
S e r i e  

C o n f e r e n c i a s ,  s e m i n a r i o s  
y t r a b a j o s  d e  M a t e m á t i c a  

I S S N :  1 5 1 5 - 4 9 0 4  

An lntroduction to the 

Problem of Blow-Up 

for Semilinear . and 

Quasilinear Parabolic 

Eguations 

Arturo De Pablo 

UNIVERSIDADAUSTRAL 
F A C U L T A D  D E  C I E N C I A S  E M P R f S A R I A L E S  



MAT                           

Serie A: CONFERENCIAS, SEMINARIOS 
         Y TRABAJOS DE MATEMATICA                  ISSN: 1515-4904 

Propiedad de ACES 
DIRECTOR 

D. A. TARZIA Departamento de Matemática – CONICET, FCE-UA,  
Paraguay 1950, S2000FZF  ROSARIO, ARGENTINA. 

    Domingo.Tarzia@fce.austral.edu.ar  
 
COMITE EDITORIAL Y CIENTIFICO 

L. A. CAFFARELLI Department of Mathematics, Univ. of Texas at Austin, 
   RLM 8100 Austin, TEXAS 78712, USA.     

    caffarel@math.utexas.edu 
 R. DURAN  Departamento de Matemática, FCEyN, Univ. de Buenos Aires, 
    Ciudad Universitaria, Pab. 1, 1428 BUENOS AIRES, ARGENTINA. 
    rduran@dm.uba.ar 
 A. FASANO  Dipartimento di Matematica “U. Dini”, Univ. di Firenze, 

Viale Morgagni 67/A, 50134 FIRENZE, ITALIA. 
fasano@udini.math.unifi.it 

J.L. MENALDI Department of Mathematics, Wayne State University, 
   Detroit, MI 48202, USA.     

    jlm@math.wayne.edu 
 M. PRIMICERIO Dipartimento di Matematica “U. Dini”, Univ. di Firenze, 

Viale Morgagni 67/A, 50134 FIRENZE, ITALIA. 
primice@udini.math.unifi.it 

 M. C. TURNER FAMAF, Univ. Nac. de Córdoba, 
    Ciudad Universitaria, 5000 CORDOBA, ARGENTINA. 
    turner@mate.uncor.edu 

R. WEDER Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,  
Univ. Nac. Autónoma de México (UNAM) 
Apartado Postal 20-726, MEXICO, DF 010000. 

    weder@servidor.unam.mx 
 N. WOLANSKI Departamento de Matemática, FCEyN, Univ. de Buenos Aires, 
    Ciudad Universitaria, Pab. 1, 1428 BUENOS AIRES, ARGENTINA. 
    wolanski@dm.uba.ar 
 
SECRETARIA DE REDACCION 

G. GARGUICHEVICH Departamento de Matemática, FCE-UA,  
Paraguay 1950, S2000FZF  ROSARIO, ARGENTINA. 

     Graciela.Garguichevich@fce.austral.edu.ar 
 
MAT es una publicación del Departamento de Matemática de la Facultad de Ciencias Empresariales de la 
Universidad Austral (FCE-UA) cuyo objetivo es contribuir a la difusión de conocimientos y resultados 
matemáticos. Se compone de dos series: 
• Serie A: CONFERENCIAS, SEMINARIOS Y TRABAJOS DE MATEMATICA. 
• Serie B: CURSOS Y SEMINARIOS PARA EDUCACION MATEMATICA. 
La Serie A contiene trabajos originales de investigación y/o recapitulación que presenten una exposición 
interesante y actualizada de algunos aspectos de la Matemática, además de cursos, conferencias, seminarios y 
congresos realizados en el Depto. de Matemática. El Director, los miembros del Comité Editorial y Científico 
y/o los árbitros que ellos designen serán los encargados de dictaminar sobre los merecimientos de los artículos 
que se publiquen. La Serie B se compone de cursos especialmente diseñados para profesores de Matemática de 
cada uno de los niveles de educación: E.G.B., Polimodal, Terciaria y Universitaria. 
Las publicaciones podrán ser consultadas en: www.austral.edu.ar/MAT 



ISSN 1515-4904

MAT

SERIE A: CONFERENCIAS, SEMINARIOS Y

TRABAJOS DE MATEMATICA

No. 12

AN INTRODUCTION TO THE PROBLEM OF

BLOW-UP FOR SEMILINEAR AND

QUASILINEAR PARABOLIC EQUATIONS

ARTURO DE PABLO
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Abstract. In this article we present an overview of the mathematical problem of blow-up for semilinear
parabolic equations. We describe in a simple model the main questions posed in the theory: which
solutions blow up, where and how they do. We also give some introduction to the methods and tools
used in the proofs. Related problems, like quasilinear equations or blow-up produced by a boundary flux,
are also treated.
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ecuaciones parabólicas semilineales, describiendo las principales técnicas usadas generalmente en este tipo
de problemas. Con la ayuda del ejemplo clásico de la propagación del calor con reacción se estudian las
principales cuestiones de la teoŕıa, incluyendo qué soluciones explotan, dónde y cómo lo hacen. Finalmente
se incluyen algunos problemas relacionados, como el caso de ecuaciones quasilineales, sistemas o el de
explosión producida por reacciones frontera.
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Parabras claves: explosión, problemas parabólicos, reacción-difusión, problemas semilineales, prob-
lemas quasilineales.

AMS Subject Classification: 35K55, 35K57, 35K65, 35B33, 35B40

These Notes are the enlarged content of a course given by Prof. Arturo de Pablo during the VII School on
Energy and Mass Transfer, Free Boundary Problems, and Applications, at the Department of Mathematics
of FCE-UA, Rosario, from November 28th to December 3rd, 2005. They contain the basic ideas of the
mathematical problem of blow-up for semilinear parabolic equations.
The manuscript has received and accepted on March 2006



A. de Pablo, Blow-up for semilinear parabolic equations, MAT - Serie A, 12 (2006) 3

An Introduction to the Problem of Blow-up
for Semilinear and Quasilinear Parabolic Equations

Arturo De Pablo

1. Introduction

One of the subareas of Applied Mathematics that has undergone a major expansion
in the last century is the theoretical study of nonlinear partial differential equations of
evolution type with applications to Physics, among other sciences. And a special place
in the theory of such equations is occupied by the study of unbounded solutions or, more
specifically, solutions with a singularity in a finite time. At first, these singular solutions
were considered as pathological examples valid only to delimit the degree of optimality
required to the data in order to get global solvability. However, for some problems of
interest all solutions exhibit this behaviour. Even more, these solutions are related to
physical phenomena, like thermal runaway or cumulation of shock waves.

Our interest in this work is to examine the possibility that solutions of certain evolution
problems be regular for a time but develop suddenly a singularity. We are then in the
presence of a locally in time, but not globally, well posed problem. We concentrate here
on the case in which the singularity occurs because the solution ceases to be bounded in
some set, and then the equation under consideration loses, in principle, its sense. This is
what we mean by blow-up.

Blow-up phenomenon occurs in various types of nonlinear evolution equations. It occurs
for Schrödinger equations, hyperbolic equations as well as parabolic equations. In this
work we shall deal only with parabolic equations.

There is a rather extensive bibliography devoted to the subject of blow-up. We mention
the surveys [15, 37, 48, 64], that include all the main references to works concerning the
theory of blow-up of solutions to nonlinear parabolic equations, as well as to the main
applications.

As to the organization of the paper, after introducing the phenomenon of blow-up,
in Section 2 we describe the questions usually posed in its study, which include which
solutions blow up and where and how they do. Then we pass to analyze this phenom-
enon in the model semilinear problem (2.8), describing heat diffusion with a source. A
preliminary Section 3 is then devoted to recall the properties of the purely diffusive heat
equation (without reaction) and to introduce the techniques developed in the study of
blow-up. Main Sections 4 and 5 are devoted to our objective: the study of blow-up
for problem (2.8). In Sections 6 and 7 we consider some generalizations by introduc-
ing other reactions or even other diffusions. In Section 8 we consider the problem of
blow-up produced by a nonlinear boundary condition. Finally, in Section 9 we mention
the results obtained or the conjectures made for the problem associated to a system of
reaction-diffusion equations.

We think that the following pages could serve as starting point for a researcher to get
introduced in the world of blow-up for semilinear and queasilinear problems, and to get
an overview of the wide spectrum of problems of interest in this subject.

These notes are an extended version of the course given at Universidad Austral in
Rosario, Argentina, in December 2005, in occasion of the Energy and Mass Transfer
meeting TEM2005. We deeply thank Domingo Tarzia for all his help and encouragement.
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2. Blow-up

2.1. Elementary example. Blow-up in ODE. Maybe the simplest example in which
the phenomenon of blow-up appears is the ODE problem




du

dt
= u2 for t > 0,

u(0) = a > 0.
(2.1)

The unique solution is defined only in a finite interval [0, T ), where T = 1/a. It is even
explicit

u(t) =
1

T − t
,

and satisfies lim
t↗T

u(t) = ∞. Generally speaking we consider the t-variable as time, and

we say that the solution blows up in finite time t = T . Motivated by this example, the
concept of blow-up can be described as the phenomenon for which the solution is not
globally defined because it tends to infinity in a finite time.

A first extension consists in considering ODE of the form
du

dt
= up with p > 1 or, more

generally, in the form 



du

dt
= f(u) for t > 0,

u(0) = a > 0,
(2.2)

with f(u) > 0 for u ≥ a. The blow-up condition is

F (z) =

z∫

a

ds

f(s)
< C for every z > a. (2.3)

Clearly, the blow-up time is T = F (∞). This is the first non-trivial result in the theory
of blow-up.

2.2. Blow-up in PDE. The study of blow-up is much more difficult, and interesting
from the point of view of the mathematics involved, when the problem considered contains
several variables, i.e., partial derivatives appear. The typical situation is a PDE in which
the solution depends on some spatial variable x ∈ RN , N ≥ 1, as well as in time,
u = u(x, t).

A special class of such evolution equations are the so-called reaction-diffusion equations,
which appear in the XXth century to model processes mainly in Physics and Biology. We
stress applications to Mechanics, Technology, Biophysics and Ecology. Thus we have
equations in divergence form

∂u

∂t
= divA(u,∇u, x, t) + B(u,∇u, x, t), (2.4)

the prototype being the semilinear heat equation

∂u

∂t
= ∆u + f(u). (2.5)

See for instance [9, 65]. To fix ideas we think of u ≥ 0 as being a temperature. The
term divA in (2.4) then represents diffusion and B can model reaction or absorption as
well as convection. We study the above equations in some spatial domain Ω ⊆ RN . We
complement our equation with an initial datum

u(x, 0) = u0(x), (2.6)
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and also with some boundary condition, usually u = 0 at ∂Ω, if Ω is not all of RN .
As we have said, the first step in the study must be the establishing of a local theory:

the solution exists and is unique for a small time interval 0 < t < t0, see Theorem 3.1.
If we also dispose of a procedure that guarantees that the solution exists as long as it is
regular, we then obtain a maximal time of existence 0 < t < T , T = Tmax being finite or
not. The easiest way in which T can be finite is when u is bounded for every 0 < t < T
but tends to infinity at some point(s),

u(·, t) ∈ L∞(Ω) ∀ 0 ≤ t < T, lim sup
t↗T

‖u(·, t)‖∞ = ∞. (2.7)

Then we say that u blows up at T , which is the blow-up time. Observe that in other
cases what blows up is some derivative, while u remains bounded. This is for instance
the case with du/dt in (2.2) if f(u) = 1/(1− u) when u reaches the value u = 1. This is
another type of blow-up known as quenching, see e.g. [48]. We concentrate in this work
on blow-up produced by the unbounded growth of u.

The mathematical theory of blow-up began in the sixties (of the last century), with the
works of Kaplan [44], Fujita [27, 28], Friedman [25] and others. The two main models
considered in those works were the semilinear heat equation (2.5) with f(u) = up and
f(u) = eu, and these are also the problems in which we will focus our attention. From
those days on, an increasing interest on blow-up problems has attracted a great number of
researchers. The best references to begin with are the books [9] and [64]. Modern surveys
are [15, 37, 50].

2.3. Main questions. In the study of blow-up, for instance for equation (2.5), we en-
counter some basic questions that must be considered. Of course the first one must be:
does it exist blow-up? If the answer is yes the following questions are in force: when, where
and how is it produced? In the wide literature on blow-up since the previously mentioned
articles, some other questions have also revealed of interest, including what happens after
blow-up and if it can be computed numerically. We present here the following list of items
to be treated in the study of blow-up, a list which is now more or less standard.

(1) Existence of blow-up
(a) is there blow-up for some initial datum?
(b) which data produce blow-up?

(2) Where does blow-up occur?
(3) How does blow-up occur?

(a) blow-up rate
(b) profile near blow-up time

(4) When does blow-up occur?
(5) Can solutions be continued after blow-up?
(6) In case of systems

(a) do all the components blow up?
(b) do they blow up at the same points?

In this work we concentrate on showing the answers to the first three questions, as well
as to present the techniques used over the years by the main authors. In particular, we
study existence of blow-up to the semilinear equation (2.5) and related, and also describe
the way blow-up occurs by studying where and how it appears. As to the other questions
of the above list, we only make here some comments and give some references.
(4) The time at which the solutions blow-up can usually be estimated in terms of the
initial data. In some cases a continuous dependence on the data can be proved [11],
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though examples of lack of continuity also exist, [36]. On the other hand, the striking
phenomenon of instantaneous blow-up occur for the simple model of exponential reaction,
cf. [58, 70].
(5) An interesting question, whose investigation started with the work [6], is if there
exists some reasonable way of continuing the solution beyond blow-up. This is done by
approximation with problems that do not exhibit blow-up. Thus we could have complete
or incomplete blow-up, depending on wether this limit is identically infinite or not for
t > T . The best references for the questions of continuation after blow-up are the surveys
[21, 37].
(6) When dealing with systems, besides the above ones a natural additional question
appears: when one component blows up, must all the other components blow up at the
same time or can they stay bounded? This gives rise to simultaneous or non-simultaneous
blow-up. In case of simultaneous blow-up, must they blow up at the same points? The
study of non-simultaneity in blow-up systems seems to be started with [62].

Another direction in which the investigations have a great increase in the last years is
in the numerical analysis of blow-up. This means to develop numerical methods that not
only be able to detect the blow-up phenomenon, but also describe in an accurate way the
blow-up properties mentioned. See for instance [5, 41].

In what follows we focus on questions 1–3 of the above list for the semilinear problem
of heat propagation with source




∂u

∂t
= ∆u + f(u) for x ∈ Ω, t > 0,

u(x, 0) = u0(x) for x ∈ Ω.
(2.8)

Here Ω = RN or a bounded regular domain. In this last case we add the condition u = 0
on ∂Ω, which is interpreted as cooling. Other boundary conditions, like zero flux heat at
∂Ω, could also be imposed, but we do not consider them here. In general the results are
different depending on wether Ω is bounded or not. The initial function is nonnegative
and as regular as we need. Again, the results for changing sign solutions are completely
different.

We assume f(s) ≥ 0, thus we are in presence of reaction. We concentrate on the
power-like reaction, f(s) = sp. Some comments are also made on the exponential case
f(s) = es.

3. Preliminaries

3.1. Basic properties of the Heat Equation. Before proceeding to the study of blow-
up for the semilinear heat equation, it is convenient to review some properties of the
plain diffusive heat equation, in its different settings. Thus we first consider the Cauchy
problem 




∂u

∂t
= ∆u for x ∈ RN , t > 0,

u(x, 0) = u0(x) for x ∈ RN .
(3.1)

The fundamental solution, i.e., the solution to (3.1) with a Dirac mass δ0 at the origin as
initial datum, is the Gauss kernel

G(x, t) = (4πt)−N/2e−|x|
2/4t. (3.2)

We also write Gt(x) = G(x, t). The properties of this function that will be of great use
for us are:
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• Gt(x) > 0 for every x ∈ RN , t > 0;
• ∫

RN Gt = 1 for every t > 0;
• ∫

RN Gt ∗ ϕ =
∫
RN ϕ for every t ≥ 0, ϕ ∈ L1(RN), where the * sign means convolution

f ∗ g(x) =

∫

RN

f(y) g(x− y) dy;

• lim
t→0

Gt ∗ ϕ = ϕ in L1(RN), and also uniformly in RN if ϕ is continuous and bounded.

• Gt ∗Gs = Gt+s for every t, s ≥ 0;
• Gm

t = m−N/2(4πt)−N(m−1)/2Gt/m for every m > 0.

The solution to our problem is u(·, t) = Gt ∗ u0, i.e.

u(x, t) = (4πt)−N/2

∫

RN

e−|x−y|2/4tu0(y) dy. (3.3)

From this expression and the above properties of Gt we deduce for u:
- Maximum principle. Infinite speed of propagation. If u0 ≥ 0 then u ≥ 0. In fact

u(·, t) > 0 for every t > 0. Even more, u(x, t) ≥ A(t)Gt/2(x).
- Conservation of mass. If u0 ∈ L1(RN), then

∫
RN u0(x) dx =

∫
RN u(x, t) dx for every

t > 0.
- Regularizing effect. Even if u0 is only in L1(RN) or L∞(RN), we have u(·, t) ∈ C∞(RN)

for every t > 0.
- Decay rate. ‖u(·, t)‖∞ ≤ ct−N/2‖u0‖1.

All of these properties admit clear physical interpretations, usual in a diffusion process.

Consider now the non-homogeneous problem



∂u

∂t
= ∆u + g, for x ∈ RN , t > 0,

u(x, 0) = u0(x), for x ∈ RN .

According to Duhamel’s formula, the solution to this problem is

u(x, t) = Gt ∗ u0(x) +

t∫

0

Gt−s ∗ g(x, s) ds.

In particular, the solution to problem (2.8) can be represented implicitly by the formula

u(x, t) = Gt ∗ u0(x) +

t∫

0

Gt−s ∗ f(u(x, s)) ds. (3.4)

Finally, some comments on the problem in a bounded domain are in order. Thus
consider the problem





∂u

∂t
= ∆u for x ∈ Ω, t > 0,

u = 0 for x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) for x ∈ Ω.

(3.5)

Assume u0 ∈ L2(Ω). Denoting by {λj}j≥1 the sequence of eigenvalues of −∆ in Ω, and
{ϕj}j≥1 the corresponding eigenfunctions, the solution to problem (3.5) can be written in
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the form

u(x, t) =
∞∑

j=1

ûjϕj(x)e−λjt,

where ûj are the Fourier coefficients of u0 in the basis {ϕj}. From this we see that the
decay rate is different from the case of the whole space:

‖u(·, t)‖∞ ≤ e−λ1t. (3.6)

3.2. Main tools in the study of blow-up. We devote this section to enumerate the
main tools and techniques used in the study of blow-up for problem (2.8). We begin by
setting up the local theory.

Theorem 3.1. i) Assume f is Lipschitz continuous on R+, ∂Ω ∈ C2+α, u0 ∈
Cα(Ω). Then there exists a unique classical solution to problem (2.8) defined in a
maximal time interval [0, Tmax).

ii) If Tmax < ∞ then lim
t↗Tmax

‖u(·, t)‖∞ = ∞.

Once the local existence of solution is established, our next step is to characterize when
Tmax is finite or not. This is usually done by means of comparison or multiplication by
specific functions. Thus we use the following

(1) Comparison principle




∂u

∂t
≤ ∆u + f(u) for x ∈ Ω, 0 < t < T,

∂v

∂t
≥ ∆v + f(v) for x ∈ Ω, 0 < t < T,

u ≤ v for x ∈ ∂Ω, 0 < t < T,

u ≤ v for x ∈ Ω, t = 0,





⇒ u ≤ v for x ∈ Ω, 0 < t < T.

Therefore, blow-up can be established by comparing with some explicit blow-up
subsolution. On the other hand, global supersolutions will lead to non blow-up.

(2) Stationary solutions
Of course, a main ingredient is the existence or not of stationary solutions, used

in comparison, {
∆w + f(w) = 0 in Ω,
w = 0 on ∂Ω.

(3.7)

It depends on the domain and on dimension, as well as on f . For instance, in the
power case f(s) = sp, there always exist stationary solutions if Ω is bounded, but

when Ω = RN there exist such solutions if and only if p ≥ N + 2

N − 2
, N ≥ 3, see [38].

When f(s) = µes, there exist stationary solutions if µ is small, while there do not
exist stationary solutions if µ is large. This is an easy exercise.

(3) Test functions
Functions satisfying ∆ϕ+ cϕ ≥ 0 for some c > 0 are revealed to be of great use.

In particular, when Ω is bounded we consider the first eigenfunction of −∆ in Ω,
a function ϕ1 > 0 such that

{
∆ϕ1 + λ1ϕ1 = 0 in Ω,
ϕ1 = 0 on ∂Ω,

(3.8)
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with λ1 = λ1(Ω) > 0,
∫
Ω

ϕ1 = 1. When Ω = RN we use a gaussian, see (3.2),

Gk(x) = (4πk)−N/2e−|x|
2/4k, (3.9)

which satisfies
∫
RN Gk = 1, and also

∆Gk +
N

2k
Gk ≥ 0. (3.10)

(4) Strong comparison
When dealing with blow-up solutions, an important property is strong compar-

ison:
let u and v be two solutions that blow up at times Tu and Tv respectively. Then

u ≥ v, u 6≡ v ⇒ Tu ≤ Tv − ε.

In other words, if Tu = Tv then u and v must intersect.
(5) Intersection comparison

Strong comparison can be complemented with comparison of intersections, a
technique that, though only valid in one dimension, has been widely applied even in
quasilinear problems. It is based on counting the number of intersections between
two solutions, i.e, the number of sign changes of the difference. The Sturmian
argument says that this number cannot increase in time in the interior of the
domain if it does not increase on the border. By the previous strong comparison
principle, for two solutions having the same blow-up time this number cannot be
zero. Thus, if they intersect once, this intersection must remain in time. See e.g.
[64] or [30].

4. Semilinear problem. Critical exponents

4.1. Existence of blow-up solutions. We are now in a position to attack our reaction-
diffusion problem (2.8). A necessary condition to have blow-up is easy.

Theorem 4.1. We have
∞∫

ds

f(s)
= ∞ ⇒ u is bounded for each t < ∞.

Proof: Compare with the supersolution U(t) given implicitly by

U(t)∫

a

ds

f(s)
= t, a = ‖u0‖∞.

2

For instance if f(u) = up we get no blow-up when p ≤ 1.
The first positive result on blow-up is due to Kaplan in 1963 for problem (2.8), see [44].

Kaplan’s argument, adapted later to a wide variety of equations, consists in multiplying
the equation by certain convenient function and integrate over the domain, getting in this
way an ODE to which condition (2.3), or similar, can be applied.

Theorem 4.2. Assume f convex and satisfying
∫∞ ds

f(s)
< ∞. Then if u0 is large enough

the solution to problem (2.8) blows up in finite time.
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The meaning of “u0 large” will become clear after the proof. On the other hand, and
depending on the reaction function, this condition cannot be avoided, as we will see.
Proof: Assume Ω bounded. Multiplying the equation by the first eigenfunction ϕ1 of
(3.8), and defining the function J(t) =

∫
Ω

uϕ1, we get that this function satisfies

J ′ =

∫

Ω

∆uϕ1 +

∫

Ω

f(u) ϕ1 ≥ −λ1

∫

Ω

uϕ1 + f
( ∫

Ω

u ϕ1

)

= −λ1J + f(J) ≡ H(J).

We use integration by parts and Jensen’s inequality. If now J(0) =
∫
Ω

u0 ϕ1 is large, bigger
than the biggest root J0 of H, then J ′ ≥ c f(J) since f is superlinear. This implies that
J blows up, and therefore u. Observe that 0 ≤ J(t) ≤ ‖u(·, t)‖∞. If Ω is not bounded we
take a bounded ball inside Ω to which apply the above argument. 2

In the case f(u) = up, p > 1, we need
∫
Ω

u0 ϕ1 > λ
1/(p−1)
1 . Thus we have that there

exist blow-up solutions (when u0 is large) if and only if p > 1. We call p0 = 1 the global
existence exponent.

When f(u) = µeu, we have that H(J) = −λ1J + µeJ , which gives H(J) > 0 for every
J ≥ 0 whenever µ > λ1e. Thus in this case there exists blow-up if u0 is large, as before,
but also for every u0 if Ω or µ are large. Clearly, if Ω = RN all solutions blow up.

J

H(J)

J0

µ

µ < λ1e

J

H(J)

µ

µ > λ1e

Figure 1. Exponential case. Blow-up for large initial data if µ (or Ω) is
small or blow-up for every initial data if µ (or Ω) is large

This means that blow-up is more likely to occur in large domains, where the cooling
effect of the boundary condition is smaller. But also the geometry is crucial. For instance,
in the exponential case it has been proved that for the initial value u0 ≡ 0, among all
domains of given measure the blow-up time is smallest for the ball, [4].

In the opposite direction, if the initial datum is small, in the power case or in the
exponential case provided µ is small, then the solution does not blow up. This follows
from the existence of stationary solutions. For general reactions we have

Proposition 4.1. If Ω is bounded and f(s) ≤ λ1s for s small, then there exist initial
values for which the solution to problem (2.8) does not blow up.

Proof: If ε > 0 is small, the function ψ = εϕ1 is a stationary supersolution, since

∆ψ + f(ψ) = −λ1ψ + f(ψ) ≤ 0 =
∂ψ

∂t
. 2

In summary, if f(u) = up, p > 1, and Ω is bounded, then the solution blows up provided
the initial datum u0 is large; it is globally defined if u0 is small. This is the combined
effect of diffusion and the cooling of the boundary. What happens if Ω = RN ? We know
that stationary solutions exist only for large p and dimensions N ≥ 3. There always exist
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global solutions if the initial value is small? We have just seen that this is not the case
with the exponential reaction.

We thus pass to study the Cauchy problem



∂u

∂t
= ∆u + up for x ∈ RN , t > 0,

u(x, 0) = u0(x) for x ∈ RN ,
(4.1)

and focus on the existence or not of global solutions depending on p, for p > 1.

4.2. Fujita exponent. The next cornerstone in the blow-up theory was the fundamental
work of Fujita in 1966, see [27].

Theorem 4.3. If 1 < p ≤ 1 + 2/N every solution to problem (4.1) blows up.

Proof: If in the Kaplan’s argument we use a gaussian Gk as test function, we have, for
the function J =

∫
RN uGk, the inequality

J ′ ≥ −N

2k
J + Jp.

Thus the solution blows up provided
∫
RN u0 Gk ≥ (N/2k)1/(p−1). This means

∫

RN

u0 e−|x|
2/4k ≥ ckN/2−1/(p−1).

This holds for every u0, with k large, if we assume 1/(p − 1) − N/2 > 0. This implies
blow-up for every solution in the subcritical case p < 1 + 2/N .

In the critical case p = 1 + 2/N , the above gives blow-up whenever
∫
RN u0 e−|x|

2/4k is
large. Since this integral approaches

∫
RN u0 when k is large, it suffices to have

∫
RN u0

large. On the other hand, since we can take u(·, t) for any t > 0 as new initial datum, we
are thus reduced to prove that

∫
RN u(x, t) dx is large for t large.

Suppose u0 is above some gaussian, u0 ≥ AGα, A, α > 0. This holds if we let pass
some time, as we have seen in the previous section. Then, from (3.4),

u(x, t) ≥ Gt ∗ u0(x) ≥ AGt ∗Gα(x) = AGt+α(x).

Now, again from (3.4) and the properties of the Gauss kernel,

∫

RN

u(x, t) dx ≥
t∫

0

∫

RN

Gt−s ∗ (AGs+α)p(x) dx ds

= Ap

t∫

0

∫

RN

Gp
s+α(x) dx ds

= Ap

t∫

0

∫

RN

(4π(s + α))−N(p−1)/2p−N/2G(s+α)/p(x) dx ds

= c

t∫

0

(s + α)−1 ds.

We end by observing that this integral diverges for t →∞. 2

The number pc = 1 + 2/N is called the Fujita exponent. We remark that the critical
case p = pc in the above theorem was left open by Fujita. It was proved in the next decade
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by Hayakawa [42] (N = 1, 2) and later by Kobayashi, Sirao and Tanaka [45] (N ≥ 1).
The above easy proof is due to Weissler [74].

Fujita exponent can be understood in different ways. In [34] the authors propose
a simple method of obtaining this exponent and then apply this method to different
reaction-diffusion problems, see also [15]. If we equal the decay rate given by diffusion
to the blow-up rate driven by reaction we get pc. If p > 1 the solution blows up if it
accumulates enough mass (Kaplans’ argument), and this is the case of all solutions if
1 < p ≤ pc. On the contrary, if p > pc diffusion does not allow small initial values to
grow, and in fact the solutions tend to zero.

The solutions to the purely diffusive heat problem (3.1) decay as t−ad , with ad = N/2;
the blow-up rate is obtained just by solving the ODE u′ = up, thus getting ar = 1/(p−1).
We obtain Fujita exponent by imposing ad = ar. See also next section where Fujita
exponent is obtained for a quasilinear diffusion equation.

The fact that when p > pc there exist small global solutions is easily proved by com-
parison with a supersolution. For instance we take

w(x, t) = ε(t + 1)ηGt+1(x),

with η > 0 small satisfying (p− 1)η < (p− 1)N/2− 1. Then solutions with initial datum
satisfying u0 ≤ εG1 are globally defined. Observe that the condition p > pc is crucial in
the argument. We have thus proved

Theorem 4.4. If p > 1 + 2/N then the solution to problem (4.1) can be global or can
blow up depending on the initial datum.

Another way of proving Fujita’s result is the energy method introduced by Levine in
[48, 52]. The advantage of this method lies in the fact that it also gives a quantitative
criterion of blow-up in terms of the initial data when not all the solutions blow up, i.e.,
in the case of Theorem 4.4.

Define the following quantity, sometimes called energy

Eu(t) =
1

2

∫

RN

|∇u(x, t)|2 dx− 1

p + 1

∫

RN

up+1(x, t) dx. (4.2)

It is easy to check that Eu(t) es nonincreasing when u is a solution to problem (4.1). The
characterization of blow-up in terms of the energy is given below. The proof of this result
is very technical, see [48]. We show instead its application in proving Fujita’s result.

Theorem 4.5. If there exists t0 ≥ 0 such that Eu(t0) < 0 then u blows up in a finite time
T > 0. Moreover lim

t↗T
Eu(t) = −∞.

Another proof of Theorem 4.3 in the subcritical case: Observe that the
gaussians Gk have negative energy if k > 0 is large enough

EGk
= c1

∞∫

0

k−(N+2)z2e−z2/2k dz − c2

∞∫

0

k−N(p+1)/2e−(p+1)z2/4k dz

= c1k
−(N+1/2) − c2k

−(N(p+1)−1)/2,

provided N + 1/2 > (N(p + 1)− 1)/2, i.e., p < 1 + 2/N .
Therefore, applying Theorem 4.5, the solution with initial value Gk must blow up, and

also any initial datum above Gk must produce blow-up. But k is large, so we can always
have u0 ≥ Gk, and then every solution blows up in this range. 2
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If p = 1 + 2/N we deduce the result by looking more carefully at the coefficients. In
bounded domains the condition of negative energy is also sufficient.

5. Semilinear problem. Asymptotic behaviour

5.1. Blow-up rates. In this section we begin the description of the blow-up solutions
close to the blow-up time by studying the speed at which these solutions blow up. We
study here the blow-up rates, the blow-up sets and the blow-up profiles, for a solution u
to problem (2.8) that blows up at a certain time T > 0. Again we concentrate on the
case f(u) = up, and end with some comments on the case f(u) = eu.

At first sight, since blow-up is produced by the reaction term, diffusion must be small
near blow-up points and blow-up time. This would mean that at those points the solution
must be close to satisfy the ODE w′ = f(w). The solution to this equation (assuming w
blows up at time T ) is given by the formula

F (w(t)) ≡
∞∫

w(t)

ds

f(s)
= T − t. (5.1)

Thus the expected result for our blow-up solution u would be

‖u(·, t)‖∞ ∼ G(T − t) for t ∼ T, (5.2)

where G is the inverse function of F . An estimate of this kind is called blow-up rate.
When f(u) = up, p > 1, we have G(s) = cs−1/(p−1), i.e.,

‖u(·, t)‖∞ ∼ (T − t)−1/(p−1) for t ∼ T. (5.3)

When the above holds we say that the rate is the natural or self-similar one, or that
blow-up is of type I. We show here that the rate is in general the natural one, with some
restrictions on the exponents, [26, 40]. Without these restrictions blow-up can be of type
II (also called superfast blow-up), i.e.

lim sup
t→T

(T − t)1/(p−1)‖u(·, t)‖∞ = ∞. (5.4)

We begin by observing that a lower bound of the rate is easy to obtain. For simplicity
assume u0 symmetric with maximum at the origin. Then M(t) = ‖u(·, t)‖∞ = u(0, t).
Clearly ∆u(0, t) ≤ 0. Then

M ′(t) =
∂u

∂t
(0, t) ≤ f(u(0, t)) = f(M(t)).

Integration of this inequality gives F (M(t)) ≥ T − t. Another proof, when Ω = RN , uses
strong comparison of the solution u with the planar solution w given in (5.1). Having
both the same blow-up time they must intersect, and thus it holds M(t) > w(t).

The first result in the direction of proving the upper estimate in (5.3) was established
by Weissler in [74] under the assumption p < pS, where pS = (N + 2)/(N − 2) if N ≥ 3,
pS = ∞ if N = 1, 2 is the Sobolev critical exponent. He also needed to impose Ω a
ball, u radially decreasing in space and nonincreasing in time. Without the restriction of
radiallity the estimate was obtained by Friedman and McLeod in [26]. Giga and Kohn

eliminated the hypothesis
∂u

∂t
≥ 0, see [40]. They also considered the case Ω = RN .

In the critical case p = pS the natural rate is proved in [23] for radially symmetric and
nonincreasing solutions. See also [54].
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The proof in [40] of the upper bound of the rate is based on a very powerful scaling
technique, using similarity variables. In fact, these authors introduced this technique in
order to establish the asymptotic behaviour, as we will see in the next section.

Theorem 5.1. Let Ω be a bounded convex domain in RN , or else Ω = RN . Then

‖u(·, t)‖∞ ≤ c(T − t)−1/(p−1) (5.5)

provided 1 < p < (N + 2)/(N − 2) or N ≤ 2.

Consider the new function h defined by

h(ξ, τ) = (T − t)αu(x, t), ξ = x(T − t)−1/2, τ = − log(T − t), (5.6)

where α = 1/(p − 1). This is called a self-similar change of variables. The upper bound
(5.5) is equivalent to h ≤ c. This is why α is called the self-similar rate. Moreover, h is
defined for every τ , since t = T corresponds to τ = ∞. The function h solves the equation

∂h

∂τ
+ αh +

1

2
ξ · ∇h = ∆h + hp. (5.7)

To understand why h must be bounded, suppose that it were to become large for some
τ . Then the reaction term hp would begin to dominate, making h blow up in finite time.
But this is a contradiction. It follows (heuristically) that h is never too large, see for
instance [56]. This argument fails if p ≥ pS, since there exist unbounded global solutions
to equation (5.7).

An entirely different argument used also in [40] is the following: suppose that u were to
blow up faster (for instance at the origin) than the self-similar rate, say u(0, t) ∼ (T−t)−γ,
for some γ > α. Then the right rescaled function to study would be not h but

g(η, σ) = (T − t)γu(x, t), η = x(T − t)−γ/2α, σ =
1

γ/α− 1
(T − t)1−γ/α.

It satisfies the equation

∂g

∂σ
+

1

(γ/α− 1)σ

(
γg +

γ

2α
η · ∇g

)
= ∆g + gp.

It also satisfies g(0, σ) ∼ 1. Letting σ →∞, we expect g to be asymptotically stationary.
Since the second term in the left-hand side also tends to zero, we get in the limit a
nonnegative global solution g̃ of

∆g̃ + g̃p = 0 in RN ,

with g̃(0) > 0. This is a contradiction since no such solution exists in the range of
parameters considered, as we have said in the previous section, see [38]. The detailed
proof of this argument uses the rescaling

g(x, t) =
1

µ
u(µ−α/2x, µ−αt + s), x ∈ Ω, t ∈ (−sµ2, 0),

where 0 < s < T is fixed and µ = u(0, s) = ‖u(·, s)‖∞. With the assumption that (5.5)
does not hold it is proved the convergence as µ →∞ to a stationary solution. The above
mentioned contradiction finishes the proof.

The first counterexample of the natural rate for supercritical exponents p ≥ pS, i.e.,
the first example of superfast blow-up, is due to Herrero and Velázquez [43] (in fact for
dimensions N ≥ 11 and very large p). Later an example of superfast blow-up is obtained
for p = pS, but with changing sign solutions, [23]. We remark that the study of superfast
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blow-up, or blow-up of type II, is nowadays a very active branch in blow-up theory. See
the recent papers [54, 55].

In the exponential case f(u) = eu, it is proved in [26] the estimate

C1 − log(T − t) ≤ ‖u(·, t)‖∞ ≤ C2 − log(T − t) for t ∼ T, (5.8)

for Ω bounded, and under the assumption
∂u

∂t
≥ 0, where −∞ < C1 < C2 < ∞.

5.2. Asymptotic profile. We now study the asymptotic behaviour by describing the
final shape of the solution, the so-called asymptotic profile. This is done by introducing the
similarity variables (5.6) of Giga and Kohn [40]. Our purpose is to prove the convergence
of the rescaled solution h to a stationary state. We thus consider equation (5.7), that we
write down here again for convenience.

∂h

∂τ
+ αh +

1

2
ξ · ∇h = ∆h + hp. (5.9)

Recall that α = 1/(p− 1). The first result is proved in [39].

Theorem 5.2. If p ≤ pS the unique nontrivial nonnegative bounded stationary solution
to equation (5.9) is the constant H = αα.

Observe that this constant comes from the equality αh = hp, h > 0. In the case
p > pS a family of nonconstant stationary solution exist. Dropping the condition of being
bounded, a singular stationary solution exists if p > N/(N − 2). We remark by passing
that the existence of these special solutions is the starting point in the study of superfast
blow-up.

Thus, proving a stabilization result to H means, in the original variables

Theorem 5.3. Under the above hypotheses it holds

lim
t→T

(T − t)αu(x, t) = lim
τ→∞

h(xeτ/2, τ) = H, (5.10)

uniformly in sets of the form {|x| ≤ c(T − t)1/2}.
The ingredients required to obtain this result are:
• compactness, so we can take subsequential limit;

• a Lyapunov function to show that
∂h

∂τ
(ξ, τ +τj) converges to zero in some weak sense;

• since the nontrivial positive stationary solution is unique then the convergence is
true for every subsequence τj →∞.
Proof of Theorem 5.3: Consider the Lyapunov functional (energy in rescaled vari-
ables)

Lh(τ) =

∫

RN

(1

2
|∇h|2 − 1

p + 1
hp+1 +

α

2
h2

)
ρ,

with the weight ρ(ξ) = e−|ξ|
2/4. From the equation we see that this energy is nonincreasing

along the orbits,
d

dτ
Lh(τ) = −

∫

RN

(∂h

∂τ

)2

ρ ≤ 0.

This implies, using the rates,

0 < c1 ≤ Lh(τ) ≤ c2 .
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Also, integrating,
τ2∫

τ1

∫

RN

(∂h

∂τ

)2

ρ = Lh(τ1)− Lh(τ2) ≤ c.

Define, for a sequence τj →∞, the function hj(ξ, τ) = h(ξ, τ + τj). Let h̃ = lim
j→∞

hj.

The above estimates imply

1∫

0

∫

RN

(∂hj

∂τ

)2

ρ ≤
∞∫

τj

∫

RN

(∂h

∂τ

)2

ρ → 0,

and so h̃ does not depend on τ . Passing to the limit in the equation, we obtain that h̃ is

a stationary solution. It could be h̃ = 0, but the blow-up rates imply h̃ ≥ c > 0. Thus

h̃ = H. 2

If the set of stationary solutions were not unique, nor a discrete set, different subse-
quential limits might converge to different stationary solutions. The convergence result
must then be written in terms of ω-limits. This occurs in quasilinear problems.

A more accurate description of the asymptotic behaviour is performed by Velázquez
in [73], by obtaining the second term in the approximation. He uses linearization of
equation (5.9) around H, and thus Hermite polynomials appear in this description. See
the mentioned paper for the precise formulas.

We again comment by passing the analogous result to Theorem 5.3 corresponding to
the exponential case. We have here

lim
t→T

(T − t)eu(x,t) = 1 (5.11)

uniformly in sets {|x| ≤ c(T − t)1/2}, see for instance [53].

5.3. Blow-up sets. The description of the set of points where the solution blows up, the
blow-up set

B(u) = {x ∈ Ω : ∃xn → x, tn → T− with u(xn, tn) →∞}, (5.12)

is in general a delicate matter, even more in dimensions N > 1, see [72]. The first results,
see [26], are the following. We fix the power reaction f(u) = up, p > 1.

Theorem 5.4. i) If Ω is convex and
∂u

∂t
≥ 0 then B(u) is a compact subset of Ω.

ii) If Ω is a ball and u0 is radially decreasing, then B(u) reduces to the origin.
ii) If N = 1 and u′0 changes sign only once, then B(u) reduces to a point.

The first statement asserts that blow-up takes place away from the boundary. This
seems clear since we fix value zero at ∂Ω. The proof of the easiest radial case is based on
the estimate

u(x, t) ≤ c|x|−2/(p−1), (5.13)

which gives u(x, t) bounded for every 0 < t < T at every fixed point x 6= 0. To obtain
this estimate consider the auxiliary function

J(r, t) = rN−1∂u

∂r
+ εrN+δuγ(r, t) (5.14)
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where r = |x| ∈ [0, R], ε, δ > 0 are small and 1 < γ < p. Via maximum principle (prove

that
∂J

∂t
−∆J − kJ ≤ 0), it can be shown that J ≤ 0 for every r ∈ [0, R], 0 ≤ t < T , i.e.

u−γ ∂u

∂r
≤ −εr1+δ, (5.15)

Integration of this inequality gives u(r, t) ≤ cr−(2+δ)/(γ−1). Passing to the limit δ → 0,
γ → p gives the desired conclusion.

More generally, and first in dimension N = 1, if u0 has a finite number m of maxima,
then the blow-up set is a discrete set containing at most m elements, see [12]. For N > 1,
in [72] it is proved that, assuming the solution satisfies the natural rate, the (N − 1)-
dimensional Hausdorff measure of B(u) is bounded in compact sets of RN .

The fact that the blow-up set in the radial case for the exponential reaction is a unique
point has been proved also in [26], by showing that u satisfies

u(x, t) ≤ C1 − C2 log |x|. (5.16)

6. Other types of reaction

In extending the results of the preceding two sections to the more general problem
(2.4), a great variety of different reaction terms B have been considered in the literature
of blow-up. We present here some examples. More general diffusion terms are considered
in next section.

Besides f(u) = up and f(u) = eu, it is interesting to consider the function f(u) =
(1+u) logr(1+u), r > 1, in problem (2.8). First of all, it is (slightly) superlinear for large
values of u. Therefore there exist blow-up solutions, Theorem 4.2. On the other hand,
f(u) ∼ ur when u is small; thus all solutions blow up if 1 < r ≤ 1 + 2/N , Theorem 4.3.
But what makes different this case is the asymptotic behaviour of blow-up solutions. As
to the blow-up set, it is proved in [35] (see also [46]), that if 1 < r < 2, then all points
of RN are blow-up points. Also, if r = 2 then B(u) ⊇ {|x| ≤ π}; in the one dimensional
case it is exactly B(u) = {|x| ≤ π}. If r > 2 blow-up reduces to the origin. This striking
property when 1 < r ≤ 2 is common in problems with quasilinear diffusion operators, as
we will see in next section, but not with linear diffusion. The exponent r = 2 is called the
localization exponent. More surprising is the asymptotic profile. The complete equation
does not admit any exact self-similar or invariant solution. In the above paper [35] it is
proved that for t close to the blow-up time, an effect of asymptotic simplification takes
place: the solution resembles the solution to another equation, namely the Hamilton-
Jacobi type equation

∂U

∂t
=
|∇U |2
1 + U

+ (1 + U) logr(1 + U). (6.1)

Putting v = log(1 + u) this can be seen as vanishing of the term ∆v.

For reactions B more general than being a function only of the solution u, we mention
three particular examples. A description of the results corresponding to these examples
would enlarge unnecessarily this work. See the references below.
• nonhomogenous reaction, B = a(x, t)up. See [20, 51, 59, 60];
• gradient dependence, B = up + b · ∇(uq), or B = up + µ|∇u|q. See [2, 13, 63, 66, 67];

• nonlocal reaction B =
(∫

Ω
uq

)p/q
. See the survey [66].
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7. Quasilinear equations

We present in this section some problems more general than (2.8), but closely related
to it. They have the form (2.4), in which the operator ∆ is replaced by some nonlinear
diffusion operator divA. Perhaps the first generalization of the heat equation is that
obtained by taking into account a possible temperature-dependent diffusion coefficient
ψ(u). This leads to the quasilinear reaction-diffusion equation

∂u

∂t
= div(ψ(u)∇u) + f(u). (7.1)

A particular case is
∂u

∂t
= ∆um + up, (7.2)

which is called the porous medium equation with reaction. Another generalization consists
in taking A = χ(∇u). For instance considering the function χ(z) = |z|σ−2z we get the
equation associated to the σ-laplacian operator

∂u

∂t
= div(|∇u|σ−2∇u) + up. (7.3)

Both equations, (7.2) and (7.3), have a lot of similarities: see for instance [68] for a com-
parison of the evolution equations without reaction. There is even an operator involving
both types of nonlinearities, div(|∇um|σ−2∇um), see [18]. We focus here on the first ex-
ample, (7.2). A good reference for blow-up in models (7.2) and (7.3) is [64]. Much as in
the previous section, different reactions can be added to these equations. We refrain from
doing it here.

7.1. The Porous Medium Equation. Before getting into the blow-up problem for
equation (7.2), and as we did for the heat equation, we review some basic facts about the
porous medium equation (without reaction). Standard references are [3, 7, 8, 69], see also
the recent book [71]. Our interest lies in the slow diffusion case, m > 1, in opposition to
linear diffusion m = 1 and fast diffusion m < 1. Thus we consider the problem





∂u

∂t
= ∆um for x ∈ Ω, t > 0,

u = 0 for x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) for x ∈ Ω,

(7.4)

where Ω is a bounded regular domain or else Ω = RN . As to the applications, this problem
models heat propagation with temperature-dependent thermal conductivity, as we have
mentioned. It also models the flow of an ideal gas in a homogeneous porous medium
from a macroscopic point of view, from where the name is taken. In this context u is the
density of the gas.

The properties of the solutions that we want to address here are:
- Finite speed of propagation. The main difference between the case m > 1 and the

case m ≤ 1 is the finite speed of propagation. This means that, if for instance the initial
value has compact support, then the solution has compact support for every fixed time.
The boundary of the support is called the interface or free boundary.

- Source-type solutions. The role of gaussians in the heat equation is played here by the
Barenblatt solutions

B(x, t; M) = t−σ
(
C(M)− b|x|2t−2σ/N

)1/(m−1)

+
(7.5)
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with σ = (m − 1 + 2/N)−1, b = σ(m − 1)/2mN , and C(M) is a constant depending on
the mass M =

∫
Rn B(x, t) dx.

x

G(x, t)

t1

t2

t3

t4

m = 1

x

B(x, t)

t1

t2

t3

t4

m > 1

Figure 2. Infinite vs. finite speed of propagation: Gauss kernel and Baren-
blatt solution

- Weak solution. We observe that the above function is not regular at the interface,
Bm 6∈ C2. This is a consequence of the degenerate diffusion coefficient. In particular this
means that no classical solution exist if it vanishes somewhere, and the concept of weak
solution is needed.

Definition 7.1. We say that a locally integrable function u is a weak solution to problem
(7.4) if for each fixed t1 > 0, u ∈ L1(Ω× (0, t1)), um ∈ L1(0, t1 : W 1,1

0 (Ω)) and it satisfies

t1∫

0

∫

Ω

(
u
∂ϕ

∂t
−∇(um) · ∇ϕ

)
dxdt +

∫

Ω

u0(x)ϕ(x, 0) dx = 0

for every ϕ ∈ C1(Ω× (0, t1))
⋂

C(Ω× (0, t1)) vanishing on ∂Ω and at t = t1.

- Maximum principle and conservation of mass (when Ω = RN) hold like in the heat
equation.

- Regularizing effect is true only in the positivity set. The decay rate is ‖u(·, t)‖∞ ≤
ct−σ‖u0‖1 when Ω = RN , or ‖u(·, t)‖∞ ≤ ct−1/(m−1)‖u0‖1 when Ω is bounded.

7.2. Blow-up for the Porous Medium Equation with reaction. We now pass to
present the results on blow-up for the problem





∂u

∂t
= ∆um + up for x ∈ Ω, t > 0,

u = 0 for x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) for x ∈ Ω,

(7.6)

with m > 1, p > 0. As to initial data we assume u0 ≥ 0. See mainly [64].
In the case of bounded Ω the critical existence exponent for this problem is p0 = m.

Theorem 7.1. i) If p < m the solution is global;
ii) if p > m the solution can be global or can blow up in finite time depending on the

initial datum;
iii) if p = m the solution can be global or can blow up in finite time depending on the

size of Ω. In particular it blows up if λ1 < 1, it is bounded if λ1 ≥ 1.
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We recall that λ1 is the first eigenvalue of −∆ in Ω. The argument of Kaplan works

with J(t) =
(∫

Ω
um ϕ1

)1/m
if p > m, and also if p = m but with λ1 < 1. In fact J is a

supersolution to the ODE J̃ ′ = −λ1J̃
m + J̃p. On the other hand, there exist stationary

supersolutions if p < m or p = m and λ1 ≥ 1.
In the case of RN the critical existence exponent for problem (7.6) is p0 = 1, while the

Fujita exponent is pc = m + 2/N . We assume u0 vanishing at infinity, or even more, with
compact support.

Theorem 7.2. i) If p ≤ 1 the solution is global;
ii) if 1 < p ≤ m + 2/N the solution blows up in finite time;
iii) if p > m + 2/N the solution can be global or can blow up in finite time depending

on the initial value.

The proof uses comparison with subsolutions and supersolutions in self-similar form

u(x, t) = (t + t0)
αf(x(t + t0)

β),

u(x, t) = (T − t)−αF (x(T − t)−β),

where the similarity exponents are

α =
1

p− 1
, β =

p−m

2(p− 1)
. (7.7)

In the range m < p < m+2/N it also works Levine’s energy method, since the Barenblatt
solutions have negative energy for large t.

The best references on critical exponents are [15, 48] and of course [64]. Recall also
the argument in [34] to get pc formally: equate the reaction growth ar = 1/(p− 1) to the
diffusion decay ad = σ = (m− 1 + 2/N)−1.

As to the rate at which the solutions blow up, we have the natural rate for subcritical
exponents.

Theorem 7.3. Let Ω be a bounded convex domain in RN , or else Ω = RN . Then

‖u(·, t)‖∞ ≤ c(T − t)−1/(p−1) (7.8)

provided 1 < p < m(N + 2)/(N − 2) or N ≤ 2.

Like in the semilinear case, we rescale accordingly to these rate, thus looking for stabi-
lization to a stationary solution in new variables. The asymptotic behaviour is in this way
given by a self-similar solution. From now on we restrict ourselves to dimension N = 1.
It is not only a question of simplification. There still exist difficult open questions for the
multidimensional case N > 1. We put

u(x, t) = (T − t)−αg(ξ, τ), ξ = (T − t)−βx, τ = log(1− t/T ), (7.9)

with α and β as in (7.7). The rescaled equation is then

∂g

∂τ
=

∂2(gm)

∂ξ2
− βξ

∂g

∂ξ
+ gp − αg. (7.10)

Convergence to a stationary solution G implies

lim
t→T

(T − t)αu(ξ(T − t)β, t) = lim
τ→∞

g(ξ, τ) = G(ξ). (7.11)

Clearly, it is then of primary importance to classify the stationary solutions G, i.e. the
possible limit self-similar profiles. This is done in [31]. Uniqueness in the case p > m is
still an open problem.
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Theorem 7.4. i) If p < m there exists a unique profile G and it has compact sup-
port;

ii) if p = m the unique profile is explicit

G(ξ) =

{
C(cos Bξ)2/(m−1) for |ξ| ≤ π/2B,

0 elsewhere,

where Cm−1 = 2m/(m2 − 1), B = (m− 1)/2m;
iii) if p > m there exists a profile G which is positive and behaves like G(ξ) ∼ ξ−2/(p−m)

as ξ →∞.

The proof of convergence now relies on the construction of a Lyapunov functional for
g. It is explicit if p = m (β = 0),

Lg(τ) =

∫

R

(1

2

∣∣∣∂gm

∂ξ

∣∣∣
2

− m

p + m
gp+m +

αm

m + 1
gm+1

)
.

In the general case it is not an easy task to construct it, see for instance [29, 75].
Once we know the asymptotic profile, we describe the set of points where u blows

up, the blow-up set B(u). If the initial data is symmetric and nonincreasing for x > 0,
there only exist three possibilities for B(u): single-point blow-up, B(u) = {0}, like in
the semilinear case with a power; regional blow-up, B(u) = [−ξ0, ξ0] or global blow-up,
B(u) = R, like in the semilinear case with a logarithm. Here the localization exponent is
p = m.

Theorem 7.5. In the previous hypotheses, we have

i) 1 < p < m ⇒ B(u) = R,

ii) p = m ⇒ B(u) = [−ξ0, ξ0], ξ0 = mπ/(m− 1),

iii) p > m ⇒ B(u) = {x = 0}.
Single-point blow-up is deduced from an estimate of the form

u(x, t) ≤ c|x|−2/(p−m), (7.12)

see [29]. When 1 < p < m, it is just the convergence to the self-similar profile what gives
global blow-up. On the other hand, the convergence to the explicit profile in the case
p = m is not enough to get the desired result, since it only means B(u) ⊇ [−ξ0, ξ0]. Here
we have to check that, away of the interval [−ξ0, ξ0], the rescaled function g, solution to
equation (7.10), satisfies, like any solution to the ODE g′ = −αg, the estimate g(ξ, τ) ≤
ce−ατ , see [14]. In original variables this means u(x, t) ≤ c, and thus B(u) = [−ξ0, ξ0].

Finally, the growth of the interface can also be characterized from similarity. If u0

has compact support, so has u at every time. Let supp(u(·, t)) = [s1(t), s2(t)]. Without
reaction it is known that s1(t) and s2(t) grow like a power. When blow-up takes place we
have

Theorem 7.6. The interfaces are globally bounded for every 0 ≤ t < T if and only if
p ≥ m. Moreover, if 1 < p < m (β < 0) then

|si(t)| ∼ (T − t)β as t ↗ T.

Intersection comparison plays a crucial role in the proof; see e.g. [64].
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Figure 3. Comparison of the growth of the solution and the interface for
different values of p and m

8. Problems with boundary flux

Blow-up can be produced not only by an interior reaction, but sometimes it is the
effect of some flux condition on the boundary of the domain; see [22]. Let us consider for
instance the following problem posed in the half-line





ut = uxx for x > 0, t ∈ (0, T ),

−ux(0, t) = uq(0, t) for t ∈ (0, T ),

u(x, 0) = u0(x) for x > 0.

(8.1)

(We write here ut to denote partial derivative
∂u

∂t
, and so on). Most of the techniques

used in the previous sections can be applied to this problem. In the paper [33] the critical
exponents for problem (8.1) are obtained, as well as for the corresponding problems with
nonlinear diffusion, porous medium or σ-laplacian. Let us then look at the problem





ut = (um)xx for x > 0, t ∈ (0, T ),

−(um)x(0, t) = uq(0, t) for t ∈ (0, T ),

u(x, 0) = u0(x) for x > 0,

(8.2)

with m ≥ 1. For this problem it is proved

Theorem 8.1. i) There exist blow-up solutions if and only if q > (m + 1)/2;
ii) if (m + 1)/2 < q ≤ m + 1 all the solutions blow up, whereas if q > m + 1 there

exist blow-up solutions as well as global solutions;
iii) the interface is globally bounded if and only if q ≥ m;
iv) the solutions that blow up at time T behave at x = 0 like (T − t)−1/(2q−m−1).

See also [19, 24]. We compare in Fig. 4 the above numbers with the exponents obtained
for the semilinear problem (3.1) in dimension N = 1. We call s0 = global existence
exponent; sc = Fujita exponent; s` = localization exponent; α = blow-up rate.

The general problem associated with blow-up produced by a boundary flux in several
variables, posed in a bounded domain, in the exterior of a bounded domain or in a half-
space, has also been considered by several authors, but only partial answers have been
obtained. We mention instead a mixed problem in one dimension in which blow-up can
be produced by an interior reaction or a boundary flux, or the combination of the two.
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problem\exponent s0 sc s` α

reaction (3.1) 1 m + 2 m
1

p− 1

flux (8.2)
m + 1

2
m + 1 m

1

2q −m− 1

Figure 4. Critical exponents for problems (3.1) and (8.2)

In [57] the following problem is studied




ut = (um)xx + up for x > 0, t ∈ (0, T ),

−(um)x(0, t) = uq(0, t) for t ∈ (0, T ),

u(x, 0) = u0(x) for x > 0.

(8.3)

Here the critical exponents become critial curves in pq–plane.

Theorem 8.2. i) The global existence region is {0 < p ≤ 1, 0 < q ≤ (m + 1)/2};
ii) the Fujita curve is {p = m + 2, q ≥ m + 1} ∪ {q = m + 1, p ≥ m + 2};
iii) the localization curve is max{p, q} = m;
iv) the blow-up rate is α = min{1/(p− 1), 1/(2q −m− 1)}.

It is interesting to compare the effect of both reactive terms in this problem, in particular
which one is responsable for blow-up. This becomes clear after the theorem: above or
below the critical line m + p = 2q the exponents are given by Fig. 4. Even more, when
q ≤ (m+1)/2 and p > m+2 the reaction term by itself is not able to produce blow-up of
every solution; it is the combined effect of flux and reaction what is needed: the boundary
flux makes the solution so large that reaction makes it blow-up. Similar behaviour occurs
when p ≤ 1 and q > m+1. On the other hand, a phenomenon of asymptotic simplification
takes also place: the asymptotic behaviour of blow-up solutions to problem (8.3) is given
by a self-similar function, solution to problem (3.1) if m + p > 2q, to problem (8.2) if
m + p < 2q, or to the full problem (8.3) if m + p = 2q.

We finally present another example, described in [20], that can be considered as an
intermediate problem between (3.1) and (8.2). If a(x) is a compactly supported function,
for instance a characteristic function a(x) = χ[−L,L], then the critical exponents for the
problem {

ut = (um)xx + a(x)up for x ∈ R, t ∈ (0, T ),

u(x, 0) = u0(x) for x ∈ R,
(8.4)

are those of problem (8.2), instead of problem (3.1). And this happens even for L large.
On the other hand, the blow-up rates and the blow-up sets are the corresponding to one
problem or to the other depending on wether p > m (problem (3.1)), or p < m (problem
(8.2)). A similar asymptotic simplification as above also occurs for this problem: the
asymptotic behaviour is given by a self-similar function, solution to problem (3.1) if
p > m, to problem (8.2) if p < m, or to the original problem (8.4) if p = m.

9. Systems. Critical exponents curves

Things become more complicated in the case of systems: only partial answers are
known. We mention here some results concerning the critical exponents and the blow-up
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rates. Thus consider the simplest system



ut = ∆u + vp for x ∈ Ω, 0 < t < T,

vt = ∆v + uq for x ∈ Ω, 0 < t < T,

u = v = 0 for x ∈ ∂Ω, 0 < t < T,

u(x, 0) = u0(x) for x ∈ Ω,

v(x, 0) = v0(x) for x ∈ Ω.

(9.5)

When Ω is bounded and p, q ≥ 1, we can apply Kaplan’s technique with the functions
J =

∫
Ω

uϕ1, K =
∫

Ω
vϕ1, where ϕ1 is the first eigenfunction of −∆ in Ω. Thus we have

J ≥ J̃ , K ≥ K̃, where J̃ and K̃ satisfy the ODE system{
J̃ ′ = −λ1J̃ + K̃p,

K̃ ′ = −λ1K̃ + J̃q,
(9.6)

λ1 being the eigenvalue associated to ϕ1.

˜

J(t)

˜ K
(t

)

Figure 5. Flow for system (9.6) in the case pq > 1.

This system leads easily to blow-up provided pq > 1 and the initial values J0 =
∫
Ω

u0ϕ1

and K0 =
∫
Ω

v0ϕ1 are large, see [17]. In fact, as it is shown in Fig. 5, if (J0, K0) lies above
the stable manifold, then the corresponding trajectory escapes to infinity tangent to the

unstable manifold. This means K̃ ∼ J̃ (q+1)/(p+1). Thus J̃ ′ ∼ J̃p(q+1)/(p+1), and since the

exponent is p(q + 1)/(p+ 1) > 1 whenever pq > 1, we have that J̃ and K̃ (and also J and
K) go to infinity in finite time.

Analogous argument gives blow-up for the quasilinear system



ut = ∆um + vp for x ∈ Ω, 0 < t < T,

vt = ∆vn + uq for x ∈ Ω, 0 < t < T,

u = v = 0 for x ∈ ∂Ω, 0 < t < T,

u(x, 0) = u0(x) for x ∈ Ω,

v(x, 0) = v0(x) for x ∈ Ω,

(9.7)

in the case p ≥ n, q ≥ m and pq > mn or pq = mn with λ1 < 1, see [32].
As to the case Ω = RN , (with m = n = 1), a careful iterative use of Duhamel’s formula

(3.4) allows Escobedo and Herrero to prove the following result; see [16].

Theorem 9.1. Related to system (9.5) with Ω = RN , it holds

i) the critical existence curve is pq = 1, i.e. there exist blow-up solutions if and only
if pq > 1;
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ii) the Fujita curve is pq = γ ≡ 1 +
2

N
(max{ p, q }+ 1), i.e. if 1 < pq ≤ γ then every

solution blows up, while if pq > γ the solution blows up only if the initial values
are large.

For the quasilinear system (9.7) in RN the conjecture is the following:
• the critical existence curve is pq = mn;

• the Fujita curve is pq = mn +
2

N
max{ p + n, q + m }.

It has been proved only for 0 < m = n < 1 by Qi and Levine, [61]. It remains open in
the general case.

Looking now at the blow-up rates, the natural ones are obtained solving the ODE which
results dropping the diffusions:

U ′ = V p, V ′ = U q. (9.8)

This gives

U(t) = c1(T − t)−(p+1)/(pq−1), V (t) = c2(T − t)−(q+1)/(pq−1). (9.9)

The fact that solutions to system (9.5) satisfy the rates (9.9) (of course with some restric-
tions on the exponents) has been proved in [10]; see also [1].

More general systems have also been treated in the literature, including other diffusion
operators, other reaction functions (even nonlocal) depending on both variables, or sys-
tems of equations coupled through some flux boundary condition. The answers are not
yet as complete as for the corresponding single equations. We refer to [15] just to show
some examples.
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