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A Quasilinearization Approach

for Parameter Identification in
Nonlinear Abstract Cauchy Problems
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Abstract: A quasilinearization approach for parameter identification in nonlinear abstract Cauchy prob-
lems in which the parameter appears in the nonlinear term, is presented. This approach has two main
advantages over the classical one: it is much more intuitive and the derivation of the algorithm is done
without need of the sensitivity equations on which classical quasilinearization is based. Sufficient con-
ditions for the convergence of the algorithm are derived in terms of the regularity of the solutions with
respect to the parameters. A comparison with the standard approach is presented and an application
is included in which the non-physical parameters in a mathematical model for shape memory alloys are
estimated.

Key Words: Abstract Cauchy problem, quasilinearization, parameter identification, semigroup, shape
memory alloy.

Resumen: Se presenta un método para la identificacién de pardmetros basado en cuasi-linealizacién
para problemas de Cauchy abstractos no lineales en los que el pardmetro aparece en el término no lineal.
Este método tiene dos ventajas principales sobre el método cldsico: es mucho mas intuitivo y el algoritmo
se obtiene sin utilizar las ecuaciones de sensitividad en las cuales se basan los métodos clésicos de cuasi-
linealizacién. Se derivan condiciones suficientes para la convergencia del algoritmo en términos de la
regularidad de las solcuiones con respecto a los pardmetros. Se presenta una comparacién con el método
cldsico y una aplicacién en la que se estiman los pardmetros no fisicos en un modelo matemaético para
materiales con memoria de forma.

Palabras clave: Problemas de Cauchy abstractos, cuasi-linealizacién, identificacién de pardmetros,
semigrupo, materiales con memoria de forma.

AMS Subject Classification: 34K30, 34G20, 35R30.

1. Introduction

Let ? be a Banach space, A the infinitesimal generator of an analytic semigroup T'(¢) on Z, D a subset
of Z, Q a separable Hilbert space, Q a subset of Q and F be a mapping, F : @ x [0,T] x D — Z. We
shall consider the following nonlinear Cauchy problem in Z:

£(t) = Az(t) + F(g,t,2(t)), t€(0,T)
(P)q _
2(0) = zg.

T The work of the authors was supported in part by CONICET, Consejo Nacional de Investigaciones Cientificas y Técnicas

of Argentina through project PEI 0123/98, by ANPCyT, Agencia Nacional de Promocién Cientifica y Tecnoldgica through
project PICT98 03-4375, by UNL, Universidad Nacional del Litoral through project CAI+D 94-0016-004-023.
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The spaces Z and Q will be referred to as the state-space and the parameter space, respectively, while Q
will be called the admissible parameter set.

Let Y be a real Hilbert space and C a bounded linear operator from Z into Y, C € L(Z,Y). We
shall refer to Y and C as the observation space and observation operator, respectively. Let 2; € Y, be
“observations” at times ¢;, 0 < t; < T, 4 =1,2,--- ,m of the process described by the IVP (P),. The
“parameter identification problem” (ID problem in the sequel) associated to (P), and the observations

{ai}il, is:
(ID) : find ¢ € Q that minimizes the error criterion

@ =3 Y lestisa) - 415 (L)

where z(t;¢) denotes the unique solution of (P), in the interval [0,7). In the next section we will
provide sufficient conditions for the existence and uniqueness of solutions.

There are two general approaches to ID problems. The first one, frequently used in linear problems,
is the so called indirect approach. Here, the identification algorithm starts with a finite dimensional
approximation of the infinite dimensional problem, after which an optimization algorithm based on these
approximations is implemented. The second approach, called the direct approach, consists of applying an
optimization algorithm to the infinite dimensional problem (P), and using finite dimensional approxima-
tions when needed to solve the resulting infinite dimensional subproblems. Depending on the problem
being considered, one method can be more efficient than the other. Methods based on the indirect ap-
proach are usually easier to implement computationally, however in general they require that the dynamic
equations be solved a greater number of times than direct methods do. For this reason, in practical prob-
lems the use of indirect methods is mainly restricted to linear problems. Also, for indirect methods, no
more than subsequential convergence can be obtained while “full” convergence can be proved for certain
direct methods.

The convergence issue in ID problems is very important. Although direct methods usually generate
much more efficient algorithms and quite often full convergence can be shown, they have the drawback
that they require the solution of the system to be smooth with respect to the parameters. In many cases
this smoothness does not exist or it may be difficult to prove.

Identification problems arise often in many physical, geological, chemical and biological systems. It is
for that reason that a great amount of attention has been devoted to the study of identification methods
for linear and nonlinear distributed parameter systems. In particular, the quasilinearization approach to
ID problems has been studied by several authors for different types of problems. Brewer, Burns and Cliff
[5] have worked on many identification issues that arise in the study and application of quasilinearization
methods for nonhomogeneous linear systems of the type 2(t) = A(q)z(t) + u(t), where the dependence
on the unknown parameter ¢ comes through the linear operator A(¢q). Hammer [8] applied these tools to
nonlinear problems of the type 2(t) = A(q)z(t) + f(t,2), where f(t,z) is nonlinear in z but it does not
depend on the unknown parameter q. Banks and Groome [2] considered a quasilinearization approach
for ID problems arising in the study of general nonlinear problems of the type 2(t) = g(t, 2(t), q), but
their work is valid in finite dimensional state spaces only, i.e., 2(t) € R" and it does not extend to the
associated infinite dimensional case. To our knowledge, ID problems for systems of the type (P), have
never been studied previously.

The organization of this article is as follows. In Section 2 the quasilinearization algorithm for parameter
identification in an abstract context is derived. In Section 3 sufficient conditions for the convergence of
the algorithm are given. In Section 4 a comparison is made between the approach presented here and the
standard approach to quasilinearization. In Section 5 an application is presented in which the parameters
that define the free energy in a model for Shape Memory Alloys are identified.

2. Quasilinearization Algorithm

In this section we will introduce the algorithm, but first we need to recall some properties of analytic
semigroups and make some assumptions on the nonlinear part of the equation.
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Let p(A) and o(A) denote the resolvent and spectrum of A, respectively. Since A generates an analytic
semigroup, w = sup{Re(X) : A € 6(A4)} is finite and for any complex A with Re(\) > w the fractional
powers (A — A)° of A — A are closed, linear and invertible operators in Z, for any & € [0,1] (see [11]).
From this point on, A will be fixed with Re(\) > w, Zs shall denote the space Dom ((AI — A)%) imbedded
with the norm of the graph of (A — A)%. Due to the fact that Re(\) > w, one has A € p(A) and this
norm is equivalent to the norm ||z[|s = ||(A\] — 4)°z| .

Consider the following standing hypothesis.

(H1). There ezists 6 € (0,1) such that Zs C D and F : Q x [0,T] x Zs — Z s locally Lipschitz
continuous in t and z, i.e., for any ¢ € Q and any bounded subset U of [0,T] x Zs there exists a constant
L = L(q,U) such that

|1F(q,t1,21) — F(q,t2, 22)|l ; < L([t1 — to| + |21 — 22]|5) » V(ti,z) €U, i=1,2.

where the constant L can be chosen independent of ¢ on any compact subset Q¢ of Q.
The following theorem follows immediately from Theorem 6.3.1 in [11].

THEOREM 1. Let ¢ € Q and 20 € Zs. If F satisfies (H1), then there exists t1 = ti1(g,20) > 0
such that (P), has a unique classical solution on [0,t1). i.e., there exists a function z(-) € C°([0,t1) :
Zs)NCH((0,t1) : Z) such that #(t) = Az(t) + F(q,t,2(t)) for all t € (0,t1) and z(0) = 20. The function
z(t) satisfies the integral equation

z(t):T(t)z0+/0 T(t— s)F(q,5,2(s))ds,  Vt€[0,t1).

Also, t1(q,2z0) > 0 can be chosen independent of q on compact subsets of Q.

Let us denote by z(t; g) the local solution z(t) of (P),. Consider now the parameter estimation problem
(ID). We shall assume from now on that for each fixed ¢ € [0,¢1) the mapping ¢ — 2(¢;q) is Fréchet
differentiable. Sufficient conditions on F' that guarantee this assumption are given in the next theorem.
A proof can be found in [6, Theorem 2.3].

THEOREM 2. Assume (H1) holds for some § € (0,1) and the mapping (¢,2(-)) = F(q,-,2(:)) from
Q x L>®(0,T : Zs) into L*>°(0,T : Z) is Fréchet differentiable in both variables. Assume also that the

mapping (q,z(-)) = Fy(q,-,2(-)) from Q x L*(0,T : Zs) into L™ (O,T : L (Q,Z)) is locally Lipschitz

continuous with respect to q anNd z. Then the mapping q — 2(-;q) is Fréchet differentiable from Q —
L>(0,T : Z5) and for any h € Q, 24(t; q)h is the solution vy (t) of the linear IVP

{ on(t) = Avp(t) + Fz(q,t, 2(8 9))on(8) + Fy(g, 1, 2(5,9))h, 1€ (0,T)
Uh(O) =0.

Here Fy and F, denote the Fréchet derivatives of F with respect to g and z, respectively.

We shall assume that there exists a minimizer ¢* € Q of J(g), given in (ID). Although at a first
glance this assumption may look too restrictive, it reflects the fact that we are only interested in finding
minimizers that are admissible. In practical problems admissibility reflects the physical restrictions on
the parameters.

The following algorithm is proposed. Start with an initial guess parameter ¢° of g¢*.

Step 1: Given an estimate ¢* of ¢*, k > 0, approximate z(t; q) by its first order Taylor expansion around
gk, ie., let 2M1(E q) = 2(t;¢%) + 24 (t; ¢%) (¢ — ¢%) where 2,4(t; ¢*) denotes the Fréchet derivative of z(t; q)
with respect to ¢, evaluated at g*.

Step 2: Define the modified error criterion J* : @ — R} by

2
Y

1 m
T*(q) = 5 Z [C2*+ (ti5 q) — 2
=1

1 — .
=5 S (2t 6) + 2ot 6") (a = a*)] = & -
=1



30 Pedro MORIN and Rubén D. SPIES, Parameter Identification, MAT - Serie A, 3 (2001) 27-41.

Step 3: Next, define g¥*! to be a minimizer of the modified error criterion J*(g). In order to find ¢F*!,
differentiate J*(q), set the result equal to zero and solve for q. Finally, call this solution ¢¥*!, replace k
with k£ + 1 and repeat Step 1.

It is important to mention here that our minimization problem is a constrained problem since we seek
a minimizer ¢* € Q. However, we have treated the problem as being unconstrained and therefore there
is no a priori guarantee that if ¢* is in Q then ¢**! will be in Q. We shall overcome this difficulty by
assuming that ¢* is an interior point of Q. Under this additional hypothesis we will prove (in Theorems
7 and 8) that if the initial guess ¢° is sufficiently close to ¢*, then all the iterates ¢* are also in Q.

Observe that, unless z,(t;;¢¥) = 0, for all i = 1,2,...,m, the functional J*(q) is strictly convex and
there exists only one solution of D,(J¥(¢q)) = 0. This solution is a minimizer. Also, the condition
D,(J*(g)) = 0 is satisfied if and only if

D (Czq(tis @), Czg(ti6") (g — 6"))y = =Y (Coq(ti:0¥)h, Co(tis6) — 2),,

=1 i=1

for every h € Q. ~
Let {g; : § =1,2,...} be an orthonormal basis of Q. Then, the equation above is equivalent to

m m
D (Caq(ti; )95, C2qti36") (@ = 0"))y = =D (Czqlti34")9;, Caltig*) — 23y, (2.1)
i=1 i=1
for j =1,2,.... Since {g;} is an orthonormal basis, ¢ € Q iff there exists a unique a = (a1, as,...) € £2
such that ¢ = E;’il a;jg; and ||g||g = |ale. Therefore the parameter identification problem can be

reformulated in terms of the coefficients of g as follows. Define £*(Q) = {a € £* : ¢ = }°72, a;g; € Q}.
Given o* € £2(Q) (¢* € Q) determine o**! € £2(Q) by solving equations (2.1) for gq.
More precisely, for each a € £2, let ¢, denote the expression Z;’il a;g;, and define

m

Pla)yy =) M(tiqa)" [M(ti;qa)7], 7 €L,

i=1
where for each ¢ € O, t € [0,T], M(t;q) : > = Y is defined by

aq
M(t;q)a =[Cz(t; )91 Cze(t;q)ga -] | 92 | = Cz(t;9)qa

and M(t;q)* : Y — (2 denotes the adjoint of the operator M(t;q). With this notation a**! can be
computed as

okt = of — [P(a®)] i M (835 gor )" [C2(ti5 gar) — 2i]
- B (o) i (2:2)

whenever [P(oz’“)]*1 exists.

Although the above steps completely define the quasilinearization algorithm, it is important to mention
that in the present form it cannot be implemented computationally due to the fact that Q can be infinite
dimensional. However, if it is known that ¢* belongs to a finite dimensional subspace Q¢ of 9, or if we
want to determine the parameter ¢** that minimizes J(q) over some finite dimensional subspace Q° of
Q, the algorithm can be properly modified to be computationally implementable.

3. Convergence of the quasilinearization algorithm

In this section we shall deal with convergence issues related to the algorithm introduced in the previous
section. Sufficient conditions for the convergence of the algorithm will be presented. Two preliminary
lemmas will be needed.
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LEMMA 3. Lett € [0,T] be fized and M (t;q) as defined above. If the mapping ¢ — z(t; q) from Q — Zs
has a locally Lipschitz continuous Fréchet derivative, then the mapping o — M (t;q4) is continuous from
2(Q) — L(£2,Y). Moreover, for any a € £%(Q), there exist positive constants 1, and L, depending on
t such that

1M (t;90) — M (t;Qa)”L(zZ,y) < Lala—alp, Va € By, (a),

where B, (a) denotes the open ball in (% of radius 1, centered at a. The same result holds for the
mapping o — M(t;qa)*.

PROOF. Let t € [0,T] be fixed. By hypothesis, for each a € £*(Q) there exist positive constants 7,
and L, such that ||z,(t; go) — 24(t; qa)||£(é z) < La [[ga — gal| for every & € B, (). It then follows that

1M (t;qa) — M ((9a)ll2vy = sup [I[M (5 4a) — M (¢95)]7lly
TEL2, [v|=1
= sup ||[Cz(t;ga) — C2q(t;9a)] aylly
76427"”:1
<lClezy s {laltian) = 2000l oo lanle}
YE

y lvl=1
< ”C”E(Z,Y) Lo |lga — Q&”Q
= ”C”L‘,(z,y) L, |a — 54| =L, |a — 54|

provided & € B,,_ (). |

LEMMA 4. Under the same hypothesis of Lemma 3, the mapping o — P(a) is locally Lipschitz contin-
uous from (2(Q) — L(¢2,¢%).

PROOF. The result follows immediately from Lemma 3. In fact, observe that

[P(a) — P(&)]y = Z M (ti;q0)* M (ti;ga)y — ZM(ti; qa)* M (ti; qa)y
= Z M (ti;q0)" [M (ti;qa) — M (ti; qa)] v

+ Z [M(ti; ga)* — M(t:;05)" ] M (ti;q5)y. ™

Before stating the main results concerning the convergence of the quasilinearization algorithm (QA),
we will first need to recall the concept of a point of attraction. Sufficient conditions for an iteration
mapping on a Banach space to have a point of attraction are given in Lemma 6.

DEFINITION 5. Let U be an open subset of a Banach space X and E : U C X — X. We say that z*
is a point of attraction of the iteration x*t! = E(z*) if there exists an open neighborhood S of x* such
that S C U and for any z° € S, the iterates x* € U, for all k > 1 and ¥ — 2* as k — oco.

LEMMA 6. Let U be an open subset of a Banach space X, E:U C X — X, * € U and suppose there
is a ball B = By(z*) C U and a € (0,1) such that

1E(z) —z*| < aflz —2*||,  VzeB.

Then x* is a point of attraction of the iteration x*+1 = E(x*).

PrOOF. Whenever 2° € B, we have that ||2! —z*| = ||E(2°) — 2*| < a||2° — 2*|| < an < 7, and
therefore z* € B. By induction |zF+! —z*|| = || E(z¥) — 2*|| < a||z* —2*|| < oft! |2 —2*|| - 0 as
k — oco. Hence z* € B Vk and z* — 2* as k — oo.
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THEOREM 7. (LOCAL CONVERGENCE OF THE QA UNDER EXACT FIT-TO-DATA ASSUMPTION). Assume
the hypothesis of Lemma 3 holds. Assume also that there exist an open set U C £2(Q) and o* € U such

that [P(oz*)]_1 exists and J(qo~) = 0. Let E be the iteration mapping defined by (2.2). Then, for every
€ > 0, there exists a constant § > 0 so that |o — o*| < § implies

|E(a) — a*| < Kla — o* > + €|a — o|

where K is a constant depending only on o* (not on €). In particular, a* is a point of attraction of the
iteration o1 = E(a*).
PROOF. By definition

m

E(a) = a—[P(a)] {Z (ti;9a)" (C2(ti; ¢a) — ﬁi)}

i=1

whenever [P(a)] ™" exists. Hence,

E(a) —a*=a—[Pla {ZM(,,qa) (Cz(,,qa)—éi)}—a*

P _ZM( zaQa) (Cz( wqa)_éi)}

i=1

3

i=1

3

{ZM zaqa [M(tiQQa)(a_a*)_Cz(tiQQa)'l‘éi]}

i=1

ZM tz;‘]a [M(tiZ‘]a) _M(ti§qa*)] (a_a*)}

_[a

PN M(t5500)" [C2(ti; ga) — C2(ti; qar) — M (ti; gar) (o — a*)]}

i=1

S

- [P()]

/—/H/—’H
3

Z (ti; )" [C2(ts; g ) — 21]} .

Since J(ga+) = 0, the third term on the right hand side equals zero. Also, since [P(a*)] ' exists,
‘[P(a)]_IH < Kp whenever
L£(¢2,62)
| — a*| < 6;. Also, from Lemma 3 there exists M > 0 such that || M (¢;;94)*|| < M fori=1,2,...,m
provided |a — o*| < 4;.
Consequently, for |a — a*| < d; one has

by continuity there exist positive constants §; and Kp such that

|B(a) = a*| < KpM Y |I[M (ti;4a) = M (55 ¢a-)] (@ — a®)|
i=1

+ KpM > (Ca(ti; ga) — C2(ti; qar) — M(ti; gar) (& — )|

i=1
= A+ B.

Now, by Lemma 3, if |@ — a*| < 1a+, then A < KpMmLy+ | — a*|2. Also, since

M(ti; qa+) (a — @) = C24(ti; gar) (da — a*) 5

we have from the definition of the Fréchet derivative z,(t; ¢) that given € > 0 there exists d2 = d2(€,a*) > 0
such that |a — a*| < d, implies

”Cz(tl; QQ) - Cz(ti; qa*) - M(tz’;Qa*) (a - Oé*)” <e ”qa - (]a*” =c€ |Oé - a*l )
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for all i =1,2,...,m. Finally for any a such that |a — a*| < §* = min {d;, d2, 74+ } one has
|E(a) —a*| < KpMm [Ea* la —a*]> +ela— oz*|]

and the desired result follows. By Lemma 6, a* is a point of attraction of the iteration a**! = E(a*). R

It is important to note that in Theorem 7 we have assumed an exact fit-to-data at the minimizer a*.
In practice, when working with real parameter identification problems, this is not a realistic assumption
due to possible observation, measuring and modeling errors. In the next theorem we weaken this exact
fit-to-data assumption.

THEOREM 8. (LOCAL CONVERGENCE OF THE QA WITH NOISY DATA). Assume the hypothesis of
Lemma 3 holds. Assume also that there exist an open set U C £2(Q) and a* € U such that P(a*) is non-

singular and o* is a fized point of E, i.e. o* = E(a*). Let 61 and Kp = sup{||P(oz)||71 Ha—a*| < 51}
be as in Theorem 7 and let L be the smallest constant satisfying

[|M (ti;590)" — M(ti;q0+)"|| < L]a —a*], Vie—ao*| < 4y, i=1,2,...,m,

and suppose that

m
v=KpL Z IC2(t:; qa) — 2l < 1.
i=1

Then o* is a point of attraction of the iteration o+ = E (o).

PROOF. Let € > 0 be given. Following the same steps as in the proof of Theorem 7, we find that

|E(a) —a*| < KpMm [£|oz—oz"‘|2 +e|a—a*|]

+|[[P@] ™Y M(ti;90)" [C2(ti;qar) — i) (3.1)
i=1
provided |a — a*| < 6*, where §* = min (61, d2,74+) is as in Theorem 7. But,
D M(ti;gar)" [C2(ti; gar) — 2] = 0, (3:2)
i=1

since, by assumption, a* = E(a*). Combining (3.1) and (3.2) we obtain

|E(a) —a*| < KpMm [£|a — o'’ + €| —a*|]
m

D M (ti;qa)* — M(ti; gar)*] [C2(ti; gar) — 2]
i=1

+ Kp

< KpMm [£|oz—oz*|2 +e|a—a*|]

m
+ KpLla—a”| Z IC2(ti; gar) — Zill

i=1

=KpMm [£|a—a*|2+e|a—a*|] + 7| —a

where v < 1 by hypothesis. Choosing € < 41(1;1;’[m it follows that |E(a) — a*| < H2|a — o*| for every a

satisfying |a — o*| < min (6*, @;MVM) This concludes the proof. |
It is important to note here that in Lemma 3 as well as in Theorems 7 and 8 we have assumed the
local Lipschitz continuity of the mapping g — 2z4(¢; ¢). The following theorem, whose proof can be found

in [6, Theorem 3.1] states sufficient conditions on F(g,t, z) under which this assumption is guaranteed.
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THEOREM 9. Let the hypotheses of Theorem 2 hold. Assume also that the mapping (¢,2(-)) —
F.(q,-,2(-)) from Q x L>®(0,T : Zs) into L>®°(0,T : L(Zs,Z)) is locally Lipschitz continuous with re-
spect to both variables q and z(-). Then, the mapping ¢ — 24(-;q) from Q — L>(0,T : L£(9, Z)) is locally
Lipschitz continuous.

4. A comparison with the standard approach to quasilinearization

In the standard literature ([5], [8]) the quasilinearization algorithm is introduced in a rather different
manner than the one discussed in the previous sections. For the sake of completeness, we briefly present
here this standard, although less intuitive approach. In spite of the fact that at a first glance, the methods
look completely dissimilar, we shall show that they both lead to the same iterative process.

Assume that the nonlinear term F'(q,t, z) is Fréchet differentiable with respect to ¢ and 2. Given an
estimate ¢* € Q of the minimizer ¢* € Q, we define z¥(t) = z(t; ¢*) and linearize problem (P), about
(¢*,2%(t)). This procedure yields the following IVP (P)%

2(t) = AzZF(t) + F(q",t,2%(t))
+F,(q",t,2%(t))(q — ¢*)
! +A(2(t) — 27(8)) + Fa (¢, t, 2% (8)) (2(t) — 2*(t))
z(0) = zp.

Next, we define 2**1(t; ¢) to be the solution of (P)¥ and choose ¢**! to be a minimizer of the modified
error criterion
2

1 m
T*q) = 3 Z |C25H (t:; ) — 2
i=1

Observing (P)¥, we see that v(t) = 25+ (t; ¢) — 2¥(%) is a solution of the IVP
{ o(t) = Av(t) + Fy(q", 1, 2(t;¢%)) (q — ¢*) + Fa(q", t, 2(t; ) (1),
v(0) = 0.
This system is known as the “sensitivity equations” associated to the ID problem. In view of Theorem 2,
v(t) is the Fréchet g-derivative of 2(¢; ¢) evaluated at ¢* and applied to (¢ —g*), i.e. v(t) = 2z,(t; ¢*)(g—g¥)
and therefore

(4.1)

2N t;q) = 2(t6°) + 2(t;6%) (g — ¢F).
Hence,

Tk (q) = % D_lle 2t a") + zqti6*)a = ¢*)] - ally

which is the same error criterion obtained in Section 2.

As we can see, the classical quasilinearization approach is based upon the linearization of the initial
value problem around the solution corresponding to the guess parameter. The derivation requires previous
knowledge of the sensitivity equations (4.1). On the other hand the method introduced in Section 2 is
based simply upon the linearization of the solution of the IVP (P), around the guess parameter. The
derivation of the algorithm does not require the sensitivity equations. We emphasize however that in the
computational implementation, both methods make use of the derivatives of the solutions with respect
to the unknown parameters and, therefore, of system (4.1).

5. An application example - Numerical results

In this section we consider an example in which the quasilinearization algorithm is used to solve a
parameter estimation problem in the following system of nonlinear partial differential equations:

putt — Bpuzat + Yugzaxr = f(2,t) + (2a2(9 — 01 )uy — dagud + 6a6ug)z , z€(0,1),0<t<T

(5.1a)
Cob; — kbrz = g(z,t) + 2020uuz + Bpus,, z€(0,1),0<t<T (5.1b)
u(z,0) = uo(x), ut(x,0) =vo(z), 8(x,0) =60(x), =€ (0,1) (5.1c)
u(0,t) = u(1,t) = uge(0,8) = ugr(1,8) =0, 0<t<T (5.1d)
0:(0,t) =60,(1,t)=0, 0<t<T. (5.1e)
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These equations arise from the conservation laws of linear momentum and energy in a one-dimensional
shape memory beam. The functions u and 8 represent displacement and absolute temperature, respec-
tively. The subscripts “z” and “t” denote partial derivatives and p, Cy, k, 3, v, a2, a4, ag, 61 are positive
constants depending on the alloy being considered. The functions f(z,t) and g(z,t) denote distributed
forces and distributed heat sources. For a detailed explanation of the model and the meaning of the
parameters involved we refer the reader to [12] and the references therein.

The semigroup theory (see [11]) provides a powerfull tool for treating initial-boundary value problems
as ordinary differential equations in abstract spaces. In particular, this approach has be en proved to
be very usefull for showing existence and uniqueness of solutions as well as well-posedness of partial
differential equations. Semigroup theory is also very popular in other related areas such as inverse
problems asocciated to certain IBVP, identification and control. The basic theory and a few applications
to PDE’s can be found in [11] and reference [3] is an excellent source for applications of the theory to
more concrete problems.

We are mainly interested in using experimental data to estimate the parameters as, a4, ag and 6. It
is important to note that these are non-physical parameters and therefore they cannot be estimated from
laboratory experiments. Next, following the theoretical approach mentioned above, we shall formulate
the IBVP (5.1a-e) as an abstract nonlinear Cauchy problem in an appropriate Banach Space. We first
define the admissible parameter set as Q = {q = (a2, 04,06,01) |q € Ri }, and the state space Z as the
Hilbert space Hg(0,1) N H?(0,1) x L?(0,1) x L?(0,1) with the inner product

U
< U ’
0

The operator A on Z is defined by

>iv/olu"(:c)ﬂ”(w)dw+p/olv() d:c+— 0 0

™S

U u € HY(0,1), u(0) =u(l) = u"(0) =u"(1) =0
Dom(A) = v | €Z|ve Hi0,1)N H?0,1)
0 6 € H%(0,1),0'(0) =6'(1) =0
u
and for z = | v | € Dom(4),
0
u 0 1 0 u
9* 9’
Al v ]| = _%W ﬂm 0 , v
0 0 0 c%zf? 0
uo(z)
We also define 29(z) = | vo(z) | and F(q,t,2): @ x [0,T] x D — Z by
(90(.’):')
0
F(q,t,z) = f2(q,t,2) s (52)
f3(q,t,Z)

where

pfa(a,t,2)(z) = f(z,t) + (202(8 — 01 )u, — dagui + 6asug),
C’UfS(qat;z)( ) g(x t) + 2a20u$v$ + ﬂpvwa
and D = H}(0,1) N H%(0,1) x H'(0, 1) x H'(0,1).
P (

With the above notation, the IBVP (5.1a-e) can be written as the following abstract Cauchy problem
in the Hilbert space Z:

(P) { 42(t) = Az(t) + F(q,t,2), 0<t<T 653

2(0) = 2.
Consider the following standing hypothesis.
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(H2). For each fized t > 0, the functions f(-,t), g(-,t) belong to L*(0,1) and there exist nonnegative
functions Ky(z), K,(z) € L*(0,1) such that

[f(@,t1) — f(z,t2)| < Kp(z)[ts —t2|,  |g(z,t1) — g(z,t2)| < Ky(@)[t1 — t2
for all x € (0,1), t1,t2 € [0,T].

The following results can be easily derived from theorems 3.7 and 3.11 in [13] with only slight modifi-
cations in order to take into account for the different boundary conditions being considered here. Since
the modifications needed are trivial and the proof is not important for the goals pursued by this article,
we do not give details here.

THEOREM 10. The operator A defined above generates an analytic semigroup T (t) in Z. Hypothesis
(H2) implies that the mapping F as defined by (5.2) satisfies hypothesis (H1) for any & € (2,1).

The following theorem shows that the operator A and the function F' satisfy the regularity conditions
required by Theorems 2 and 9 to ensure the existence and Lipschitz continuity of the Fréchet derivative
of the mapping g — 2(t; ¢). This result, together with Theorems 7 and 8, will yield the local convergence
of the quasilinearization algorithm to the optimal parameter.

THEOREM 11. Let Z, A and F(q,t,2) be as defined above and assume (H2) holds. Then the mapping
(g,2(4)) = F(q,-,2(-)) from QxL>®(0,T : Zs) into L= (0,T : Z) is Fréchet differentiable in both variables.
Also, the mappings (g,2(-)) = Fy(q,-,2(:)) and (q,2(-)) = F.(q,-,2(:)) are locally Lipschitz continuous
from Q x L®(0,T : Zs) into L°(0,T : £(Q, Z)) and from Q x L=(0,T : Zs) into L>°(0,T : L(Zs,Z)),
respectively.

PRrRoOOF. This result follows immediately after observing that f»(g,t,2) and fs3(q,t,2), as previously

defined, are Fréchet differentiable with respect to ¢ and z. Moreover, these derivatives can be computed
explicitely and are given by:

U m
szQ((],t, v ) 72 = f2,uﬂ+f2,v7~]+f2,907
(7] (7]
u m B
sz3(q7t7 v ) 12 = f3,uﬁ+f3,v7~)+f3,097
(7] (7]
u 1
D, fag,t, | v |) = p [26'u' +2(0 — )", =12 ()’ u", 30 () v, —2asu" |,
0
u 1
D, f3(g,t, | v |) = =[26u'v', 0,0, 0],
9 Co

where the linear operators f; ,, fi,v and fi; 9, ¢ = 2,3 are given by
1
fou=" {2a20'D + 20a3(0 — 61)D? — 24au'u" D — 1204 (u')2 D?
p

+120a6 (u')® w"'D + 300 (u')* D2} ,
f2,v =0
1
f2,0 = = {2a0u'D + 2a0u"'},
p

1
f3,u = C_'u {204201)lD}
f30= C’i {2020u'D + 26pv' D},

1
fao = c. {2a0u'v'"} . ]
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In the examples that follow we make use of the parameter values reported by F. Falk in [7] for the alloy
Auy3CusgZnyy. These values are: ap =24 J em™3 K1 oy =1.5x10° Jem™3 , ag =7.5x 106 J cm—3
K160, =208K,C, =29)ecm 3K k=19wem 'K !, p=11.1gem?, f=1and y=10"12 ]
cm~1. We want to estimate ¢* = (a2, a4, ag, 61) = (24, 1.5 x 10°, 7.5 x 10°, 208).

Under certain general conditions, the one-to-oneness of the mapping ¢ — z(t;¢) in this particular
example can be proved (see [10]). The choice of the examples below was made in order to fulfill these
conditions.

Example 1: Ezact data.

For this example we take ug = 0, vg = 0, §p = 200 K, g(x,t) =0,

1x10%, if04<z<0.6,
flz,t) =

0, otherwise

and T = 0.01. First, we obtain u(t,z,q*) and 0(¢,z,¢*) by numerically solving the problem. For this
purpose we make use of the spectral method developed in [9]. The observations are then taken to be
N 9
5 = “(”’j’t"’q*) , where #; = 0.0014, i = 1,2,...,10 and z; = 0.01j, j = 1,2,...,9. We
e(mjat’hq ) j=1
start with an initial estimate ¢° = (50, 3 x 10°, 15 x 108, 420), approximately equal to twice ¢*. The
results of the iterations produced by the quasilinearization algorithm are shown in Table 1 and Figures
l.a-d. Figure 2a shows a comparison between u(z,T;q*) and u(z,T;q*) while in Figure 2b, §(zx,T;q*)
and §(z,T;q"*) are drawn for different values of k.

k oy oy og 01 J(q*)

0 50.0000 300000 1.50000e+07 420.000 1994.6900
1 16.1807 228111 1.40769e+07 459.904 611.1950
2 26.1790 222964 8.71784e+06 33.096 280.8220
3 25.3531 246241 8.83171e+06 126.468 15.3156
4 24.2770 178223 7.87660e+06 181.091 7.1313
5 24.0166 151184 7.51451e+06 206.550 0.6210
6 24.0012 150073 7.50096e+06 207.927 0.0122
7 24.0001 150006 7.50008e+06 207.994 0.0030
8 24.0001 150002 7.50003e+06 207.998 0.0029
9 24.0000 150002 7.50002e+06 207.998 0.0029
10 24.0000 150002 7.50002e+06 207.998 0.0029

Table 1: Values of the parameters and of the error criterion at different iteration steps.
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Figure 1: Evolution of the iterations for Example 1.
0.12 T T 1100 T T T T
0.1[ 7 1000
0.08 - T 900
- 7
5 J % g
5 4 \ &
3 0.06[ / hY 1 2 800 T
% / \ 5
S g \ i3}
/ \,
/
0.04 [ y; \ 1 700
// o data \
/J — k=0 \l\
0.021 / —- k=3 \\ 1 600
/
....... k=7 \
0 ! . L - Y 500 . . . .
(0] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
space space

a) (b)
Figure 2: Dispsacement (a) and Temperature (b) at T = 0.01 for ¢ =q¢*, k=0,3,7.
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Example 2: Noisy data.

This example is analogous to Example 1, except that now we add random noise to the observa-
tion data in order to simulate measuring and modeling errors. More precisely, the observations are

9
. .. * . .
taken to be 2; = {(u(m],tz,q*) + T >} , where r; ; and 7;; are random numbers uniformly dis-
() ti;q7") +7ij ) | 1o

10 9
_ 1
tributed in (—0.05u,0.05u) and (—0.050,0.055), respectively, with & = %sz(xj,ti;q*ﬂ and

i=1 j=1
a 1 * . s . . . 0 5 6
0=— Z Zﬂ(xj,ti;q ). The initial estimate is again ¢° = (50, 3 x 10°, 15 x 10°, 420). The results of

the iterations are shown in Table 2, and Figure 3. Figure 4a shows a comparison between u(z,T; ¢*) and
u(x,T; q*) while in Figure 4b (x,T;q*) and 0(z, T; ¢*) are drawn for different values of k.

k as 0y ag 01 J(q")
0 50.0000 300000 1.50000e+07 420.000 1987.240
1 16.5263 251533 1.43413e+07 450.975 604.570
2 26.7351 173032 7.92651e+06 77.3584 261.591
3 25.1282 223785 8.54573e+06 148.386 111.619
4 24.2875 176007 7.84280e+06 189.479 111.030
5 24.4436 183683 7.95702e+06 183.663 110.985
6 24.4070 180771 7.91592¢+06 186.193 110.977
7 24.4184 181677 7.92857e+06 185.411 110.979
8 24.4151 181408 7.92483e+06 185.645 110.978
9 24.4161 181487 7.92593e+06 185.576 110.979
10 24.4158 181464 7.92560e+06 185.596 110.978
11 24.4159 181471 7.92570e+06 185.590 110.978
12 24.4159 181469 7.92567e+06 185.592 110.978
13 24.4159 181469 7.92568¢e+06 185.592 110.978

Table 2: Values of the parameters and of the error criterion at different iteration steps.

T T T T 300000 T T T T T T

280000 [~ A

- optimal parameter 260000 * optimal parameter

parameter at step K
240000 |

g 220000 [~ A

200000

parameter at step K

T
1

180000 [~ *

160000 [~ A

15 1 1 1 1 1 1 140000 1 1 1 1 1 1
(o] 2 4 6 8 10 12 14 [o] 2 4 6 8 10 12 14

iteration number iteration number

(a)
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7e+06
0 2 4 6 8 10 12
iteration number
0.14 T T T T
0.12 2,
& \\
£
£ i)
01r yd b
kY
! \
- 3 b}
5 L ! \
2 0.08 /
5 7 X
& 4 A
% £ A
3 0.06[ / \
o \n
/ \\
0.04 [ ,/ o data \
/, — k=0 \\\\
0.02 -~ k=3 A
....... k=7
o . . . .
o] 0.2 0.4 0.6 0.8
space

a)
Figure 4: Dz'spsacement (a) and Temperature (b) at T = 0.01 for q = ¢*,

1100

1000

900

800

temperature

700

600

500

d)

14

T T T T
. . . .
[0} 0.2 0.4 0.6 0.8
space
(b)
k=0,37.

Example 3: Comparison between direct and indirect methods.

In this example we solve the ID problem using an indirect method and the algorithm presented in
Section 2. The purpose is to illustrate the different convergence rates of the two approaches. We take
ug, Vo, By, f and g as in Example 1.

The indirect method consists of approximating the solution of the dynamic equations using the algo-
rithm proposed in [9] and applying afterwards the optimization algorithm of Hooke and Jeeves [4] to solve
the resulting optimization problem. We obtain Z; as in Example 1 and start with the initial estimate
¢ = (25,2 x 105, 9 x 10°, 220). The results of the iterations are shown in Table 3.
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k () (e %} (673 (91

D I D I D 1 D I
0 25 25 | 200000 | 200000 | 9e+06 | 9e+06 215 215
12 |24.004 |24.1250 |149991 |176000 |7500020 |8865000 |207.999 202.1
40 |24.004 |24.9375 | 149991 | 161500 | 7500020 | 7537500 |207.999 202.1
100 |24.004 |25.7344 | 149991 | 154000 | 7500020 | 6907500 |207.999 202.1
500 |24.004 |24.8140 | 149991 | 149738 | 7500020 | 7333770 |207.999 |206.564
1000 |24.004 |24.4651 | 149991 | 149967 | 7500020 |7462530 |207.999 |207.355

2000 |24.004 |24.1638 | 149991 | 150040 | 7500020 |7499950 |207.999 |207.801
3000 |24.004 |24.0651 | 149991 | 150011 | 7500020 | 7500490 |207.999 |207.924

Table 8: Comparison of the convergence speeds between a direct (D) and an indirect (I) method.

6. Conclusions

A new approach for identifying the unknown parameter ¢ in nonlinear abstract Cauchy problems of the

type 2(t) = Az(t) + F(q,t,2(t)) was introduced. This approach has two main advantages over classical
methods. First of all it is much more intuitive since it is based upon linearization of the solution about an
initial guess parameter rather than on the linearization of the whole problem about a particular solution.
Secondly, unlike in the classical setting, the derivation of the algorithm does not rely upon the sensitivity
equations. We have included sufficient conditions for the convergence of the algorithm in terms of the
regularity of the solutions with respect to the unknown parameter.

Finally, an application was considered in which the nonphysical parameters defining the free energy

potential in a mathematical model for shape memory alloys are estimated. Several numerical examples
are presented and convergence speeds are compared with those of an indirect method.
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