂x
= x2

( s

y0

)3
(9.23)

(we have used also
∂η

∂x
|t=0 = 1),where s depends on t and on x. One more integration yields

1
3
η3 =

1
y3
0

∫ x

0
z2s3(t; z)dz.(9.24)

On the other hand, from (9.18) we get

s3 − y3
0 = 3Ky2

0λ

∫ t

0
M(η(x, τ), τ)dτ,(9.25)

since we are integrating along the motion of the catalytic particle in the agglomerate. We have
adopted the simplification λ =constant because it turns out that the temperature variation across
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the agglomerate is about 5◦C and λ is not so sensitive to it.
Rewriting (9.19) in the form

∂

∂x
(η2v) = 3y2

0λKη2 ∂η

∂x
M

1
s3

(9.26)

and using again (9.23), we see that v can be expressed as

v(η(x, t), t) =
3λK

y0

∫ x

0
ξ2M(η(ξ, t), t)dξ.(9.27)

Now we can adopt the Lagrangian coordinate x in (9.3) and (9.4), defining ϑ(x, t) = T (η(x, t), t),
µ(x, t) = M(η(x, t), t), with the additional advantage of working in the fixed interval 0 < x < R0,

remembering again that
∂

∂r
=

(∂η

∂x

)−1 ∂

∂x
.

The velocity field, according to (9.27), is

v(x, t) =
3λK

y0

∫ x

0
ζ2µ(ζ, t)dζ.(9.28)

In the source term in (9.3)the function S is proportional to the polymerization rate, so that, in
the new variable

S(x, t) = Λµ(x, t),(9.29)

and through (9.1)

ρ(x, t) =
3
4π

(1− ε)
1

s3(t;x)
,(9.30)

where, from (9.25),

s3 − y3
0 = 3Ky2

0λ

∫ t

0
µ(x, τ)dτ.(9.31)

In the sink term of (9.4) the function Q is the absorption rate by a single microsphere, hence

Q(x, t) = νλµ(x, t),(9.32)

where ν is a conversion factor which is typical of the reaction.
At this point the whole problem is reduced to a system of two parabolic p.d.e.’s for the functions
ϑ, µ in which functionals of µ appear. The outer boundary can be recovered by integrating (9.6)
with the help of (9.28) with x = R0.
Existence and uniqueness have been proved by means of a fixed point argument.

9.5 Numerical simulations

Numerical simulations led to very interesting conclusions.
First of all they show that after some time the growth rate of the agglomerate is sharply reduced,
marking the optimal duration of the process in terms of the input parameters. Next the intimate
structure of the agglomerate can be described during the whole process. For instance it is possible
to obtain a 3-D plot of the monomer concentration M(r, t), showing, as expected, that peripheral
regions are richer in monomer than inner regions (Fig. 9.3).

Also the distributions of the radii of the microspheres s(t; r) can be calculated and it can be
seen that accelerating the process (i.e. increasing MR) it becomes more and more dishomogeneous
(Fig. 9.4).

From this kind of information it is possible to look for a desired balance between the efficiency
of the process and the quality of the product. A striking example of how mathematics can be a
decisive tool to take important decisions.
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Figure 9.3: Monomer concentration within the agglomerate.

Figure 9.4: Distribution of radii of the microspheres.
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