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Casilla 306, Correo 22, Santiago, Chile.

E-mails: ccortaza@mat.puc.cl; melgueta@mat.puc.cl

Key words : Nonlocal diffusion, free boundaries.

2000 Mathematics Subject Classification: 35K57, 35B40.

1. Introduction.

Let K : RN × RN → R be a nonnegative, smooth function such that
∫
RN K(x, y)dy = 1

for all x ∈ RN .

Equations of the form

ut(x, t) =

∫

RN

K(y, x)u(y, t)dy − u(x, t) in RN × [0,∞) (1.1)

have been widely used to model diffusion processes, see [1], [2], [8], [9], [10]. As stated in [8]
if u(x, t) is thought of as a density at the point x at time t and K(y, x) is thought of as the
probability distribution of jumping from location y to location x, then

∫
RN K(y, x)u(y, t)dy

is the rate at which individuals are arriving to position x from all other places. On the
other hand −u(x, t) = − ∫

RN K(x, y)u(x, t)dy is the rate at which they are leaving location
x to travel to all other sites. This consideration, in the absence of external sources, leads
immediately to the fact that the density u satisfies equation (1.1).

In this note we will describe some of the results obtained recently by the authors, in
collaboration with J. Coville, S. Martinez, J. Rossi and N. Wolanski, in the topic of non
local diffusion. We have decided to describe the results in a rather informal fashion since
detailed statements and proofs can be found in the corresponding references.

2. An homogeneous model.

The Cauchy problem in RN .

A type of kernels that have been widely used in modeling diffusion are kernels of the
form

K(y, x) = J(x− y)
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where J : RN → R is a smooth non negative function such that
∫
RN J(x)dx = 1 and that

we will assume symmetric with respect to the origin. Moreover, throughout this note, we
will assume that J is supported in the unit ball centered at the origin B(0, 1). In this
case equation (1.1) takes the form

ut = J ∗ u− u (2.1)

where J ∗u denotes the convolution of J and u. Since J is supported in B(0, 1) individuals
at location x are not allowed to jump, up to probability zero, off the ball B(x, 1). By this
reason we refer to this dispersion process as an homogeneous random walk, continuous in
time, of step of size one.

Equation (2.1) can be written in integral form

u(x, t) = e−tu(x, 0) +

∫ t

0

e−(t−s)

∫

RN

J(x− y)u(y, s)dyds. (2.2)

It follows that existence and uniqueness of solutions of (2.1) can be obtained by an
application of Banach’s fixed point theorem to the right hand side operator of (2.2) in a
suitable space of functions. It is also a consequence of the proof that if u(x, 0) ≥ 0, then
u(x, t) ≥ 0 for all t ≥ 0. This plus the fact that the problem is linear imply the following
comparison principle for two solutions u1 and u2 of (2.1):

u1(x, 0) ≤ u2(x, 0) ⇒ u1(x, t) ≤ u2(x, t) for all t ≥ 0.

An important aspect of equation (2.1) is its relation, the so called Brownian Motion,
with the classic heat equation

vt = ∆v in RN × [0,∞) (2.3)

described in the following theorem which is classical. We give its proof to illustrate the
techniques that can be used.

Theorem 2.1 Let ε > 0 and let uε be a solution of the re-scaled problem

uε
t(x, t) =

1

ε2

[∫

RN
J(

x− y

ε
)
uε(y, t)

εN
dy − uε(x, t)

]
.

Let v be a solution of
vt = A∆v

where A is a suitable constant that will be apparent in the proof.
Assume that uε(x, 0) ≡ v(x, 0) and that v(·, 0) is smooth enough. Then

lim
ε→0

uε = v uniformly in RN × [0,T]

for any T > 0.

Proof:
To simplify the notation set u = uε and define

Lεu =
1

ε2

[∫

RN
J(

x− y

ε
)
u(y, t)

εN
dy − u(x, t)

]
,
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Set w = u− v and note thatw satisfies

wt = Lεw + F

where
F (x, t) = Lεv(x, t)− A∆v(x, t).

Making the change of variables

z =
x− y

ε

in the integral, noting that
∫
RN J(z)dz = 1 and choosing properly the constant A we have

F (x, t) =
1

ε2

[∫

RN
J(z)

(
v(x + εz, t)− v(x, t)− ε2|z|2∆v(x, t)

)
dz

]
.

Using the symmetry of J we obtain

F (x, t) =

1

ε2

[∫

RN
J(z)

(
v(x + εz, t)− v(x, t)− ε

N∑
i=1

∂v

∂zi

(x, t)zi − ε2

N∑
i,j=1

∂2v

∂zi∂zj

(x, t)zizj

)
dz

]
.

Finally using Taylor’s expansion for the regular function v we get

F (x, t) = εB(x, t)

where B is a function which is bounded independently of ε.
So w satisfies

wt ≤ Lεw + εM

and
w(x, 0) = 0.

Since the function h(t) = tεM satisfies

ht = Lεh + εM

and
h(x, 0) = 0

by comparison we have
|uε(x, t)− v(x, t)| ≤ tεM

and the proof is finished. 2

Remark 2.1 The kernel in the re-scaled problem has been modified in such a way that
the size of the step now is ε. The shortening of the step size is compensated by the
multiplication by 1

ε2 of the right hand side. This factor represents an speed up of the walk
necessary to compensate reduction of the size of the step.
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The Neumann problem.

The following model for the Neumann problem has been proposed in [6] and [7]. Let
Ω be a domain in RN and g : RN \ Ω → R smooth. Consider the problem

ut(x, t) =

∫

Ω

J(x− y)(u(y, t)− u(x, t))dy +

∫

RN\Ω
J(x− y)g(y, t). (2.4)

In this model we have that the first integral takes into account the diffusion inside
Ω. In fact, the integral

∫
Ω

J(x− y)(u(y, t)− u(x, t))dy takes into account the individuals
arriving or leaving position x from or to other places. Since we are integrating in Ω, we
are imposing that diffusion takes place only inside Ω. The last term takes into account the
prescribed flux (given by the data g(x, t)) of individuals from outside (that is individuals
that enter or leave the domain according to the sign of g). This is what is called Neumann
boundary conditions.

Existence, uniqueness and some qualitative properties, such as the asymptotic behav-
ior, of the solutions of problem (2.4) with suitable initial conditions have been studied in
[6].

With respect to its relation with the classical Neumann problem the following result
has been obtained in [7]: Let uε be a solution of the re-scaled problem

uε
t(x, t) =

1

εN+2

∫

Ω

J(
x− y

ε
)(uε(y, t)− uε(x, t))dy

+
1

εN+1

∫

RN\Ω
J(

x− y

ε
)g(y, t).

and let v be the solution of
vt = A∆v in Ω× [0,∞),

v = g on ∂Ω× [0,∞).

Assume that for all ε one has

uε(x, 0) = v(x, 0) on Ω.

Then uε converges to v as ε → 0. The convergence is uniform on compact subsets in the
case that g ≡ 0 and takes place weakly in C([0, T ], L1(Ω)) in the general case.

The Dirichlet problem.

A non local Dirichlet problem has been proposed in [5] as follows: Let Ω ⊂ RN and
h;RN → R. Consider the problem

ut(x, t) =

∫

RN

J(x− y)u(y, t)dy − u(x, t) for x ∈ Ω,

(2.5)

u(x, t) = h(x) for x ∈ RN \ Ω and t ≥ 0

with initial condition u(x, 0).
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Existence, uniqueness and some properties of the solutions of problem (2.5) have been
proved in [5]. Moreover it is proved there that if uε is the solution of the corresponding,
to this case, re-scaled problem with uε(x, 0) = v(x, 0) where v is the solution of

vt = A∆v in Ω× [0,∞),

v = h on ∂Ω× [0,∞).

Then uε converges to v uniformly on compact subsets of Ω× [0,∞).

3. A non homogeneous model.

In [3] a non homogeneous dispersal model in the real line was studied. Kernels of the
form

K(x, y) = J

(
x− y

g(y)

)
1

g(y)

were considered where g : R → R is a continuous bounded function that satisfies: The
set {x ∈ R | g(x) = 0} ∩ [−K,K] is finite for any K > 0. If g(x̄) = 0, then there exist
r > 0, C > 0 and 0 < α < 1 such that g(x) ≥ C|x− x̄|α for all x ∈ [x̄− r, x̄ + r].

The evolution equation considered in this case is

ut(x, t) =

∫

R
J

(
x− y

g(y)

)
u(y, t)

g(y)
dy − u(x, t). (3.1)

Under the above mentioned hypotheses it is proved that (3.1) has a globally defined
mass preserving solution for any given u(·, 0) ∈ L1(R). Moreover even though g can vanish
at some points, these solutions have an infinite speed of propagation in the sense that if
u(x, 0) ≥ 0 and u(x, 0) 6= 0, then u(x, 0) > 0 for all x and all t > 0.

In order to study the asymptotic behavior of solutions of (3.1) we are lead to the
analysis stationary solutions, namely solutions of the equation

p(x) =

∫

R
J

(
x− y

g(y)

)
p(y)

g(y)
dy. (3.2)

It is proved the existence of bounded positive solutions of (3.2) and that solutions of
(3.1) converge to solutions of (3.2) as t →∞.

An important role in the study of problem (3.2) is played by the following lemma that
can be of independent interest.

Lemma 3.1 A continuous function p is a solution of (3.2) if and only if there exist
constants P and Q such that

∫ 1

0

∫ x+w

x−w

p(s)

∫ 1

w
g(s)

J(z)dzdsdw ≡ Px + Q.

Proof: Differentiate twice the left hand side to obtain 0 if and only if p is a solution of
(3.2). 2

The hypothesis that if g(x̄) = 0, then there exist r > 0, C > 0 and 0 < α < 1 such
that g(x) ≥ C|x− x̄|α for all x ∈ [x̄− r, x̄ + r] is important in our arguments. Nothing is
known, to the best of our knowledge, if it does not hold.
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4. A non linear model.

In this section we will deal with a non linear model that was introduced in [4]. We propose
to use a kernel where the size of the step depends on the density at the point. The simplest
model, with N = 1, is

K(y, x) = J

(
x− y

u(y, t)

)
1

u(y, t)
.

The equation that governs the dispersal becomes in this case

ut(x, t) =

∫

R
J

(
x− y

u(y, t)

)
1

u(y, t)
dy − u(x, t). (4.1)

One of the main features of solutions of (4.1) is that if the support of the initial condition
u(·, 0) is compact, then the support of u(·, t) remains compact for all t > 0. This gives
rise to a free boundary like in the case of the porous medium equation ut = (um)xx with
m > 1.

With the additional hypothesis that J is decreasing in the interval [0, 1] one can prove
existence, uniqueness and a comparison principle for solutions of (4.1). Moreover it is
trivial to check that the constant functions are solutions of (4.1) and hence if u(x, 0) ≥ 0,
then u(x, t) ≥ 0 for all t > 0.

We state now as a theorem the fact that the compactness of the support is preserved
and provide a proof.

Theorem 4.2 If u(·, 0) ≥ 0 is compactly supported and bounded then u(·, t) is also com-
pactly supported for all t ≥ 0.

Proof: Due to the scaling invariance of the equation, namely if u(x, t) is a solution then
for any λ > 0 the function vλ(x, t) = λu(x

λ
, t) is also a solution, we can restrict ourselves

to initial data supported in [−1, 1] and such that sup
x∈R

u(x, 0) ≤ 1.

We note first that

ut(x, t) ≤
∫

R
J

(
x− y

u(y, t)

)
dy. (4.2)

Therefore, since 0 ≤ u ≤ 1, we get by (4.2) that

u(x, t) ≤ 1

2
for all t ≤ 1

2
and all x such that |x| ≥ 1.

Now if |x| ≥ 2 and t ≤ 1
2

we have that |x− y| ≤ u(y, t) implies that |y| ≥ 1 and hence
u(y, t) ≤ 1

2
. Therefore, again by (4.2), we have

u(x, t) ≤ 1

4
for all t ≤ 1

2
and all x such that |x| ≥ 2.

We look now at the case |x| ≥ 2 + 1
2

and t ≤ 1
2
. In this case |x − y| ≤ u(y, t) implies

that |y| ≥ 2 and hence u(y, t) ≤ 1
4
. Again by (4.2), we have

u(x, t) ≤ 1

8
for all t ≤ 1

2
and all x such that |x| ≥ 2 +

1

2
.
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Repeating this procedure we obtain by induction that for any integer n ≥ 1 one has

u(x, t) ≤ 1

2n+2
for all t ≤ 1

2
and all x such that |x| ≥ 2 +

n∑

k=1

1

2k
.

It follows that the support of u(·, t) is contained in the interval [−3, 3] for all t ≤ 1
2

as we
wanted to prove. 2

We will give now a formal argument that suggest what relation is expected to exist
between these non linear random walks and the porous medium equation.

Consider the re-scaled problem

ut(x, t) =
1

ε2

[∫

R
J

( |x− y|
εu(y, t)

)
dy

ε
− u(x, t)

]

and assume that their solutions uε converge to a function v as ε → 0. In order to do not
overload the notation we set uε = u.

We take the Fourier transform

ût(ξ, t) =
1

ε2

[∫

R

∫

R
J

(
x− y

εu(y, t)

)
e−ixξ dydx

ε
− û(ξ, t)

]
.

Setting

z =
x− y

εu(y, t)

we have

ût(x, t) =
1

ε2

[∫

R

∫

R
J (z) e−iξεu(y,t)ze−iyξu(y, t)dzdy − û(ξ, t)

]
.

Or

ût(ξ, t) =
1

ε2

∫

R

[
Ĵ (ξεu(y, t))− 1

]
e−iyξu(y, t)dy.

Taking the Taylor expansion of Ĵ about zero we get

ût(ξ, t) =
1

ε2

∫

R

[
Ĵ ′′

(
0)ξ2ε2u2(y, t)

)]
e−iyξu(y, t)dy +

O(ε3)

ε2
.

Or

ût(ξ, t) = C

∫

R
(−ξ2)u3(y, t)e−iyξdy + O(ε).

As ε → 0

v̂t(x, t) = C

∫

R
(−ξ2)v3(y, t)e−iyξdy

which means
v̂t(x, t) = C (̂v3)xx.
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Hence the solutions of the re-scaled problems should converge, as ε → 0, to a solution of
the porous medium equation

vt = (v3)xx.

There are several questions that can be raised and for which we do not have an answer.
For example: Do the free boundaries converge to the free boundary?
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