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Abstract

A two-phase Stefan problem with heat source terms in both liquid and solid
phases for a semi-in¯nite phase-change material is considered. The internal heat

source functions are given by gj(x; t) = (¡1)j+1 ½l
t
exp

³
¡( x

2aj
p
t
+ dj)2

´
(j = 1 solid

phase; j = 2 liquid phase), ½ is the mass density, l is the fusion latent heat by unit of
mass; a2j is the di®usion coe±cient, x is spatial variable, t is the temporal variable
and dj 2 R. A similarity solution is obtained for any data when a temperature
boundary condition is imposed at the ¯xed face x = 0; when a °ux condition of the
type ¡q0=

p
t (q0 > 0) is imposed on x = 0 then there exists a similarity solution if

and only if a restriction on q0 is satis¯ed.
Key words : Stefan problem, free boundary problem, Lam¶e-Clapeyron solution,

Neumann solution, phase-change process, fusion, sublimation-dehydration process,
heat source, similarity solution.

2000 AMS Subject Classi¯cation: 35R35, 80A22, 35C05

I. Introduction.
Sublimation-dehydration, which is commonly known as freeze-dying, is used as a

method for removing moisture from biological materials, such as food, pharmaceutical,
and biochemical products. Some of the advantages of sublimation-dehydration over evap-
orative drying are that the structural integrity of the material is maintained and product
degradation is minimized [1], [13]. The major disadvantage of the freeze-drying process
is that it is generally slow, and consequently, the process is economically unfeasible for
certain materials. One means of alleviating this problem is through the use of microwave
energy. Several mathematical models have been proposed to describe the freeze-drying
process without microwave heating [6], [8]. Only a few studies have also included a mi-
crowave heat source in the model [1].
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In [9] the one-phase Lam¶e-Clapeyron-Stefan problem [7] with a particular type of
sources was studied and a generalized Lam¶e-Clapeyron explicit solution was obtained.
Moreover, necessary and su±cient conditions were given in order to characterize the source
term which provides a unique solution.
Several applied papers give us the signi¯cance in order to consider source terms in

the interior of the material which can undergo a change of phase, e.g. [3], [5], [10], [14].
Phase-change problems appear frequently in industrial processes; a large bibliography on
the subject was given recently in [16].
In [14] there is a mathematical model for sublimation-dehydration with volumetric

heating was presented from which analytical solutions for dimensionless temperature,
vapor concentration, and pressure were obtained for two di®erent temperature boundary
conditions. It was considered a semi-in¯nite frozen porous medium with constant thermal
properties subject to a sublimation-dehydration process involving a volumetric heat source

of the type g(x; t) =
const:

t
exp

¡¡ (x+ d)2¢, and, a sensitivity study was also conducted
in which the e®ects of the material properties inherent in these solutions were analyzed.
In this paper a semi-in¯nite homogeneous phase-change material initially in solid phase

at the uniform temperature ¡C < 0, with a volumetric heat source, is considered. A
mathematical description for the temperature within the material is given by

@T2
@t
(x; t) = a22

@2T2
@x2

(x; t) +
1

½c2
g2(x; t); 0 < x < s(t); t > 0; (1)

@T1
@t
(x; t) = a21

@2T1
@x2

(x; t) +
1

½c1
g1(x; t); x > s(t); t > 0; (2)

for two given internal source functions ([9], [14]) given by

gj = gj(x; t) = (¡1)j+1½l
t
exp

µ
¡( x

2aj
p
t
+ dj)

2

¶
j = 1; 2; (3)

½ is the mass density, l is the fusion latent heat per unit of mass; a2j is the di®usion
coe±cient; cj is the speci¯ed heat per unit of mass and kj is the thermal conductivity, for
j = 1 (solid phase), 2 (liquid phase).
The initial temperature and the temperature as x!1 are assumed to be constant

T1(x; 0) = T1(+1; t) = ¡C < 0; x > 0; t > 0: (4)

At x = 0; two di®erent temperature boundary conditions are considered, the ¯rst is a
constant temperature condition

T2 (0; t) = B > 0; t > 0 (5)

which is studied in Section II, and the second is an assumed heat °ux of the form

k2
@T2
@x

(0; t) =
¡q0p
t
; t > 0 (6)

which is studied in Section III. This kind of heat °ux condition was also considered in
several papers, e.g. [2], [11], [12] and [15].
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The phase-change interface condition is determined from an energy balance at the free
boundary x = s(t) :

k1
@T1
@x

(s(t); t)¡ k2@T2
@x

(s(t); t) = ½l
:
s (t); t > 0; (7)

where the temperature conditions at the interface are assumed to be constant:

T1 (s(t); t) = T2 (s(t); t) = 0; t > 0: (8)

Moreover, the initial position of the free boundary is

s(0) = 0: (9)

In section II we obtain an explicit solution for the problem (1)-(5),(7)-(9) for internal
heat sources given by (3).
In Section III we solve the same free boundary problem but with the heat °ux con-

dition of the type ¡ q0p
t
(q0 > 0) prescribed on the ¯xed face x = 0, and we obtain an

explicit solution to this problem if the coe±cient q0 satis¯es an appropriate inequality
(48) or (49); this restriction on q0 is new with respect to [14].

II. Solution of the free boundary problem with temperature boundary condi-
tion at x=0.
Applying the immobilization domain method (see [4]), we are looking for solutions of

the type
Tj(x; t) = µj(y) j = 1; 2; (10)

where the new independent spatial variable y is de¯ned by

y =
x

s(t)
: (11)

Then, the condition (7) is transformed in

k1µ
0
1(1)¡ k2µ02(1) = ½ls(t)

:
s (t); (12)

and we must have necessarily that s(t)
:
s (t) =const. i.e.,

s(t) = 2a2¸
p
t; (13)

where the dimensionless parameter ¸ > 0 is unknown.
Next, we de¯ne

Rj(´) = µj

³´
¸

´
; j = 1; 2; ´ = ¸y; (14)

then the problem (1)-(5),(7)-(9) is equivalent to the following one:

R002(´) + 2´R
0
2(´) =

4l

c2
exp

¡¡ (´ + d2)2¢ ; 0 < ´ < ¸; (15)

R001(´) + 2
a22
a21
´R01(´) = ¡

4a22l

a21c2
exp

Ã
¡
µ
a2
a1
´ + d1

¶2!
; ´ > ¸; (16)
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R1 (¸) = R2 (¸) = 0; (17)

k1R
0
1 (¸)¡ k2R02 (¸) = 2½l¸a22; (18)

R1(+1) = ¡C; (19)

R2 (0) = B: (20)

After some elementary computations, from (15), (17) and (20) we obtain

R2(´) = B ¡ (B + '2(¸)) erf(´)
erf(¸)

+ '2(´); 0 < ´ < ¸ ; (21)

'2(´) =
¡lp¼
c2d2

£
erf(´ + d2)¡ erf(d2)¡ erf (´) exp

¡¡d22¢¤ ; if d2 6= 0 (22)

'2(´) =
2l

c2

£
1¡ exp ¡¡´2¢¤ ; if d2 = 0: (23)

and, from (16), (17) and (19), we have

R1(´) = ¡(C + '1(+1))
erf c

³
a2
a1
¸
´ 2p

¼

a2
a1
´Z

a2
a1
¸

exp(¡u2)du+ '1(´); ´ > ¸; (24)

where

'1(´) =
l
p
¼

c1d1
exp

¡¡d21¢ [exp(¡2a2a1¸d1)
µ
erf(

a2
a1
¸)¡ erf(a2

a1
´)

¶
+ (25)

+ exp
¡
d21
¢µ
erf(

a2
a1
´ + d1)¡ erf(a2

a1
¸+ d1)

¶
]; if d1 6= 0

'1(+1) = l
p
¼

c1d1
exp

¡¡d21¢ [exp ¡d21¢ erf c(a2a1¸+ d1)¡ exp(¡2a2a1¸d1) erf c(a2a1¸)]; if d1 6= 0
(26)

or

'1(´) =
2l
p
¼

c1
[
a2
a1
¸

µ
erf(

a2
a1
´)¡ erf(a2

a1
¸)

¶
+ (27)

+
1p
¼

Ã
exp

Ã
¡
µ
a2
a1
´

¶2!
¡ exp

Ã
¡
µ
a2
a1
¸

¶2!!
] ; if d1 = 0

'1(+1) = 2l
p
¼

c1
[
a2
a1
¸ erf c(

a2
a1
¸) +¡ 1p

¼
exp

Ã
¡
µ
a2
a1
¸

¶2!
] ; if d1 = 0 (28)

where ¸ is the unknown coe±cient which must verify the condition (18). Furthermore,
the Eq.18 for ¸ is equivalent to the following equation

f1(x) = f2(x) ; x > 0: (29)

where

f1(x) = F0(x)h1(x) ; f2(x) = Q

µ
a2
a1
x

¶
h2(x) (30)
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with
Q(x) =

p
¼x exp(x2) erf c(x) ; F0(x) = x erf(x) exp(x

2); (31)

h1(x) = Ste1 ¡
p
¼ exp(¡d21)

d1

h
exp(¡2d1a2

a1
x) erf c(a2

a1
x)¡ exp(d21) erf c(a2a1x+ d1)

i
(32)

erf(x) =
2p
¼

xZ
0

exp(¡u2)du; erf c(x) = 1¡ erf(x) ; h2(x) = Ste2p
¼
¡ F (x); (33)

with

F (x) = F0(x) +
exp(¡d22)
d2

£
exp(d22) (erf(x+ d2)¡ erf(d2))¡ exp(¡2xd2) erf(x)

¤
; (34)

and

Ste1 =
Cc1
l

; Ste2 =
Bc2
l

(35)

are the Stefan number for phase j = 1 and j = 2 respectively.

Theorem 1 The Eq.29 has a unique solution ¸ > 0: Moreover, the free boundary problem
with heat source terms (1)-(5),(7)-(9) has an explicit solution given by

T1(x; t) =
¡ (C + '1(+1))
erf c

³
a2
a1
¸
´ h

erf
³

x
2a1

p
t

´
¡ erf

³
a2
a1
¸
´i
+ '1(

x

2a2
p
t
);

for x > s(t); t > 0;

T2(x; t) = B ¡ (B + '2(¸))
erf( x

2a2
p
t
)

erf(¸)
+ '2(

x
2a2

p
t
) ;

for 0 < x < s(t); t > 0;

(36)

where '1(´) and '2(´) are de¯ned in (25) ¡ (28) and (22) ¡ (23) respectively. The free
boundary s(t) is given by (13) where the coe±cient ¸ is the unique solution of Eq.29.

Proof. Taking into account the Lemma 2 (see below) we can prove that Eq.29 has a
unique solution ¸ > 0: We invert the relations (14), (10) and (11) in order to obtain an
explicit solution of problem (1)-(5),(7)-(9) with the source terms gj de¯ned by (3).¥

Lemma 2 A) Functions Q (x) ; F0(x) and F (x) satisfy the following properties:

(i) Q(0) = 0; Q(+1) = 1; Q0
(x) > 0; 8x > 0; Q0(0) = p¼:

(ii) F0(0) = 0 ; F0(+1) = +1 ; F 00(x) > 0; 8x > 0:

(iii) F (0) = 0 ; F (+1) = +1 ;
@F

@x
(x) > 0; 8x > 0:

B) (a) Function f1(x); satis¯es the following properties:

(i) f1(0
+) = 0 ; (ii) f1(+1) = +1;
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(iii) if condition (47) is veri¯ed then f1(x) > 0; 8x > 0;
@f1
@x
(x) > 0 and

@f1
@x
(0+) = 0+;

(iv) if conditions (47) is not veri¯ed then f1(»1) = 0 and f1(x)

is negative in (0; »1); and is positive in (»1;+1); then there exists
x1 2 (0; »1) such that @f1

@x
(x1) = 0: Moreover we have

@f1
@x
(x) > 0

8 x > »1:
(b) Function f2(x) satis¯es the following properties:

(i) f2(0+) = 0 ; (ii) f2(+1) = ¡1 ; (iii) f2(»2) = 0;

(iii)
@f2
@x
(x) =

a2
a1
Q0
³
a2
a1
x
´
h2(x) +Q

³
a2
a1
x
´ @h2
@x
(x);

(iv)
@f2
@x
(0+) =

a2
a1
Ste2 > 0;

(v) there exists x2 2 (0; »2) such that @f2
@x
(x2) = 0;

(vi)
@f2
@x
(x) < 0 ; 8 x > »2:

C) Function W (x) satis¯es the following properties:

(i) W (0) =
a1
a2
p
¼
[Ste1 ¡ 2p¼P (d1)] if d1 6= 0; where P is de¯ned by

P (x) =
exp(¡x2)¡ erf c(x)

2x
;

(ii) W (0) =
a1
a2
p
¼
[Ste1 ¡ 2] if d1 = 0;

(iii) W (+1) = +1;

(iv) if condition (47)is veri¯ed thenW (0) ¸ 0 and @W
@x
(x) > 0; 8x > 0:

(37)

D) Function V (x) satis¯es the following properties:

(i) V (0) =
q0
½la2

; (ii) V (+1) = ¡1 ; (iii)
@V

@x
(x) < 0; 8x > 0:

III. Solution of the free boundary problem with a heat °ux condition on the

¯xed face x=0.
In this section we consider the problem (1)-(5),(7)-(9), but condition (5) will be re-

placed by condition (6) (see [12], [15]). We can de¯ne the same transformations (10),(11)
and (14) as were done for the previous problem, and we obtain (15)-(19) and

R
0
2(0) =

¡2q0
½c2a2

(38)
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It is easy to see that the free boundary must be of the type s(t) = 2a2¹
p
t where ¹

is a dimensionless constant to be determined. The solution to the problem (15)-(19) and
(38) is given by

R1(´) = ¡(C + '3(+1))
erf c

³
a2
a1
¹
´ ·

erf

µ
a2
a1
´

¶
¡ erf

µ
a2
a1
¹

¶¸
+ '3(´); ´ > ¹; (39)

where

'3(´) =
l
p
¼

c1d1
exp

¡¡d21¢ [exp(¡2a2a1¹d1)
µ
erf(

a2
a1
¹)¡ erf(a2

a1
´)

¶
+ (40)

+ exp
¡
d21
¢µ
erf(

a2
a1
´ + d1)¡ erf(a2

a1
¹+ d1)

¶
]; if d1 6= 0

'3(+1) = l
p
¼

c1d1
exp

¡¡d21¢ [exp ¡d21¢ erf c(a2a1¹+ d1)¡ exp(¡2a2a1¹d1) erf c(a2a1¹)]; if d1 6= 0
(41)

or

'3(´) =
2l
p
¼

c1
[
a2
a1
¹

µ
erf(

a2
a1
´)¡ erf(a2

a1
¹)

¶
+ (42)

+
1p
¼

Ã
exp

Ã
¡
µ
a2
a1
´

¶2!
¡ exp

Ã
¡
µ
a2
a1
¹

¶2!!
] ; if d1 = 0

'3(+1) = 2l
p
¼

c1
[
a2
a1
¹ erf c(

a2
a1
¹)¡ 1p

¼
exp

Ã
¡
µ
a2
a1
¹

¶2!
] ; if d1 = 0 (43)

and

R2(´) =
q0
p
¼

½c2a2
(erf(¹)¡ erf(´)) + '2(´)¡ '2(¹); 0 < ´ < ¹ (44)

where '2 was de¯ned in (22)-(23) and the unknown ¹ must satisfy the following equation

W (x) = V (x) ; x > 0 (45)

where

W (x) = x exp(x2)

Q
³
a2
a1
x
´ [Ste1¡

p
¼ exp(¡d21)

d1

³
exp

³
¡2a2

a1
xd1

´
erf c

³
a2
a1
x
´
¡ exp(d21) erf c

³
a2
a1
x+ d1

´´
]

if d1 6= 0;

W (x) =
x exp(x2) exp

µ
¡
³ a2
a1
x
´2¶

Q
³
a2
a1
x
´ [Ste1 exp

³
a2
a1
x
´2
+ 2Q

³
a2
a1
x
´
¡ 2] ; if d1 = 0;

and

V (x) =
q0
½la2

¡ x exp(x2) + exp(¡d
2
2)

d2
(exp(¡2d2x)¡ 1) ; if d2 6= 0; (46)

V (x) =
q0
½la2

¡ x exp(x2)¡ 2x; if d2 = 0:
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Theorem 3 (a) If

Ste1 > 2 ; if d1 > 0 or Ste1 > 2
p
¼P (d1); if d1 < 0 (47)

then Eq.45 has a unique solution ¹ > 0 if and only if q0 satis¯es the following inequality

q0 ¸ 2a1½l

·
Ste1
2
p
¼
¡ P (d1)

¸
if d1 6= 0; (48)

q0 ¸ a1½lp
¼
[Ste1 ¡ 2] if d1 = 0; (49)

where P was de¯ned in (37i) :

(b) The free boundary problem with sources term (1)-(4), (6)-(9) has an explicit
solution given by

T1(x; t) =
¡ (C + '3(+1))
erf c

³
a2
a1
¹
´ h

erf
³

x
2a1

p
t

´
¡ erf

³
a2
a1
¹
´i
+ '3

µ
x

2a2
p
t

¶
for x > s(t); t > 0

(50)

T2(x; t) =
q0
p
¼

½c2a2

·
erf(¹)¡ erf

µ
x

2a2
p
t

¶¸
+ '2

µ
x

2a2
p
t

¶
¡ '2 (¹)

for 0 < x < s(t); t > 0;
(51)

where '3 and '2 are de¯ned in (40)-(43) and (22)-(23) respectively, the free boundary is
given by

s(t) = 2a2¹
p
t;

and ¹ is the unique solution given in (a).
Proof. To prove (a) we use the de¯nitions of the functions W and V; and Lemma 2. We
invert the relations (14), (10) and (11) in order to obtain (50)-(51).¥
A more general case for internal heat sources of the non-exponential type will be given

in a forthcoming paper.
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