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Abstract. We consider some lubrication problems in a thin domain with thickness of order €, with mixed
boundary conditions and subject to slip phenomenon on a part of the boundary. We study the existence
and uniqueness results for the weak solution of each problem, then we establish the asymptotic behavior
of its solutions, when the depth of the thin domain tends to zero.

Résumé. Nous considérons quelques problemes de lubrification dans un domaine mince d’épaisseur
e, avec des conditions aux limites mixtes et soumis au phénomene de glissement de fluide au parois.
Nous étudions les résultats d’existence et d’unicité de la solution faible de chaque probléeme, puis nous
établissons le comportement asymptotique des solutions quand 1’épaisseur du domaine tend vers zéro.

Resumen. Se consideran algunos problemas de lubricaciéon en un dominio delgado de espesor &, con
condiciones de contorno mixtas y sometido a un fenémeno de deslizamiento sobre una parte de la frontera.
Se estudian resultados de existencia y de unicidad de la solucion débil de cada problema y luego se
establece el comportamiento asintdtico de las soluciones cuando el espesor del dominio tiende a cero.

Keywords: Free boundary problems; Lubrication; Non-isothermal fluid; Fluid-solid conditions; slip
phenomenon; Roughness phenomenon; Asymptotic approach, Reynolds equation.

Mots clés: Problemes a frontiere libre; Lubrification; Fluide non-isotherme; conditions d’interface fluide-
solide; slip Phénomene de glissement de fluide; Phénomene de rugosité; Approche asymptotique; Equation
de Reynolds.

Palabras claves: Problemas de frontera libre; Lubricacién; Fluidos no-isétermicos; Condiciones fluido-
sblido; Fendéneno de deslizamiento; Fenémeno de rugosidad; Comportamiento asintético; Ecuacion de
Reynolds.
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These Notes are the enlarged content of the conference given by Prof. M. Boukrouche at the Department
of Mathematics of FCE-UA, Rosario, for the Congress TEM2005 on 5-7 December 2005. They contain
the basic ideas of the existence and uniqueness results of some lubrication problems subject to monlinear
boundary condition and the asymptotic behavior of its solutions when one of the dimension of the fluid
domain tends to zero.
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A BRIEF SURVEY ON LUBRICATION PROBLEMS
WITH NONLINEAR BOUNDARY CONDITIONS

M. Boukrouche'

1. INTRODUCTION

This work gives a survey on some results obtained in a series of papers [6, 9, 10, 11, 14, 15,
17] in which we consider a particular cases of the general equations describing the motion
of some fluid flows in bounded thin domain, with slip and mixed boundary conditions.
We comment the basic ideas on existence, uniqueness results of the solutions of the as-
sociate problems, and also its behavior when the thickness of the thin domain tends to
zero. See also [12, 13, 16].

To study lubrication problems or the fluid equations one requires the knowledge of the
velocities on the fluid-solid interface. This subject is often a matter of discussion as a lot
of physical parameters are involved like micro-roughness of the surface or the rheological
properties of the fluid.

No-slip condition, in which the fluid is assumed to have the same velocity as the sur-
rounding solid boundary, is widely used in mathematical studies [54]. Nevertheless, this
boundary condition is sometimes overlooked and it is possible to deal with the ”slip con-
dition” which allows the fluid to slip on the surface but not to go through it. The normal
component of the velocity is equal to zero while the tangential one is proportional to the
tangential stresses. Existence and uniqueness theorems for a weak related formulation are
easily obtained (see for example) [2]. The intermediate case in which the slip condition
only occurs for sufficiently a large ratio between tangential stresses and normal stresses
while the no-slip condition is retained for small ratio have also been introduced [23]. This
last case is nothing else than a transposition of the well known Coulomb law between two
solids [24] to the fluid solid interface and so leads to a free boundary problem model.

An accurate choice of these boundary conditions is of particular interest in the lubrication
area which is concerned with thin film flow behavior. In this case, the difference of
velocities between the surrounding surfaces is the governing phenomena that allows the
pressure in the fluid to build up and prevent the solid surfaces from being in contact
which is the main objective of the lubrication. Continuous experimental studies are being
conducted [46, 47] but are still difficult due to the thickness of the gap between the solid
surfaces which can be as small as 50 nanometers. In such operating conditions, a no
slip condition is induced by chemical bonds between the lubricant and the surrounding
surfaces. Conversely, tangential stresses are so high that they tend to destroy the chemical
bonds and induce a slip phenomena. Such behavior is then close to the Tresca free
boundary friction model in solid mechanics [25].

This phenomenon has been related in a lot of mechanical papers for both Newtonian and
non Newtonian cases [36, 37, 49, 50, 51, 55]. Although being implicitly used in numerical

1Laboraﬂ;ory of Mathematics EA-3889, University of Saint-Etienne, 23 Rue Paul Michelon 42023 Saint-Etienne, PRES Lyon
University, France.
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procedures in lubrication problems, a Reynolds thin film equation taking account of such
slip phenomena seems to have been posed for the first time in a somewhat mathematical
aspect in [52]. This study is restricted to one dimensional problems and the existence of
the discretized problem is proved.

The aim of this paper is not only to give existence and uniqueness for this problem but
also to obtain rigorously the equation describing such phenomena in a thin film flow by
way of an asymptotic analysis in which the small parameter is the width of the gap,
following the same ideas as in [4], [20]. The departure point is the Stokes equation with
the Tresca boundary conditions [6] and so fall into the scope of the work of [23]. Then
we generalize our results to [9, 10, 11, 12, 13, 14, 15, 16, 17]. See also [29, 30, 31, 32] for
similar boundary conditions.

This brief survey is organized as follows. In Section 2 we present the derivation of the
fluid equations from the three conservation laws of mass, momentum and energy. In Sub-
section 2.1 we formulate seven problems considered. In Section 3 we give the variational
formulation of each considered problems and existence and uniqueness results. In Section
4 we study the asymptotic analysis of the first case to obtain the limit problem, when the
thickness of the thin domain becomes very small. In Subsection 4.1 we study the limit
problem of the first case. In Subsection 4.2 we study its uniqueness. In Subsection 4.3
we study the second case. In Section 5 we study the asymptotic analysis of the case 3. In
Section 6 we study the asymptotic analysis of the case 6.

I would like to thank my friend Professor Domingo Alberto Tarzia, who kindly proposed
me to write these notes. I hope that this notes can provide some idea and be useful to who
is interested by this subject. Also I would like to thank Guy Bayada, Professor (Insa-
Lyon), Grzegorz Lukaszewicz (Warsaw University), Lionel Ciuperca (Lyon University),
for fruitful collaborations on this subject.
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2. ON THE FLUID EQUATIONS

We present the derivation of the problems considered from the three conservation laws of
mass, momentum and energy. Let a bounded domain 2 C R™ and a times interval [0, 7].
Let v : [0, 7] x  — R™ such that (¢,z) — v(¢,z) be the velocity vector of the continuous
medium, p : [0,7] x @ — R such that (t,z) — p(t,z) its density, and e : [0,7] x Q@ — R
such that (¢, x) — e(t, x) its specific internal energy, which are the unknowns. Let given
the external forces f : [0,7] x @ — R™ and a scalar function R representing the energy
contribution by unity of mass and times. It is well known (see for example [41]) that
the motion of continuous medium is modeled by the following three conservation laws of
mass, momentum and energy respectively

% +v-Vp+pdiv(v) =0, (2.1)
ov .
p (E + - Vv) =div(e) +p f, (2.2)
Oe .
p (a + U.Ve) =o0:D(v) —div(q) + R, (2.3)

where 0 = (0;; (for 1 <i,j < n) is the stress tensor, D(v) is the strain rate tensor, with
components
1 [ 0v; Ov,
dij(v) = = L+ —2), 1<i,j<n,

n ‘ n 87%'
o:Dw) =Y oydy(v),  div(v) =) o
i=1 v

ij=1

The first term o : D(v) on the right hand side of (2.3) represents the energy generated
by the deformation of the continuous medium under the action of the shear forces, the so
called dissipation term. q is a vector function representing the energy transport, from
a macroscopic continuum sense, the heat conduction phenomenon is often described by
Fourier’s law, relating the heat flux q to the temperature T

q=—-K(T)VT, (2.4)

where K is a scalar positive function representing the thermal conductivity, see also a
damped version of Fourier’s law introducing a heat relaxation term, [35, 22]

oq
T =~
where 7 is a relaxation time required to establish a steady state of heat conduction in an
element suddenly exposed to heat flux.

(¢g+ KVT),

The case where the density p is not constant in time leads to the compressible Euler
equations [41] a physical example is a gas dynamics. Let assume that the continuous
medium is an incompressible fluid so p is constant, then the local mass conservation law
(2.1) becomes

div(v) = 0. (2.5)

The case where the stress tensor ¢ is non-symmetric the medium is called micro-polar

fluid [27, 40]. We assume also in all this study that the stress tensor ¢ is symmetric
[24, 26, 39)].

Oij = 0j; for 1 S Z,] <n. (26)
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Each stress tensor o characterizes the kind of the fluid, so for example the power law [26]

o= —pl +k(T)y D), v =2+/D(v)D(v), (2.7)

where k is a given positive scalar function, r is the power law index, p is the pressure,

is the n x n identity matrix, and the product u = gy”*l is the viscosity of the considered

fuid.

Remark that when r = 1 the fluid is called non-isothermal Newtonian. When r # 1 the
fluid is called non-isothermal non-Newtonian and the constitutive equation

S =kT)"'D(v)
represents shear thinning for r < 1 and shear thickening for r > 1 fluids.
With (2.7) the equation (2.2) becomes

% +0- Vo= f+2div(KT)(D(v) D(v))'F D(v)) - Vp. (2.8)

As ID(v) = divu, so from (2.5) o : D(v) = k(T)y"~'D(v) : D(v), then with the Fourier
Law (2.4) the energy conservation law (2.3) becomes

% + e Ve =K(T)y" ' D(v) : D(v) + div( K(T)VT) + R(T).

Assume that the internal energy of the fluid is given by

de or
E—l—eVe:Cv(T) (E’FUVT)a

where C, (7)) is the specific heat with constant volume, then the energy conservation law
becomes

Co(T) (aa—f tov- VT) — 2u(T)D(v) : D(v) + div (K(T)VT) + R(T). (2.9)

with the behavior laws the equations (2.5), (2.8) (2.9) describe the motion of an incom-
pressible non-isothermal non-Newtonian fluid flow.

2.1. Formulation of the problems considered. Let w be a fixed bounded domain in
R2, for a given function H : w — RT, we define the surface

x3 = H(x) = H(xy, 29).

In the lubrication theory it is natural to assume that the fluid film, between the two
surfaces w and z3 = H(x), is very thin. So we introduce a small positive parameter ¢,
and a function h such that H(x) = eh(z). Then we denote the fluid domain by

O ={(v,23) €ER® : z€w and 0 < 23 < eh(z)}, (2.10)
with 99F = @ UT5 U TS where I = {(z,73) € R® : 23 = ch(z)} and I'5 is the lateral
boundary.

In all the following repeated indices means that the summation convention is used.

Case 1. [6] The motion in the fluid is described by the basic stationary Stokes system

o<
Dd gm0, div()=0 in O (2.11)
8xj
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with

O';-Ej = p55ij + 2Vd,~j(u€),
where v is a constant viscosity, d;; is the Kronecker symbol. The velocities on the bound-

ary, except their tangential components, are given in terms of a given function g. The
upper surface being assumed to be fixed no slip condition is given so

uww=¢9g=0 onlj. (2.12)
The velocity is known and parallel to the w-plane
u"=g¢g with g-n=0 onlY. (2.13)
There is no flux across w so that
uw-n=g-n=0 onw. (2.14)

The tangential velocity on w is unknown and satisfies the Tresca friction law [25] with the
friction coefficient k°

05| =k = IN>0 ufp=s— A5
05] < kf —  wE = } oon w, (2.15)
where n = (ny,ns,n3) is the outward unit normal to ', |.| denotes the R? Euclidean

norm, s is the velocity of the lower surface w; o;, and o5 are, respectively, the normal and
the tangential components of the stress tensor

e _
" =

€ _ (A€ E — 55n. — gn.
oyning = (0°.n).n, o =o;n; — o,

o
and u7, is the tangential velocity,
e __ € 5
U’Ti =Uu; — anjnl'.

The condition (2.15) means that in each point of w where the Euclidean norm |05.| reaches
the upper limit £°, there exists an unknown scalar A > 0, such that the tangential velocity
of the fluid v is braked by Ao5. according to the velocity s of the lower surface w. So in
these unknown points of the lower surface w occur the slip of the fluid according to w.

Case 2. [9] We consider (2.11)-(2.14) and we change the Tresca boundary conditions
(2.15) by the following Coulomb friction law [25] with the friction coefficient £° :

o5 | =kflos| = IAN>0 uf=s—

AU%} on w (2.16)
07| <Klon| = up=s ' '

Case 3. [10] We consider (2.11), (2.13)-(2.15) and we change the boundary condition
(2.12) by the following Fourier’s type

un =0, op(u)+0lu" =0 on IY, (2.17)

where [ > 0 is a given scalar. This means that on I'] there are only friction.

Case 4. [11] We consider the Navier-Stokes case with the Reynolds number &”

ou; 00;;
1, U 9% o R 2.18
where
O'fj = —pséij + 2udij(u5), (219)

with the boundary conditions (2.12), (2.14), and we change (2.13), (2.15) by
w* =% with ¢g-n=0 and SE€R onT%. (2.20)
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o5 =k* = 3IN>0 u5 =els—

Ao
05] < k* —> 5 — P } on w. (2.21)

Case 5. [14, 16] We consider the Newtonian non-isothermal case (2.11)-(2.15) with
055 = =P 05 + 2p° (1) dij (),

div(KeVT®) + 2u(T*)|D(uf)|* + R°(T¢) = 0, (2.22)
T°=0 on I UTY, (2.23)
€6T8 I3 €

K o °(T°) on w, (2.24)

where 6° is given function on w.

Case 6. [15] We consider the non-Newtonian non-isothermal case (2.11)-(2.15) with
05; = =P8 + 2u(T°)| D ()"~ dij (u),

ij

div(KEVT?) + 2u(T%)| D(u)|" + RT® = 0, (2.25)
T°=0 on I'{UIY, (2.26)

TE
Keaé?n =V on w, (2.27)

where r € R such that 1 < r < oo and b° is given function on w.

Case 7. We consider also in [17] the equations (2.11)-(2.15) taking the roughness phe-
nomenon so the small parameter ¢ is now related to the roughness wavelength and also
to the thickness of the gap between the surfaces 23 = 0 and z3 = Aeh(z, 2), such that the
domain occupied by the fluid is

F={(z,)eR’: z€cw 0 < z3 < Aeh®(2)}
where

he(z) = h(z, g) Z € w, (2.28)

and A > 0 is a fixed constant.

3. EXISTENCES UNIQUENESS RESULTS
We assume that the function g € (Hz(I'¥))® and such that
/g-ndazO, g3=0 on I7, g=0 on I7, g-n=0 on w. (3.1)

Ie
So following [33] (lemma 2.2 p.24), there exists a function G* such that

G e (H'(Q9))?, div(G°)=0 inQ, G°=g on TI° (3.2)
Let define now the following notations
VE:{UG(I'{]L(QE)):3 : v=G"onl7UIT | U.n:()onw},
V(f:{vE(Hl(QE))?’ : v=0onI7UI] |, v.n:Oonw},

Viw = {v e Ve:div(v) =0 in Qg},
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L3(F) = {q € L* (¥) : /qudxg =0},
Q¢
(u,v) denotes the scalar product in L*(QF)

4,j=1

3
a(u, ) =Y QV/Dij(U)Dij((P)dxd& j(p) = /kelso—SIdxd:cz
QE

w

So Case 1, leads [24] to the following variational formulation: For G as in (3.2), find
u® € V5, and p° € L3(9°), such that

a(u®, o —u®) — (p°, div(p)) +j(p) —j(u®) > (f5, 0 —u®) Ve Ve (3.3)

Theorem 1. Assuming that f¢ in (L*(Q))3, and the friction coefficient k° is a non
negative function in L™ (w), then there ezists a unique u® and there exists a unique (up to
an additive constant) p* such that (u®,p°) in V5, x LE(QF) is a solution to the variational
inequality (3.3).

Proof. [6] The existence and uniqueness of u° in Vj satisfying the variational inequality
of the second kind (3.3) is well known and follows (for example) from [18]. To get p°,
we apply the duality results of convex optimisation ([28] theorem 4.1 and remark 4.2).
recalling [6] we can rewrite (3.3) so that it is defined on the whole of V' (Q¢) by introducing
the indicator functions:

wvdew : (LZ(QE))?’ — R suchthat ¢ — ¢Vji,u(¢) = { 3_00 i:g ; “;Z%Zv

and
. T2(0¢ ™ - 0 lfq:O
H:L*(£¢) — R suchthat qHH(q)—{ too ifg £0,

so (3.3) is equivalent to

a(u, o —u) +j(p) — jlu) + Pve () —ye (u) >
=0,

> (fea ¥ — u) VQO S ‘/067 dZU((P) (34)
and the unique solution of (3.3) minimizes the functional:
: 1 . : :
int {3a(.) = (0 + () + H(din(e) + 0z, ()} 35)
0

which can be write in the following form
inf {F(¢)+ G(A(p))}, where
peVy

1
FiVi =R suchthal ¢ F(¢) = sa(p9) = (/,9),

AN:VE—Y = L*w)x L*(Q) x Vg,
po Mp) = (Mg, Ao, 0) = (@1, div(e), 9),
G:Y =R suchthat ¢~ G(q) = j(a) + H(a) +dvg, (g3)-

div
Then, the dual problem (to (3.5)) is given by: Find p* in Y* = L*(w) x L*(Q) x Vg~
solution of the problem
sup {—F*(A*¢*) — G*(—¢")}, (3.6)

q* cYy*



10 M. Boukrouche, Lubrication problems with nonlinear boundary conditions, MAT - Serie A, 16 (2009)

where
F*(A*q") = sup {< Alql, ¢ > + < Mgz, 0 > + < A3qz, 0 > —F(p)},
peVy
G*(—q*): = sup{< —¢",¢>—-G()} = sup {<—ql,q1 > —j(q)} +
qey q1€L2(w)
+ sup {< _QE7q2 > _H(QZ)} + sup {< _Q?ta q3 > _deEw<Q3)}7
q2€L2%(QF) @3€eV§

and from the definition of H, we have for any ¢ = (q1, ¢, q3) in Y = L*(w) x L*(Q°) x V§

G (=¢") 2 {< —al, @1 > —jla)} +{< —a5. @ > —vg, (@) }-

As the function G* from Y* — R, is continuous, then the hypothesis of [28] (see chap.III,
Theorem 4.1), are satisfied for the dual problem (3.6), and imply the existence of p* in
Y™ satisfying

{F)+ GAW)} +{F"(Ap") + G*(=p")} = 0,
which can be written

{F(u) + j(Au) + H(Ayu) + Yye (Asu)}

+{FA(APY) + 57 (=p1) + (v, )" (=p3) } = 0.

Let us remark from the definition of H and by choosing ¢ = Ag for any ¢ in V¢ that
F(u®) = F(p) + j(Au®) — j(Arp) + e (Azu®) — e (Azp)+ < ph, Ao >
—<py, Nou® > < {H(Au®)— < ph, div(u®) >} <0,

which is exactly
a(u®, o —u’) +j(p) — J(u°) + Yve (Asp) — Yve (Azu’)
—<py, divlp—uw) > = ([ 9 —u) Vpelf. (3.7)
So taking in (3.7) ¢ and u® in VJ, , we get exactly (3.3).
Using Green’s formula with ¢ = u® 4+ ¢ for any ¢ in (Hg(9°))3, (3.7) induces
Vps =vAu® + f¢ ae. in F,

then as v is unique in V , we deduce the uniqueness (up to an additive constant) of p;

in L2(QF). d

Case 2, leads to the similar variational inequality (3.3) where the functional j is now

i(o) = / k0% | — slda.

Since j(u) has no meaning for u® € V. we consider (cf. [24]) a regularization operator
S from H™2(w) into L2 (w) defined, for all 7 € H™2(w) and S(7) € L2 (w), by

S(t)(z)=|<nm¢x—1t)> L |, Vrew, (3.8)

H™2 (w), Hiy(w)

where ¢ € D(w) is a given positive function. Here H ~2(w) is the topological dual space
1

of Hf) = {¢. : v € H(Q),¥ =0o0n I'1 UT'L}, L% (w) is the subspace of L*(w) of non-
negative functions. So we put S(c%) instead of |o5| in the value of functional j, which
give a correct meaning of j(¢p).
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We have the same Theorem 1. For the proof, we apply first Tichonov’s fixed point theorem
to deduce the existence of u®, and then the existence of p® is obtained using the same
duality results of convex optimisation. As for the solid-solid Coulomb interface law, cf.,
for example, [5], [43], the uniqueness is obtained for small &°.

In this case we state see [9] the main results concerning the existence of a weak limit
(u*,p*) of (uf,p%), the strong convergence of u® to u* in a convenient space, a specific
Reynolds equation in a weak form, the limit form of the Coulomb boundary conditions,
and the uniqueness of (u*, p*).

Case 3 [10], leads to : For G¢ as in (3.2), find u® € V5, and p° € LE(QF), such that

a (u,p —u) = (b7, dwp) +j(p) = j(w) 2 (f 9 —uw’) VpeV* (3.9)

where
ar(u, ) = alu, p) + /lgu ds
I

the integral on I'{ comes from the Fourier condition (2.17). The bilinear form a; is
continuous symmetric and coercive indeed following [53] suppose that a; is not coercive
so there exists a subsequence (w,) € VF such that a;(w,,w,) < EH'&UTLHHI(QE) Vn € N*.
Wn

1
, then [Juy||g1(oey = 1 and a1 (uy, u,) < — for all n € N*. As

Let u,, =
HwnHHl(Qs) n

1
HunH%Il(ﬂs) = a(un, un) + ||Un||%2(95) < a1 (Uns up) + HunHQL?(QE) < n +1<2

so there exists u € H'(Q°) such that u, — u in H'(QF) weak and then in L?*(Q)°) strong
thus [|ul| 2y = 1. And by

1
0< /lsuids < lim inf/leuids <liminf — =0
n—-+oo n—+oo N
I i

1
0 < a(u,u) <liminf a(u,, u,) < liminf — =0
n——+oo n—+oo N

we obtain that v = 0 in ° which is impossible with |u||;2qs) = 1. Thus a, is coercive so
here also the theorem 1 remains valid for this problem 2.

Case 4, leads to : Find u® € Vj; , p° € LE(2), such that
a(u®, ¢ —u’) + 70w, ut, ¢ — u?) — (p°, div(9)) + j(¢) — j(u”) = (f*, ¢ —u’) Vo eV,
where
b: VeoxVEXVE-SR 0 (u,v,w) — b(u,v,w) = /uivjﬂ-wjdxdmg,,
QE
j(v):/kE]v—eﬁs | ds.

Theorem 2. There exists g such that for p > g, this problem has at least one solution
(u, p%), under the condition 3 > % — . There exists €' > 0 such that for e < €', then u®,
such that (u®, p®) is solution of this problem, is unique.
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Proof. The condition § > % — v allow us to obtain the existence of a constant C' > 0 such
that the following application will be well defined

A :Be— Be: such that & —uf
where B is the (H'(£27))3 closed ball of radius C, u® is the unique solution of the following
variational inequality:
a(u€7 ¢ - ue) + 67()(5’ UE7 ¢ - uz—:) + j(¢) - ](U’e) > (fsv (b - us) v¢ S ‘Gls'iv' (310)
then by Schauder fixed point theorem, there exists at least one solution u® for the following
variational inequality:

CL(UE, (b - ue) + g'Yb(uE, us, (b - U,E> + j(¢) - j(us) > <f€7 ¢ - us) v¢ € ‘/dsw (311)
the existence of the pressure p® comes as in Theorem 1 (see also [6]). The uniqueness

follows from some estimates on the gradient of the velocity and it is valid under the
condition that the fluid domain must be thin enough. For all the proof see [11]. O

Case 5, leads to the non-isothermal coupled problem : Find
W€ Vi, N HAQ), € LA N HYQ), T° € Hi e () N CO1(E),
such that
a(T% %, o —u’) = (p°, div(p)) +(p) —j(w’) 2 (f e —u), VeeVs, (312

/ KEVTVy+ R (T9) da, = / 245 (T%)| D (u) [ dar+ / O (T ds, Vi € Hps jpe (),
v N i (3.13)
where

H%iuri(gs) = {X ceH' () : x=0on Fiufi}.

a(T;u,v) = /Q,ua(T)D(u) : D(v) dx'dxs,

Qe
Note that the first term of c(u; T, 1)) is well defined for u € Ve N (H?(QF))3.
We study first the two following intermediate problems:
Given T € Hliuri(ge) N C%1(Qe), find v° € Vi, N (H2(QF))3 such that

a(T5 0%, —v°) = (p%,div(p)) +5(p) = J(0°) 2 (f5 9 —v7), VpeV~
Given u € Vi, N (H?*(2))°, find T° in Hye r<(€2°) N C%1(Q¢) such that (3.13) hold.

The main result in this case is to establish the needed regularity results. Note that the
boundary 0€2° is decomposed of three connected compact components w, I'j, and I'7, the
angles at the corner at the intersections I'f NI'y and wN1I'; are less or equal to 90 degree.
So we use the local regularity theory in a neighborhood of the boundary [44] and the
partition of unity.

We obtain the regularity results in interior and near I'j, I'; and w, following [21, 38, 48,
8, 34, 42], the difference here is that the coefficient of our bilinear form a(.,.) depends on
T¢. So we obtain the following estimate

[ ll200 + IP°llues < C (1Flogs + 15 ll1/20 + 1G%]l200) (3.14)
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but the constant C' depend on some data ., p*, Cpe, Ck, €2° and also on HT8||CO,1(§).
Thus we establish the needed regularity result of the temperature 7°, then we deduce
with (3.14) the needed regularity of the velocity v®. Then with the Banach fixed point
theorem we establish the existence and uniqueness results of the weak solution to the
above coupled problem [14].

Case 6, we first assume that the function g € (W'=+"(I'¥))3. So with (3.1) it is well
known [3] (Lemma 3.3) that there exists a function G° such that
G € (WH(QF))? with div(G°) =0 in Q°, and G°=g on I*. (3.15)
So we consider the following functional framework on §2°:
Withps (09) = {p e W) : ¢ =0 onT{NTT}
Vi={ve (W"(Q))? : v=G° only, v-n=0 onw}

L@ = {e e ') [ plardo=0)
Qe
then we denote by r/, ¢’ the conjugates of r and ¢ respectively. This non-Newtonian non-
isothermal leads to the following variational formulation : Find u® € Vj,, p° € Lj (),
and 7° € Wﬁéqurg(Qa) such that

a(T%u, 0 —u’) + (p°, div(e)) + () —j(u’) = (f, e —u’), VeeVs,  (3.16)

/KEVTavw + R°T dx = 2/M8(T€)|D(u5)\”wdaﬁ + /bawds, Y € W;;Lqéri(ﬁa),
Qe Qe w
(3.17)
where
(T, 0) =2 [ W) D) 2D () : D(w)da
Qe

This non-Newtonian case is a direct generalized of the Newtonian Case 5. Here by the
Sobolev inequalities [1], for ¢ = ¢/(¢ — 1) > 3 the injection of Wﬁéqupi(ﬁe) in L>°(QF)
make sense to the first term of the right-hand side of (3.13). This idea is not possible for
the Newtonian Case 5.

We assume that there exist u,, p*, K, Kz, R, R, C; in R such that
preCR),  O<p < <pt ‘
fee (W () s 0< Ki <K< K? ; (H)
O<R;<R<rr,; |bF|<C.

we have the following result

Lemma 1. [15] Let 0 € W;{bri. We denote by uj € Vi, the solution of the following
nequality
a(0; ug, ¢ — ug) + j°(9) — 5 (up) = (7, ¢ — ug) Vo € V.

Then there exists C° constante independent of 6 such that

| Vg [|proe)< C°. (3.18)
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And the application :
€ €
0 — Uy € Vdiv
15 strongly continuous.

Theorem 3. Assume (H) hold. For all v > 1 the problem (3.16)-(3.17) has at last one
solution (uf,p*,T¢) in Vi, x L5 (Q°) x W;;%FL(QE).

Proof. [15] Let § > 0, we consider the function

2p5(0) | D(ug) |"

(0,ug) — mg(0) = - (3.19)
’ 14 20p2(0) | D(ug) ["
where uj satisfies the variational inequality
a(t;ug, ¢ — ug) +5°(¢) — J (ug) = (f°, ¢ —up) Vo € Vg,
Using (3.18), 3C§ a constant independent of ¢, 6, uj such that
Now, we consider the following problem : Find 7§ such that
/KEVT§V¢ + R°T5¢y = /M5¢, —I—/beg/) Vip € Hpeure (). (3.21)
Qe Qe w

This problem has a unique solution by Lax-Milgram Lemma. Let define the application
v : B(0, é) N eréungL(QE) — B(0, é) N WI}{{JFEL (€2°)
0 — Ty
where B(0,C) is a closed ball in WE%FEL(QE). We must look for C' > 0 such that v be
well defined. So we choose ¥ = p(7¥) in (3.21), where ¢ is defined by

I¢]

dr 1

t) =& sign(t —— =sign(t)|l — ———— 3.22

o(t) = € signt) [ ey = sign)[1 = e (3.22)
0
with € > 0. we deduce from (3.20)-(3.21) after some calculations that
F—1)(2—¢ Cé N3 2—q

/|VT§ 1< 2% )<§K15>2 x <|Q€ == +A>. (3.23)
Qs -

A is independent of §. So we can choose
1
~ " CT \9/? a
O — |2l —1>(2—q>/2< 1 ) ( QF |2-a)/2 A)
{ ex;) T

Using now lemma 1 and Schauder’s fixed point theorem with the application v, so there
exists .

(45,05, T5) € Vi, x L () x H'(Q%) N B(0,C)
where (u5, p§) solves (3.12), with

U5 =uge, Py =Pre, Ty solves (3.21)

and ms = mg(u5, T5) defined by (3.19). We obtain also the following estimation for the
pressure p5 (as in [13])

8 £
132 i< € i =1,2,3, (3.24)
or
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using (3.18), (3.23), (3.24), and taking a subsequence 6 — 0, we obtain
uy — u®  weakly in WF%LFEL :
p5 — p°  weakly in LT/(Q‘S),
T; = T° weakly in W"(QF) and strongly in LI(°).
From Lemma 1, u§ — u® strongly in V3 consequently as u° € C'(R) we get
ms = ms(T5,u5) — 2u°(T°) | D(u) [ in L),
we conclude that the limit, (u®, p®, T°) solves Problem (3.16)-(3.17). O

Case 7, leads to the same variational inequality (3.3) so the existence and uniqueness of
the weak solution comes from Theorem 1. The main difficulties is to study the behavior
of the weak solution and especially how to pass to the two-scale limit in the variational
inequality, due to the term coming from the Tresca fluid-solid boundary conditions. This
difficulty induce us to prove (see [17]) a needed result of lower-semicontinuity for the
two-scale convergence, using some results on subdifferential and regularization of convex
functions.

4. ASYMPTOTIC ANALYSIS

To be able to compare the solutions for various £ and provide the asymptotic analysis, we
use the change of variables y = x3/¢ to define the fixed domain

Q={(x,y) suchthat ze€w, and 0<y<h(x)},

and we denote by I' = @ U, UT its boundary. For the three cases 1-3, we define the
following functions in €2

1
5w y) = uilo,m) LS T2 (o) = Zu(a, o),

P(,y) = *p*(z, 23).
Let us define first the e—independent vector

f(xay) = (fl(xvy)a f2($7y), f3($>y>>7

then assume the following dependence (with respect to €) of the data
f($7y) :€2f6(x7x3)7 g(ﬂf,y) =g(:c,w3) (41)

k = ek? for the Tresca cases 1, 3, but k = e~ 'k for the Coulomb case 2. (4.2)

The first assumption in (4.1) means that the body forces cannot be too big. In (4.2)
the first one means that k°, the upper limit for the tangential stress has the same order
of magnitude as the actual stress inside the fluid, which is the ratio of the tangential
velocity and of the gap: 5ih’ while the second one means that, roughly speaking, the
friction coefficient k£ ~ ¢ is the ratio of the tangential stress inside the fluid 0% and of the
normal stress o;,, while 07, ~ % (ratio between the tangential velocity and the thickness

of the gap) and o ~ 2 ( order of magnitude of the actual pressure).
Let us define the e—independent vector G(z,y) = (Gy(z,y), Go(z, y), Gs(x,y)) such that
0G,  9Gy 0G
1, 06y | 06y
8%1 81’2 3y

=0 inQ, ng on I,
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and recalling that g3 = 0 on I'p, then we can choose as G° the lift defined by
Gi(x,x3) = Gi(z,y) for i=1,2 and G4z, x3) = eGs(z,y).
Now we define function spaces and sets on {2 we need in our considerations.

V={peHYQ)? :om=0 on w, v=G onl, U},
Vi ={p €V : divp=0in Q}

Vo) ={ve (H'(Q)? : vn=0 on w,v=00only Ul},

L) =g ()« [ adudy =0}
Q

Then assuming (4.1) and the first of (4.2), there exists a unique 4° in Vg, and p° in L3(2),
such that the variational inequality (3.3) leads to the following form:

8u 6@; e o Ny
Z / ( Bz 8:62-) -Pp 5i,j) a—w](% — 4 )dzxdy +

1,]= 1Q

2
ou;  ,0u3, 0 us 0

Z/V( 3y +e axi)a—y(ga dxder/ 21/5 )a (e o3 — 05)dxdy

=19

=1 Q

%

oug  ous 0
2 20U3 J >
/5 v(e o, + 7 )8 (e oy — 05)dxdy > E / a; )dxdy

/ (e~ ¢3—u3)dmy+/k(|¢—s|) —|0f —s))dz Voe K. (4.3)
Q w

Theorem 4. Assuming (4.1) and the first of (4.2) we have the following estimate on 4°

N2 e+ 2 e 4 & - T e
2 " 0xy 2 2 "0n 2 4770
v 6% 05, wve? Oug ., v 0% 005
(5—2) || 5 ||8—$2H +e (§_Z)H6_H
8u3 2, vel 04§,
— —* < C 4.4
e E T (4.4
where ||.|| denotes here the L*-norm in 0, ¢ is the diameter of Q, and Cy is an independent

constant of €.
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Proof. [6] Putting ; = G; for i = 1,2 and @3 = eGs, in (5.8), leads to

as aag ) s 005 . 95
— 6, 2 — )2 rd
Z/(”@xj oz, pa”)a /(”E oy Pyt
63=1q Q
8u3 ol ,0u5  Ous Jug
¢ dxd IV =3 dxd
+z/ ﬁygﬁz/w o ) Gy

2 N A
ous  0u; G, ous G
< 2,2 _pess ) 2 2778 _ ey 273
< g /(5 V(ﬁxj + axz) D (51,]) o, d:vdy+/(2v5 n P°) oy dxdy
Q Q

6ﬂ§ 8u3 e 8u3 9u5 0G
+Z/V(3y 8 ddy—l—Z/eV 5 ay)a dxdy +

Lj

/k’\G — s|dx — Z/fl i — U )dedy — /€f3(é3 — U3)dxdy,

Q

as k is positive.
Using (3.3), the Poincaré inequality, ¢ < 1, and 2ab < a? + b* we deduce

PENGE I+ S e T - TSR + (5 - IS
2 "0z 2 "0xs 2 "0, 2 4 4°"7 0
IR+ - IS+ ISR+ e S <
<l e 2 S 2 1 2
e s VLT

G2 + G

FIANIG + 1L Gl + 1 FGs I+ QAP+ L2l + 1 5l1) + const. |l o)
thus (4.4) follows.

17

(4.5)

= 007

g

Theorem 5. Assuming (4.1), and v > 2 or f =0, the following estimates on p* are

2

satisfied.
op° ‘
vl <G (=172
Ox; H-1(Q)
aAé‘
| P S 5-027
dy H-1(Q)

where C7 and Cy denote independent constants of ¢.

(4.6)

(4.7)
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Proof. [6] Let ¥ in H}(Q), putting in (5.8) ¢; = @5 (for i = 1,2), and @3 = ei§ + 1, we

deduce
O , 05 0
— S —— |9 i —
/p ayd:z:dy / ve By ayduﬂy
Q Q
2 ~
o 0us oy "
- 2p(e* 2 ! dxd / dxd 4.
;/w@%+@@ww+emwy (1.9
=lge Q

Taking in (5.8) 1 = 45 &1, ¥ in H}(Q), @0 = 15, p3 = U5, we get
0 ous 0 ou;  ous5\ 0
—/ﬁa—wdxdy: —/2521/ 4 —wdxdy—/s%( el + u2) wdxdy
Q Q Q

(9.1'1 8951 81‘1 81'2 8:101 (’3x1
o 005\ 0 , 1
— — —dxd dxzd Hy(Q 4.
/V<8y+€ax1>ayxy+ frbdedy b € HA(Q) (4.9)
Q Q
In the same way, the choice 1 = 45, po = 5 £ 1, ¥ in H}(Q), 3 = €1, leads to
. O 5 Ous oY , (0u; 0u5\ Oy
— f—dxdy = — [ 2e*v—=——dxdy — dxd
P 8x2 ey / c VafL‘g (%g vay /5 v 8m2 + 6m1 0x1 ey
Q Q Q
di,  ,0i5\ 0 [1 1
— — | — H;(Q 4.1
/1/ ( By +e 8x2> ayal.rdy+ fobdxdy Y € Hy(R2) (4.10)
Q Q

then from (4.8) using (4.4) we get (4), and from (4.9)-(4.10) using (4.4) we get (5.2). O

We define now the Banach space
V,={ve(L*N)?: —e(L*N)?* v=0 on I}

with its norm
2

Gvi
el = 3= (e + 15 1o )

=1

Corollary 1. Let the assumptions of Theorem 1 and Theorem 5 hold, then there exists
ufin'V, (i=1,2), and p* in L(Q) such that

u; —~u; (1<i<2) weaklyin V, (4.11)
where V, = {¢) € L*(Q) such that % € L*(Q)}.
ou; . : 5
€or 0 (1<i,j7<2) weaklyin L*(Q) (4.12)
Ly
o1 -
£ -0 weaklyin  L7(Q) (4.13)
Iy
5 OUS : : 9
92 0 (1<i<2) weaklyin L*(Q) (4.14)
X
ety —0  weaklyin L*() (4.15)

p-—=p weaklyin  L3(€) (4.16)
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Proof. [6] From (4.4) there exists a fixed constant C' which does not depend on ¢ such
that

(1<i<?2)

using the above estimate and the Poincare inequality in the domain 2 we deduce (4.11).
Also (4.12)-(4.14) follows from (4.4), and (4.16) follows from (5.2), (4) and [54]. To prove
(4.15), as in [7] we choose ¢ such that ¢(z,y) = yf(x) — v where 6 in C§°(w) and

v = /y@dxdy / /dxdy

Q Q
Using the Green formula, the boundary conditions on I' imply

L
=1

As uf — ur in V, (i = 1,2), then (4.15) holds. O

— /90§dxdy =0,
Q

4.1. Study of the limit problem of the 1rst Case. We give both the equations
satisfied by p* and u* in Q and the inequalities for the trace of the velocity u*(x,0) and
*

0
81; (x,0) on Ow.
Theorem 6. With the same assumptions as in Theorem 5, (u*, p*) satisfy
p* e H'(w), (4.17)
82 * .
Vo 821 =f (i=1,2) in L*%Q). (4.18)
Proof. [6] We choose in (5.8) p3 = 4§ + ¢ with ¢ in H}(Q) we deduce
5 OUS @ﬁ; o / 5 OUS oY
dxd 2 dxd
Z/sy o, 8y)8xj$y+ (ygay )a xdy
I=1 Qe Q
~ [ <tuvisay
Q

Using (4.14) (4.11) (4.13) and the hypothesis of this theorem we obtain
0
/p*a—gd:cdy =0 Yo e HI(Q),
Y

then
op*
dy
Choosing now ¢; = 45 & 1, for (i = 1,2) with ¢; in Hj(Q) and @3 = €5, in (5.8), leads

to
2 .
o Ous o;
2 7 I\ nES. . 1
E (5 U(c?xj + axi) P (517]) o = —drdy+

ij=1

=0 in H Q). (4.19)
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O | 0 a¢,
+ 1/u 5t “3 Sdudy —Z/fwzdxdy (4.20)

Q

Using (4.12) (4.16) (4.11) (4.14) and the hypothesis of this theorem we deduce first with
Y1 =0 and 1y in H}(Q), then with wg =0 and 1 in H}(Q), the followmg equality

_Z/ wzdm +Z / e 8% / fitbidzdy (4.21)

119 —IQ

then using the Green formula, we obtain

82 * ap . ' ) .
8y oz =fi (i=12) in H (Q). (4.22)

To prove that p* is in H'(w), let us recall first that p* is a function of (xy, x5) only from
(5), then following [7] we choose v; in (4.21) such that ;(z,y) = y(y — h(x))0(x) with 0
in H}(w), and using the Green formula we deduce

3
1/10 Ol e)dx— 21//hu*9drx = /fﬂd:v
6 ox;

where
. h(z) h(zx)
i) = i [ i ndn, and o) = [yl = b))
0 0
Whence
2whu; — gp =/ (=12 in H (). (4.23)

As f; is in L2(Q), u} in V, then in L*(Q), therefore f; and @} are in L?(w), then from

(4.23) we get p* in H'(w), then (5) follows. So as f; belongs to L?*(€2), then from (5.10)
2, % *

we have %;; in L?(Q2). Whence (5.2) holds, and we also have % in V. O

For convenience, we will denote by s*(x) = u*(x,0) and 7*(z) = %(m,O), iy in V,
then 7* belongs to L*(w), and we have :

Theorem 7. Under the same hypothesis of Theorem 5, (s*,7*) satisfy the following in-
equalities

/l%(w + s —s|) = [s* — s|)dx — /VT*@Dd:E >0 Vip € (LA (w))? (4.24)

w w

vt =k = 3A>0 s*=s+ A"

~ e 1 4.25
vt < k= s*=s boae in v (4.25)

where |.| denotes the R? Euclidean norm.

Proof. [6] Choosing ¢ = (@1, 2, €t5) with ¢; = 45 +1);, for (i = 1,2) and v; in Hp p, ()
where H} p (w) ={v e H'(Q) : v=00onTy NI}, in (5.8), leads to

af s ~E ¢Z f au?) awl
Z/(s v o, 8@) 5”) d:cdy—l—Z/ ( xz> 3 dad

INES IQ
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~ 2 A~
i=1

w

Using Corollary 1, we can pass to the limit in (4.26), to obtain

2 2
Lo, Ou; O
Z/—p (%id:z:dy—i-;/y 3y Oy dxdy+
=10

i=1 0

2
+/IA€(|¢ + 5 —s| —|s* — s|)dx > Z/ﬁ@/)zdmdy
w =1 Q
Using now the Green formula, the equality (5.2) and the fact that ); =0 on I'y N I';, and
cos(n,x;) = 0 on w, we deduce

/I%(W + 5" — 5| —|s* — s|)dx — /VT*@/)da: >0Vy e (H%lUTL(Q)f. (4.27)

w w

This inequality remains valid for any 1 in (D(w))? (using the same notations for the trace)
and by density of D(w) in L?(w) for any ¢ in (L*(w))?. Then (5.1) follows.
To prove (4.25), we take ¢; = £(sF —s;), in (5.1), we obtain

/ <l%|s* — 8| —vr(s* — s)> dxr =0, (4.28)

w

taking 1) = ¢ — (s* — s) with ¢ in (L*(w))?, in (5.1), we obtain

/(1%|¢| —vr0) de > / (kls — 8| = vr(s* — ) d.

w w

And from (4.28) we deduce

/ (1%|¢| . w*¢) dr >0 Yo e (L2(w))?, (4.29)

w

taking first ¢ = (1, ¢2) such that p; > 047 = 1,2, in (4.29), we obtain :

[ (#6l = virLigeos(r ) da = [ (&= vir|costr*,)) feld = 0,

then: )
vt cos(T*,¢) <k a.e. on w, (4.30)
taking now —¢, with ¢ = (¢1, p2) such that ¢; > 0= 1,2, in (4.29), we obtain :

/ (l%|gb\ + v|T*|.|p|cos(T™, ¢)> dr = / (/Af + V|T*|COS(T*,¢)) |p|dx > 0,

whence R
V|t |cos(T*, ) > —k a.e. on w, (4.31)
from (4.30) and (4.31) we get:

vt <k ae on w, (4.32)

then A
kls* —s| > v|T*|.|s" —s| > vr*.(s*—s) ae. on w
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SO A

kls* —s| —vr*.(s*—5s) >0 ae on w
and from (4.28) we deduce that

kls* —s| —vr*(s*—s)=0 ae on w. (4.33)
If v|7*| = k, then from (4.33) we have

v|TH|.|s* = s| =vT*.(s* —s) a.e. onw,

then cos(s* — s,v7*) = 1, which implies the existence of A > 0 such that s* — s = Av7*.
And if v|7*| < k, then from (4.33) we have

kls* —s| —vrt(s* —s) = 0> (k—|vr*])|s* —s| ae. on w,
whence s* —s =0 a.e. on w. then (4.25) follows. O

Theorem 8. Under the same hypothesis of in Theorem 5, and assuming that f s a
function of x only, we have

;Vp*(x) +vs*(z) + vhr*(x) — %2f(x) =0 ae in w. (4.34)
/ (R*7*(z) + 4hs*(z)) V(z)dz = 6/30(x)§(x).n Yo € H'(w). (4.35)
w Ow

Proof. [6] Integrate twice (5.2) between 0 and y we obtain

_y?Opr(x) Ouy(x,0)

* =7 *(2.0 —Zf

and as uf(z,h) = 0, then (4.34) follows. On the other hand, taking the average of the
preceding expression we have

h(z)

hvit(z) = / v (, y)dy

0

h? op* ()

2 Oui (, 0)

h3 .

+ vhul(z,0) + v

Otherwise, for all ¢ in H!(w), and as div(u¢) = 0 in  we have:

hor oo
. ou;  0u§
/gpdiv(uf)dxdy =0= /go(x)/ (Z 81: + a?dx) dy =
0

Q w =1

2

= /go(:l:‘) Z (8(811_3;@ +us(x, h) — ag@,o)) dx

w i=1

then as 45 = 0 on 0f2 =oUl UT, we have

s - h(z)

othg) E O / e

/cp(x) Zl o de =0, where %j(z)= ) u; (x,y)dy, Vz e w,
= 0

w

J(z,y)dy = h(z) (), Yo e dw.

Q
3
QU
2
O
I
Na)
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Using Green’s formula we have
2 9 2 ) 2
Zl/hﬁa;idx = E/hﬁigo.cos(n,xi) = Zl/gi(x)go.cos(n,xi)
= = ow =1 ow

as 45 — uf in V, then in L?*(w), therefore % — @ in L*(w), and as dw C 99, we deduce :

2 2
0
Z;/hﬁz*a—;’idx = Z;/ga(as)gi(x)cos(n,xi) Yo € H' (w). (4.37)
=1y =1 0w

From (4.36) we have

h3 h? h3 .

—Vp* =T — — = g.n. 4.

/<6VVp + hs* + 57 6Vf>Vgod:U /gpgn (4.38)

w ow

Then using (4.34) and (4.38), we obtain the weak formulation of the Reynolds equation:

h? h he o
gt dx = g.n. 4.
/ (12VVp 5 12Vf) Vdz /gog n (4.39)
w Ow
Using once again (4.34) and (4.39) we get (4.35). O

4.2. Study of the uniqueness. In this subsection, we will give another formulation of
the limit inequalities for s* and 7* on w which enables us to express s* as a solution of a
variational inequality of the second kind with a convenient decomposition. The basic idea
is that we have three unknowns s*, 7 and Vp* and three relations (4.34) (4.35) and (5.1).
A test function in (4.35) appears only to be a gradient function. So it is only possible to
control the "gradient” part of s* and 7* by this equation which is obtained by a slightly
modified version of the well known decomposition of L?*(w)?, due to the non constant h(z)
coefficients.

Lemma 2. Let h in L>®(w) N H*(w) such that h > a > 0. Every function ¢ in (L*(w))?
has the following orthogonal decomposition:

Y = h*V + h'curl(9) (4.40)
where @ in H'(w)/R is the only solution of the problem
/ AV oV dr = / hpVudr Yp € HY(w), (4.41)

and 0 in H(w) is the only solution of the problem
/curl(@)curl(ﬁ)dw = /(hw — B3V)curl(é)dr  VE € Hy(w). (4.42)

Proof. [6] As h in L™(w), for all ¢ in (L*(w))?, we have hi) in (L?*(w))?, following
[33](theorem 3.2), the Neumann’s problem (4.41) has a unique solution ¢ in H'(w)/R.
This solution ¢ satisfies V(hi) —h3V ) = 0 in H'(w). Hence hi) —h3Vp is a divergence-
free vector of H(div,w). Moreover, Green’s formula applied to (4.41) yields:

0= / (hp — R*V )V udr = / (hp — R*Vp).nu VYu € HY(w),

w ow
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implying that (hi) — h3Vp).n = 0 in H~'/?(0w). Whence hi) — h3V lies in the space
H = {ve (L*w))?: div(v) =0, wv.n =0} Moreover, as w is connected, we deduce,
from [33] (Theorem 3.1 and its corollary), that the space H is characterized by H =
{curl() :p € H}(w)}, and the mapping curl is an isomorphism from Hg(w) onto H.
So there exists a unique stream function 6 in Hj(w) of hip — h3Vp satisfying (4.40) and
(4.42). O

Theorem 9. Let h in L>®(w) N H'(w). Under the same hypothesis of Theorem 5, s* is
uniquely given by s* = h*VC + h™'curl(D), where U = (C, D) is the unique solution of
the following variational problem: Find U in H'(w) x H}(w) such that

a(U,¢ =U)+J(¢) = J(U) = L(¢ = U) Vo= (p,0) € H'(w) x Hy(w), (4.43)

where a(U,¢) = /4uh3VCV<,0dx+/uh‘%url(D)curl(@)dx,

w w

J(¢) = / k(|h*Ve + h™tcurl(d) — s|)dz,

w

1 A
Lo = §/fcurl(9)d:c + /6V§.ngp.
w Ow

Proof. [6] From (5.1) and the orthogonal decomposition of ¢, we have

/l% (|n*V + heurl(d) + s* — s| — |s* — s|) dv >

w

> /VT*hQVgo + /yr*h_lcurl(H)dx Y(p,0) € H (w) x Hy(w) (4.44)
and from (4.35), we have
/l/h27'*vg0 = —/4I/h3*Vg0+/6l/§.ncp Vo € H'(w) (4.45)
w w Ow

then from (4.44) and (4.45), we have for all (¢, 0) in H'(w) x Hg(w)

//2; (|h*Ve + h~'curl(d) + s* — s| — |s* — s|) dz >

w

> —/4uhS*Vgp+/6V§.ng0+/VT*h_lcurl(H)dx. (4.46)

w Ow w
Now as s* in (L?*(w))?, we can use its orthogonal decomposition as s* = h?*VC+h " curl(D),
then we deduce for all (¢,6) in H'(w) x H}(w)
//2:|h2Vgo + h7teurl(d) + A°VC + h™'curl(D) — s|dz
—/l%|h2VC’ + h™rcurl(D) — s|dx > —/4Vh3VCV<,0

—4V/Curl(D)Vg0+/6V§.ngp—|—/VT*h_lcurl(Q)d:E. (4.47)

w ow w
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Using (4.34) we have

1 v

*7 — * * * L,
/V’T h~tcurl(7*)dr = /(—§Vp — 728 + §f)curl(9)dw,

w w

then

/Vr*h_lcurl(ﬁ)dx— —/%curl(G)Vp*dx—/chrl(G)VCdx

w w w

—/Z/h_gcurl(D)curl(O)dm—{—%/fcurl(@)dx.

w

Using Green’s formula and that 6 in H{(w), we have

/curl(@)Vp*d:v = — < p*,div(curl(d)) > +/curl(0).np*dx =0

w ow

by the same argument we also have

/ veurl(6)VC — / curl(D)Ve — 0.

w w

Then from (4.47) U = (C, D) satisfies for all ¢ = (p,60) in H'(w) x H}(w)

/ {4vh*VCV ¢ + vh~*curl(D)curl(0) } dx

+ / k|h2V(p + C) + b~ curl(0 4+ D) — s|dx

w

. 1.
—/k|h2VC + hteurl(D) — s|dx > /§fcurl(9)dx + /6u§.ngp,

w ow

taking » = ¢ + C and 6 = # + D we deduce the variational inequality (5.11).

As the bilinear form a(, ) is continuous and coercive, the functional .J is convex, proper and
continuous, and the linear form L is continuous, the existence and uniqueness of (C, D)
in H'(w) x H}(w) follows, and implies the existence and uniqueness of s* in (L?(w))?. O

Theorem 10. Under the same hypothesis of Theorem 9, there exists a unique solution
p* in H'(w) satisfying the weak formulation of the Reynolds equation (4.39). Then 7 is
then unique.

Proof. [6] From Theorem 9 s* is unique in (L*(w))?, then the uniqueness of p* follows
from (4.39). Finally 7* is unique from the uniqueness of p* and s* using (4.34). O
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4.3. Case 2. We introduce in this case see [9] the definition that v = (vy,v9) € (L? (Q2))?
satisfies the condition (D') if

a0 06 -
/ (Ula_xl + UQa—:m) dedy =0, V0 e C5°(w).
Q

And consider

~

(Vi) ={p € (H'(Q)* : ¢="(p1,92), w;i=G; on I''uUT,i=1,2}

H(Vyi) = {@ € II(Vy,) : ¢ satisfies condition (D")},
and also the Banach space

81)1-

Vy = {v = (v1,v2) € (L}(Q))*: 3y

€ L*(),i=1,2, v=0 on Iy}

with its norm || - ||y,

2

(%i
o, = 3= (el + 152 e )

i=1
and define its linear subspace (endowed with the same topology)

V,={veV,:v satisfies condition (D')}.
We obtain also the following similar main results

Theorem 11. [9] There exist u* = (u},u}) in V,, p* in L3(), and a subsequence € — 0
such that (4.11)-(4.16) hold. We have also, u; — u} strongly in V, for i =1,2. The limit
functions u*, p* satisfy (5)-(5.2). Moreover u*,p* satisfy the inequality

dy oy
Q

+/’5‘S(—p*)(lso —s| = |u* — s])dz > Z/ﬁ-(% —uf)drdy Vo € II(K). (4.48)
i=1 Q

w

Theorem 12. [9] The pair (u*,p*) satisfies the same weak form of the Reynolds equation
(4.39) where u* = u*(.,0). Moreover, the traces T* = %—’5({5,0) and u*(x,0) satisfy the
following limit form of the Coulomb boundary conditions (2.16)

vt = kS(—p*) = IN>0 u*=s+ M\

. a.e. in w.
vt < kS(—p*) =  ur=s ! “

Theorem 13. [9] There exists a positive constant k* such that for ”I%HL"O(W) < k* the
solution (u*,p*) in V, x (L&(w) N HY(w)) of inequality ((5.1) is unique.
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5. STUDY OF THE case 3

For this case (see [10]) two technical difficulties to study the asymptotic anlysis of this
problem. The first, we cannot use the usual Korn inequality as we do not assume that the
velocity vanishes at one of the boundaries (on the top or the bottom) as is usually assumed
in lubrication problems. We thus derive an analogue of the Korn inequality suitable for
our boundary conditions and such that the constants can be controlled appropriately as
the gap between the surfaces approach zero. This leads us to the main uniform estimate of
the velocity fields and to the limit variational inequality, in consequence. The second, to
be able to make use of the latter, we have to characterize precisely the limit solution space
and the set of admissible test functions. As the limit variational inequality is written in
terms of the first two components of the velocity field, we have to characterize - in this
very limit case - projections of the convexes appearing in the weak form of the Stokes
flow. This allows us, in particular, to obtain a stronger convergence of the velocity fields
as in usually expected. We give here only the main results

Lemma 3. [10] "Poincaré inequality”

/|u|2 < ZshM/|u|2+2 char)? /|@|2 (5.1)

E

Proof.
he (x)

u(z,t) = u(z, h*(z)) — / %(x, 2)dz

~+

We integrate over t € [0, h°(z)] to get

he () he(z)
0
[ et < @) ute e @)+ 206@) [ 1522 P
0 0
and, after integration over w we get (5.1). O

Lemma 4. [10] “Korn’s Inegality” assumming that h € C*(©), we have
[IV= G < afu- G u= 6+ € [u- 6P
s

where

C(I9) = 2¢[| Dahll @) (1 + €3[| Dihl[&w))-
Observe that C'(I'5)) est d’ordre e.
Proof. We have

1 Ov;  Ovgy / ov; Ov; 8112 (%k / 2 / ov; Ouy,
a(v,v) = /(axk + axl) N (axk Oxy. azr;k 81‘1 Vol Oxy, O0x;

0%v; ov;
= Vo|? — / : LR
/' . o,

o0e

Ov; Ov ov ov;
2 z_lc N ) i
/lVU| +/axi Oxy, /3$zvknk+ / Ox kvknz

Qe Qe o0E o0Ne
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As divv = 0 then we have

; v
/|Vv\2:a(v,v)+/gz'vknk—/azkvkni,

Qs IS oQe
For v = u — G°, we have (u — G°)n|,,. =0, so
8?%
VMg — 0,
8[EZ’

o0ne

in other hand, v — G* = 0 sur I'7. So
. ) e
Ovi VN = / v Vpn; = / (ug — Gi)MTLZ
8xk

&vk Gmk
00 I'fuUw Mfuw
as
(u—G°)-ny. . =0, alors i{(u —G°)-n} =0,
1= 8xk
that is
a—xknZ = —(uy Gi)amk.

but g;“l = 0, then from (5.2), (5) we have

Ov; - G5 .
|/ vkm|—|/ o — G, < |/|u P,
ZL‘k qels

o0e

'S is given by x3 = h®(x1,x2), then the unit normal vector exterior to I'j can be written

< gy (21, 22), g—’;;(wl,:vz),l)

n(q) = T+ [Vhe(2)] = n(r1, 3)

For ¢+ = 1,2, we have
Oh® _92h® Ohe _9%hE

anS 2\ — 3 9z1 07,01 Ozs Ox;0x
T ’x — 1 + Vh& 2 1 7 1 2 7 2
o, Tur2) = —(L+ VA 0+ Vi)
hence
on
: he || Dohf| < |Doh?|(1 + | D1hf|?)
similarly
3nj
< |Dsh?|(1 + | D1h%]?).
S| < Dahl(1+ Db
O
Lemma 5.
(5.2)

4
J 19 < S atew) < 10 [ (967 40w [+ [ 16
Qs Os re re
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/|Vu\2 §2/|V(U—GE)|2+2/\VGE|2.
Qe Qe Qe

/]Vu|2 < %a(u—GE, u—G5)+20(Fi)/lu—Gsl2+2/\VG5|2

Proof. [10] We have

and from 4

or

alu— G, u—G°) <2a(u, u)+2a(G°, G°) < 2a(u, u) + 4u/ IVGE|?

o (5.2) follows. O

5.1. Scaling and uniform estimates. Let Q = Q! y = % and assume that
[=clf, k=ck, fla,y) = 5 (x, x3).

Let consider also @(x,y) = (Gl(x,y),ég(x,y), Gg(a:,y)) € (H'(Q2))? such that
Gn=0 sur IZUw (I'1=T}

8G, 9Gy 9G

1, 96y | 0Gs

8$1 a{L‘z 83/
we define G € (H'(Q¢)3, by

=0 (divG=0)

Gf([lj’,l’g) = éz(x7y>a 1= 1727 Gg(l’,l’g) = 6GA(3(‘T’y)a
hence

/|VG5 ?dxdrs < /|VG| dxdy. (5.3)

/WW<G)L/WW+WQ) (5.4)

with Cy(€2) independant of ¢.

€ L2
WH%&Z@W%@ (5.5)
Lemma 6. Assume that there exists | € R such that
R C(re 3
elf =1 and (l ) < =, (5.6)
€ v

then there exists a constante C' > 0 independent of € such that

s/hmﬁgo. (5.7)
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Proof. [10] Choosing ¢ = G in (3.9), and using Young’s inegality we obtain

+l§/u2+/k‘€|u—s| g%/m? 33V/|VG6|2
I w I
32, s,
(B, B / I / Vol 6)

From Lemma 5 we have

4
/my? < —a(u, u)+1o/yvaf\2+40(r§> /\u!2+/]GE\2 . (5.9)
Qs Q= re re

From (5.8) and (5.9) we get

/\vuﬁ (4 415 )/\v \2+10( +CF5>/]G€\2

73 3300() ) L O (320, | 4hiy )

() [oeres (05 (7 )/'“2
Qe

from (5.3), (5.4), (5.5) and (5.6) we deduce the result. O

Assuming (4.1) and the first of (4.2) then from (5.7) we get the same estimates (5.2) and
(5.2). Other estimates follows from the ”Poincaré inequality” (Lemma 3) with the new

variables,
o
012 < 2h /2 2h2/—12
[t < 2o [l +2n, [1GEE
Q Iy Q

||@z‘H%2(Q) < (s, 52||a3’|%2(9) < Cu. (5.10)

So we obtain the same convergence as in Corollary 1. So we obtain the limit variational
inequality,

10u; 0(pi —uy) 8% / oh
2/2 oy Dy p*(z) d dy — Z aIL‘,( x)dr +

for i = 1,2, 3, hence,

ZZ/U?(ZL’»h) (@i(l’,h)—UI(ﬂf,h))dﬁer/’%(I@—Sl = |u" = s|) dzx

=1 w w

> Z / fie — ui)dndy o = (f1,82) € Vi), (511

(Vi) = {7=(41.92) € (H'(Q)?: 33 € H'(Q), ¢ = (¢1,¢2,83) € Vaio}
= {p=(¢1,92) € (H'(Q)*: (¢ — G)r, = 0}.
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Lemma 7. [10]

Fy = {u* = (u},uy) € (L*())?: 86—1;’ € L*(Q), i=1,2, u*satisfait (D)}

is contained in the closure of H(de) in the topology of V,, x V,,.

Lemma 8. The convergence i; — u; when € — 0, for i = 1,2 is strong in V.

Proof. [10] From the “Korn inequality “ (5.2) we have pour ¢ € Viio

=1 I
and
(i — 3y — @) = alp, b — ) + ald, @ — @) sa@,@—aw/a(@—a)
I'1
4 [ (1= sl = fo =)o+ [ - )
w Q
SO

Iy Iy

using Lemma 7 we can pass to the limit ¢; — w7 in the right part to obtain the strong
convergence of u; — u} in the left part. U

Theorem 14. The limit functions u*, p* satisfy
pH(x1, m0,y) = p*(x1,22) ae. in Q, p*€ HY (W),
O%ur  Op*
O Ot
3y2 axz
satisfies the following weak form of the Reynolds equation

h? h h <
/ (EVp* — 53* — 552 + f> Vdr + /s,*thgodx +/g0§.n. =0 Vo€ H'(w).

w w ow

fi (i=1,2) ds L*Q).

where
s*(z) == u*(z,0), sy (z) := u*(z, h(z))
h(z)

g(r) = /f](a:,y)dy Vo € Ow.

0
Moreover, the traces

. ou . Ou”
T = ay ( 70)7 Th = 8y (7h<1‘>),

sy =u*(.,h(x)), s :=u*(.,0)
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satisfy the following limit form of the Tresca and Fourier boundary conditions

I =k= 3IN>0 u =s+I*

: . surw.
| <k= u'=s b

77 Vh.n+ st =0 p.p. surTy.

6. STUDY OF THE CASE 6

To study the asymptotic behavior of the solutions to this Case, we use the same scaling
x

so we introduce the change of the variable z = =% and obtain a fixed domain which is
€

independent of ¢,
Q={(,2)eR’ : (2/,0) €w, 0<2z<h(x)},
N=T=0uUlul
then we define the following functions in €2
ui (', 2) = us (2, x3) fori = 1,2, ug(w
Pl 2) = epf (2l ws) s T2, 2) = T°(2, ws).
And assume the dependence of the data on &

K(a', z) = e e K (o ag), Rz, x3) = TR (2, 2), fo= s

with
3(2—1q)
i
We suppose that
K,<K<K*

Let G = (él, Gy, ég) be independent on ¢ :
0Gy  0Gy  9G

1, 96y 0Gs
Oor;  Oxy 0z
Thus the extension G° of g is defined by

GE(a' xs) = Gi(a, 2) i = 1,2 ; G5(a,x5) = G5,

Injecting the new data and unknown in (3.12)-(3.13), we deduce that (ue, p=, T%) satisfies
the following problem

div,(G) =

2
i=1

Vo eV, (6.1)
/ K V.1V )dr'dz + / RT®) =2 / e (T2 | D(af) |" da'dz
Q Q Q
Ve € WH(Q), (6.2)

where

V = {v c (Wl’T(Q))?’ - v =G on rpuly, ovnyg = O}
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S A ous  Ous\ 0oy
Q TE' € = 2 ( TE D £ r—2 ? J ?
a(Te;us, @) = +¢ E /M( ) | D(u?) | <8xj+8:ci> 8xj+

10,j<2 3
+§;/g<ﬁf) | De) 72 (%—f+§‘3f) @ii +522ij) +
=0
+e’ / p(Te) | D) [ %—f%(dis — u5)da'dz,
Q
IDWW=¥GK%ﬁE 2y @f@+§;@§ Dy 2| i

Let’s now introduce the linear subspace
ov

Vi fpewig) ;
z

< Lq(Q), Ur, = 0}

3(2 —

Theorem 15. [15] Assume (H) hold, and o = a , there exists a constant C, inde-

pendent of €, such that

2

2 PN A~ A A
ous . ou§ |, ous . ou§ |,
Z | 58% 7@y + |l 58—; 17 @) +Z (1l S ) + | 628_; i@ ) <C (6.3)

ij=1 i=1
apAs . apAa
| 5o s G i =12 G- lwaro< e, (6.4)
o1 SN A
| 55 lwe@< C, S e lwra@< C (6.5)
i=1 ¢
Proof. From (6.1) and (6.2), we obtain (6.3)-(6.4), the main difficulty here is to obtain
3(2 —
(6.5) which need the technical condition o = (2=q) see [15] for all the proof. O
—q

So the following weak convergences hold
Theorem 16. [15] Assume (H), there exist
w*eVr i=1,2, p~eLjQ),
and T* € WhH(Q) with I, =0,

such that
i —u* (1<4i<2) weakly in V], (6.6)
OuE
2N L0 (1<i,j<2) weakly in L'(Q), (6.7)
8:1:j
dus o
€ -0 (1<4,5<2) in L'(Q), (6.8)
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ous

528—3 —0 (1<i<?2) inL"(Q), (6.9)
Ly
cuf —0 (1<4,7<2) in L(Q), (6.10)
pF—p* in L (Q), (6.11)
Te ~T* in VY, (6.12)
Te
8(?9:(;2- —~0 in LY(Q), i=1,2 (6.13)
Proof. Readily, from to (6.3)-(6.4) we obtain (6.6)-(6.11), while (6.12)-(6.13) follow from
(6.5). O

Then we can pass to the limit in (6.1) for ¢ — 0 using Minty’s Lemma, and in (6.2), to
obtain

Theorem 17. [15] Assume (H), and also that K € C'(R) : (K) € L™(R), then
u*, p*, T* satisfy
2

> [ Y G L G s = 30 (6~ )

i=1 =1
2

+5(0) = (W) =Y (fidi — i) VO ET(V), (6.14)

=1
0 1 < T—2 our op* ,
(1 T* - 2 ! = =1,2 in L"(Q 1
aZ (lL[/ 2 ; az a > axl fl’ ? ’ m ( )7 (6 5)
p* (1,22, 2) = p*(21,72) a.ein, pre Wl’rl(w)a (6.16)
0 , ~0T* -
—— (K T =0 in LiQ). 1
82( 8z)+R 0 in LI(Q) (6.17)
L OT™

=0 on Ty, and —-K =b on w. (6.18)

0z

Then we obtain the limit problem

Theorem 18. [15] Under the same hypothesis as in theorem 4, the traces
s*=u*(2',0), ¢ =T*0)

. (1 our, , o B ouy , ,
T —<22(az<x70>)) 8Z(x?0)7
satisfy the following inequality
//%(l bast—s|—|s s \)dm’—/,&(g*)T*wd:c' >0 Ve (I'W)?  (6.19)

w w

the limit of Tresca’s boundary condition on w gives:

)™ < k = sc=s
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Also u*,p* and T* satisfy the specific weak Reynolds equation

h y
/ / / ﬂ(T*(x',s>>A*<x',s>%%<x',f>dfdy Vo)
h

N * ’ % z ) 2da'
/ O/MT A, ) G !, )€ | - Vol
i / [%Vp*(w')+ﬁ’(x')] Vo()da' =0 Yo W (w) (6.20)

w

and the following equation

9T O N A L
/K 7 deldz + /RT Yda'dz =0 Vi € Wrip (9), (6.21)

o)

where

F(a) O/ho/jf(x’,y)dydfdzgo/hjf(w’,y)dydf- (6.22)

Theorem 19. The solution (u*,T*,p*) of our limit problem is unique.

Proof. [15] Let (U, T",p"), (U?,T?,p?) be two solutions of the limit problem. Then

T=T"-T"
satisfies the problem
o (0T oT
—— | K RT=0, Tpr, =0, K— =0
0z ( 8z) * e =" 0z o

soT =0, thus Tt =T?% = T*.
Taking ¢ = U? and ¢ = U! respectively, as test functions in (6.14) we get

1 aU r— 28U1 ]. r— 2aUl-2
(52(82)) 0z 52 0z

2
i=1 =1

9,
8—(U U?)dz'dz < 0, (6.23)
using some inequality [45]) we obtain for r > 1
a Ul U2 o
I 5, U = U%) @@= 0,

using the Poincare inequality we deduce that

Ut =U* |l.=0
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so u* is unique. The uniqueness of p* in LY (w) N W (w) follows then from the specific
weak Reynolds equation (6.20), indeed we obtain first

h'3 1 2
[ 50 -vedr o

w

taking

¢=p' —p’

and by Poincare’s inequality we get

I p" = 1* (= 0.

This ends the proof of the uniqueness. O

1]
2]

[10]

[15]

[16]
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