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Resumen

En este articulo se presenta una resena de resultados recientes en la teoria de
dispersion para la ecuacion de Schrédinger no lineal en una dimension y con
un potencial. En particular, en la construccién del operador de dispersion para
energias pequenas y en la resolucién del problema inverso. Especificamente, damos
condiciones en el potencial y en la nolinealidad tales que el operador de dispersién
para energias pequenas determina univocamente el potencial y la nolinealidad,
y damos un método para la reconstruccién de ambos. Estos resultados estan
basados en la estimacién L' — L™ que demostramos en [10].

Palabras claves: dispersién inversa, ecuacién de Schrodinger no lineal.

Abstract

In this paper we review recent results on the scattering theory for the nonlinear
Schrodinger equation with a potential on the line. In particular, on the con-
struction of the low-energy scattering operator and on the solution of the inverse
scattering problem. Namely, we give conditions on the potential and on the non-
linearity such that the low-energy scattering operator determines uniquely the
potential and the nonlinearity, and we give a method for the reconstruction of
both. These results are based on the L' — L> estimate that we proved in [10].
Key words: inverse scattering, nonlinear Schrodinger equation.
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1 Introduction

In this paper T wish to discuss some recent results in the scattering theory of nonlin-
ear evolution equations of dispersive type. We will consider in particular the nonlinear
Schrodinger equation. This is one of the main equations of mathematical physics and it
is a typical case that shows many of the main features of other equations. The aim of
direct scattering theory is to study the behavior for large times of the solutions, and in
particular to prove that -under appropriate conditions- the solutions are asymptotic as
t — +o00 to solutions of a simpler, linear equation with constant coefficients. Since the
solutions of the later equation are obtained by Fourier transform, direct scattering theory
allows us to describe the asymptotic behavior of the solutions to our nonlinear evolution
equation in a simple way. Of course, this situation excludes the case of nonlinear bound-
states, that are solutions periodic in time. This requires either that the initial data is
small or that the interaction is repulsive in a appropriate sense. The operator that to the
inital data of the asymptotic solution as t — —oc asigns the inital data of the asymptotic
solution as ¢ — oo is the scattering operator.The purpose of inverse scattering theory is
to obtain information on the potential and the nonlinearity, from the scattering opera-
tor. In other words, we wish to obtain as much information as possible on the potential
and the nonlinearity, from the asymptotic behavior of the solutions; more precisely, from
the relation of the asymptotic behaviors as t — +o00. Some of the main problems are
uniqueness: does the scattering operator uniquely determines the potential and the non-
linearity?, and reconstruction: to obtain formulae that allow to reconstruct the potential
and the nonlinearity from the scattering operator.

We will discuss the following nonlinear Schrodinger equation with a potential,

2

(t,x) = —ﬁu(t, z) + Vo(x)u(t,x) + F(z,u),u(0,z) = ¢(x), (1.1)

it
where t, z € R, the potential, Vj, is a real-valued function and F'(z,u) is a complex-valued
function. In the case where the potential is zero, Vy = 0, there is a very large literature
on the direct scattering problem . See for example [1], [2], [3],[4] [5], [7] and [8]. When

Vo = 0 the linearized equation is the free Schrodinger equation,

d2
mu(t, ) = —=ult, 1), u(0,7) = (2) (12)
Let us denote by Hj the self-adjoint realization of —% in L2 with domain the Sobolev

space Wy, and let us define e by functional calculus. The solution to (1.2) is given
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by, e~ og Tt follows immediately from the explicit formula for the kernel of e=*Ho that

the following L' — L> estimate holds,

[ oﬁ 6l (13)

The estimate (1.3) expresses in a quantitative way a important property of the solutions
to (1.2). Namely, that as ¢ — 400 the solutions not only propagate to spacial infinity,
but they also spread uniformly in space. This is known in the physics literature as wave
packet spreading. This spreading is essential in the study of the nonlinear Schrodinger
equation. This can be seen as follows. For simplicity, suppose that ¢ € L' N W 5. Then,

we have that,

1

He_itHod)HLoo S ¢ 1+ |t|

(1lls + Il -

Suppose moreover, that F(z,u) = Au|®~Du, for some constant A and some large positive
p. Then, if ¢ is small enough; initially F' will be small and the solution to (1.1) with
Vo = 0 will propagate for small times essentially like a solution to the free Schrodinger
equation (1.2). Moreover, because of the spreading the solution will be even smaller as ¢
increases, and this will give the nonlinear term no chance to become very big and to make
the solution blow-up in a finite time. If the initial data is not small, but the nonlinearity
is repulsive -in a proper sense- a similar phenomenon takes place. In both cases there is
a balance within the linear and the nonlinear terms that makes possible the existence of
solutions global in time, and that permits the analysis of the large time asymptotics of the
solutions in terms of the solutions to the free Schréodinger equation (1.2), i.e., scattering
takes place. But what happens when the the potential Vj is not identically zero? In this
case the linearized equation is the following Schrodinger equation with a potential,

.0 d?

zau(t, T) = —ﬁu(t, z) + Vo(x)u(t,x),u(0,2) = ¢(z), (1.4)
and we would need that an estimate as (1.3) holds with Hj replaced with the perturbed
Hamiltonian, H := Hy+Vj. The problem is that such an estimate is at worst not true and
at best quite hard to come by. Suppose for example that H has an eigenvalue, F, with

eigenvector ¢, i.e., that Hp = E¢. Then, e ¢ = e~ ¢. This solution is periodic in

time and it does not spreads at all; e_”ngSHLOO = ||¢|| ;.. However, we can hope that an
estimate as (1.3) holds for initial data in H,., where #,. is the subspace of continuity for H,

that is to say, the orthogonal complement of the subspace spanned by all eigenvectors of
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H. In one dimension this is rather delicate estimate-due to the singularity at low energy-
that has been proved only recently in [10]. We give this result below, but first we state
some standard notations and definitions. For any v € R, let us denote by L}r the Banach

space of all complex-valued measurable functions, ¢, defined on R and such that

||¢||L§ = / |o(x)| (1 + |z|)? do < .

We say that Vi, € L{ is generic if the Jost solutions to the stationary Schrodinger
equation at zero energy are linearly independent, and we say that V} is exceptional if they
are linearly dependent. See [10] for details. We denote by P. the orthogonal projector in
L? onto H,.

THEOREM 1.1. (The L' — L™ estimate [10] ). Suppose that V € L) where in the
generic case v > 3/2 and in the exceptional case v > 5/2. Then for some constant C,

He—thPc

< —. 1.5
B(L',L>) — |t| ( )

COROLLARY 1.2. (The LP — LP estimate [10]). Suppose that the conditions of Theo-
rem 1.1 are satisfied. Then for 1 <p <2 and 1—1) + % =1,

C

B(LrL?) = 1| G=3)

H e*ZtHPC

(1.6)

The L' — L estimates have many applications. See for example [1]. In fact, in page 27
of [1] the problem of proving estimate (1.5) was posed as an interesting open problem of
independent importance, but actually [10] already existed in preprint form when [1] was
published. Corollary 1.2 follows from Theorem 1.1 using the fact that e=# is unitary in
L? and by interpolation. The proof of (1.5) given in [10] is based in a careful analysis of
the low energy behavior of the Jost solutions that uses the fact that the Jost solutions
are obtained as solutions of integral equations of Volterra type and techniques of ordinary
differential equations. The L' — L* estimate (1.5) is the key to the solution of the low-
energy direct scatering problem and of the inverse scattering problem in [10] and [13]. We
state the results below after we introduce some more standard notations. As usual, we
say that F(x,u) is a C* function of u in the real sense if for each x € R, RF and SF are
C* functions with respect to the real and imaginary parts of u.We assume that F is
in the real sense and that (%F) (z,u) is C' in the real sense. If F' = F| +iF, with F}, F}

real-valued, and v =r +is,r, s € R we denote,
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@) 0? 0? 0?
PO ) 1= 3 | [Shin)| + g | + i) |
(1) 2
0 o (0 o (0

Let us define,

M = {u € C(R, Wy pi1): sug(l + |t|)d||u||WLerl < oo} ,
te

with norm
lullar == sup (L + [t lullw, .
teR
where p > 1, and d := %%. For functions u(t,z) defined in R? we denote u(t), for

u(t,-).

THEOREM 1.3. (The low-energy scattering operator [13]) Suppose that Vy € LY, where
in the generic case v > 3/2 and in the exceptional case v > 5/2, that H has no eigenvalues,

and that

r+1
N(Vo) = sup [ V()P dy < oc.
HAS T

Furthermore, assume that F is C? in the real sense, that F(z,0) = 0, and that for each
fixed x € R all the first order derivatives, in the real sense, of F' vanish at zero. Moreover,

suppose that a%F is C in the real sense. We assume that the following estimates hold:

(1)
FO(z,u) =0 (|u|p_2) , <3£F> (z,u) =0 (|u|p_1) , u — 0, uniformly for x € R,
T

for some p < p < 00, and where p is the positive root of %Z;Jr} = %. Then, there is a § > 0

such that for all ¢ € Wao "Wy 1 with || |lw,, + [[¢—[lw, 1 S0, there is a unique
k) p ’ N =
solution, u, to (1.1) such that v € C(R, W) N M and,

P

tLiEHOO ||U(t) - 67“H¢*||W1,2 =0.

Moreover, there is a unique ¢4 € W, o such that
lim [lu(t) = e 76, o, = 0.
Furthermore, e= ¢, € M and

_q 4 p
=704, < e o]
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p
||¢+ - ¢*||W1,2 S O ||¢7||W2,2 + ||¢7||VV1 1+l
’ P

The scattering operator, Sy, : ¢_ — ¢ is injective on Wy 1, 1 N Was.
o

Note that, p =~ 3.56.
The wave operators for the linear scattering problem corresponding to equation (1.1)

with F' = 0 and equation (1.2) are given by:

Wy :=s— lim e ¢ "Ho,
t—+oo

It is proven in [6] that the limits above exit in the strong topology in L? and that

RangeW. = H,.. The corresponding scattering operator is given by,
SL = Wj: w_.

The scattering operator below relates asymptotic states that are solutions to the linear

Schrodinger equation and it is the appropriate one for the reconstruction of V.
S = Wj; SVO W_. (17)

In the following theorem we reconstruct Sz, from S.

THEOREM 1.4. ([13]) Suppose that the assumptions of Theorem 1.8 are satisfied.
Then for every ¢ € Wao NW; 4,1

%S(eq&) = S19, (1.8)

e=0

where the derivative in the left-hand side of (1.8) exists in the strong convergence in Wi ».

COROLLARY 1.5. ([13]) Under the conditions of Theorem 1.3 the scaltering operator,

S, determines uniquely the potential V.

In the case where F(z,u) = Y22, Vi(z)u[?@® )y we can also reconstruct the Vj,j =

1,2,
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LEMMA 1.6. ([13]) Suppose that the conditions of Theorem 1.3 are satisfied, and more-
over, that F(z,u) = 3232,
for |ul <n, for some n >0, and where V; € Wi o with ||Vj|lw, . < C?,j =1,2,---, for
some constant C'. Then, for any ¢ € W NW, 14+ there is an €y > 0 such that for all

V() w20y, where jy is an integer such that, jo > (p—3)/2,

0<e<ep:

oo

i ((Sy — I)(eg Z 2(jo+i)+1

[ [ ez v e[ Qj]; (1.9)

where ()1 = 0 and Q;,j > 1, depends only on ¢ and on Vi, with k < j. Moreover, for any
¢ € R, and any X\ > 0, we denote, ¢\(z) := ¢p(N(x — £)). Then, if ¢ #0:

(Jo+3j+1)

limy o A [ [ dt da V() 7 \
[ [ dtdx |67itH0¢| (Jo+i+1)

Vi) = (1.10)
COROLLARY 1.7. ([13]) Under the conditions of Lemma 1.6 the scattering operator,
S, determines uniquely the potentials V;,j = 0,1, -

The method to reconstruct the potentials V;,7 = 0,1,---, is as follows. First S, is
obtained from S using (1.8). By any standard method for inverse scatering for the linear
Schrodinger equation on the line (recall that H has no eigenvalues) we reconstruct Vj.
We then reconstruct Sy, from S using (1.7). Finally (1.9) and (1.10) give us, recursively,
Vi, j=1,2,---

For the proof of these results, the extension to the multidimensional case and to the
nonlinear Klein-Gordon equation see [9], [10], [11], [12], [13], [14] and [15]. In these papers

also a discussion of the literature is given.
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