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FUNCTIONALS OF THE CALCULUS OF VARIATIONS
WITH NON STANDARD GROWTH CONDITIONS

ErvirRa MASCOLO & FrRANCEscO SIEPE

The Calculus of Variations is that field of mathematics devoted to the calculation
and the analysis of mazrima and minima values of certain applications, said functionals.

In every field of the scientific research, there are problems connected to the search of
minimizers and maximizers of entities that in some cases can be expressed as functions
of real variables, while in other cases are functions defined in function spaces.

The origin of the Calculus of Variations dates back to Zenodoro (two hundred years
before Christ) who studied the isoperimetric inequalities; others dates back the origin
of the Calculus of Variations to 17*" century with the studies of Fermat (1662, deter-
mination of the trajectory of a light ray), Newton (1686, determination of the shape
of a spherical simmetric body plunged in a liquid, in such a way that it meet less re-
sistance as possible), but the problem that gave great development to the theory was
the brachistochrone problem, that is the problem of finding the curve descibed by a free
falling body, which is also the curve that takes less time to get down (indeed in greek
brakhistos means just the shorter, while chronos means time). More precisely, the latter
consists of determine the course that a material point, subjected only to gravity, has to
follow to connect as shortly as possible two assigned points. The problem was suggested
and solved by Giovanni Bernoulli in 1696.

The functionals of the Calculus of Variations have a particular expression: they are
in fact of integral type. Given an open set & C RY, to each function u : Q — RV,
where n, N > 1, correspond a real number Z(u) defined by

I(u) = /Q &, u(w), Du(z))dz,

where Du(x) = (%), 1 < a < N,1< i< nis the Jacobian matrix of u and

F:QxRY x R*N - R. Of course the function u must be chosen in such a way that
the integral Z(u) makes sense.
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2 Elvira MASCOLO & Francesco SIEPE

The problem is of determinate the lower bound (or the upper one) of Z, when u
runs in a class of function U that we call admissible, and possibly the minimum point
(maximum point), that is a function @ € 4 such that

Z(u) < Z(u) (Z(u) > Z(u)) Vu € M.

There are many applied and phisical problems, for whose passing to a mathematical

formalism is a problem of the Calculus of Variations. For instance the problem of the

stable equilibrium of a rigid body, the equilibrium position of an elastic membrane, the
problem of finding minimal surfaces, the Hamilton principle of minimal action.

Given a minimum problem for a functional of the Calculus of Variation, we can
proceed in two different directions.
The first method is based on a generalization of the Fermat theorem:
Let f : [a,b] = R a differentiable function. If xg € [a,b] is a relative minimum point for
f then f'(z¢) = 0.

Let us consider as admissible class of function
U={ue C'(ULRY): u=ugondQ}.

This is what we call a Dirichlet class for the functional Z. Let @ € { be a minimizer of
T in Y. Then for every ¢ € C}(€2,RY) it must happens that

I(W) <I(i+tp) VteR

Then in particular, the one variable function g(t) = Z(% + ty) must have a minimum
for t = 0 and then

0Z(p) = [jt (a+ tw)]t =0 Vo € C3(Q,RY).

=0

0Z(¢p) is called the first variation of the functional Z. Since T has integral form, if it is
possible to apply the theorem of derivation under the integral sign, we get a differential
equation that in his weak form has the following expression

/ {ZZfz z,u(z), Vi(z)) ey, —I—Zfsa z,u(x), Va(z))p }dg;:()

i=1 a=1 a=1

for every ¢ € C3(Q,RN).

This is called the Fuler-Lagrange equation for the functional Z.

This proceeding has been very useful in the past, since in some cases it gave the explicit
expression of the minimizer. For instance, in the simpler case of n = N = 1, the
Euler-Lagrange equation is an ordinary differential equation and then there are various
methods to try to solve it. If n > 1 and N = 1, we have a partial differential equation,
while if N > 1 the first variation consists of a system of NV partial differential equations,
which can be very difficult to solve.
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At the beginning of this century, Riemann started using a new method, independent
from the theory of partial differential equations, called Direct Method, developed sussess-
fully by Hilbert, Lebesgue, Tonelli and Volterra.

It is well known that the result which signed a new age of the mathematical thought,

is the Gauss algebra theorem. Gauss proved just the existence of solutions to an algebraic
equation, without giving an explicit expression of the solution.
It was the first time that the existence of solutions for a mathematical problem was
estabilished and only in a second while the explicit form of solutions and their properties
were determined. This new thought obtained very meaningful results in the Calculus
of Variations, through the Direct Method.

The Direct Method is based on an extension of the following result due to Weierstrass:
A sequentially lower semicontinuous function in a compact set has a minimum point.
We say that a functional Z : { — R is sequentially lower semicontinuous with respect
to a topology 7, defined on 4, if for every sequence {uyp}, C U converging to a function
1 in the topology 7 we have

Z(u) < lim inf Z(up).
h—o0

Let us give now an idea of the proceeding concerning with the Direct Methods.

Let us consider a minimizing problem for a functional Z defined in an admissible class
of functions 4, equipped with a topology 7. The Direct Method consists substantially
of the following steps

(1) prove that the infimum of Z in 4 is finite;
(2) consider minimizing sequences of Z in i, i.e. {up}p C U such that
lim 7 = inf Z(u);
o, Fln) = )
(3) determine the compactness of the minimizing sequences, that is the existence of
a subsequence of {up }p, which converges to a function @ € U in the topology T;

(4) ensure the lower semicontinuity of the functional Z, that is that for each {vp}s C
3l converging to v € 4 we have

Z(v) <lim inf Z(vp).
h—o0

Once that these conditions are verified, we apply the lower semicontinuity to a mini-
mizing sequence of Z on 4 and we have

Z(w) <lim inf Z = inf Z(u).
(i) < tim inf T(up) = inf Z(u)

Then 4 is a minimizer for 7 in 4.

The most difficult problem is to determine, in the class of admissible functions 4,
a topology for which the minimizing sequences are compact (that is a topology with
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as few open sets as possible) and such that the functional Z turns out to be lower
semicontinuous (that is a topology as rich of open sets as possible).

We introduce now the concept of weak derivatives and the Sobolev spaces.
Let Q C R® be an open set and u € L} (). If 1 < i < n, we say that the function

loc

v; € L}, () is the weak derivative of u with respect to z; if

/ 'vicpda::—/ u&p dx Vo € C5° ().
Q o 0z

If a function wu is differentiable in €2, the classical derivative coincides with the weak

one. We call weak gradient of u the vector Vu = (g—;) in the weak sense.

We introduce the Sobolev space W1P(Q), as the space of the functions u € LP(Q),
which have weak derivatives that are L?—functions. It is a Banach space endowed with
the norm

1(1)
P

lullwroey = (IullBogay + IVUlBoqy)”

nevertheless, the topology inducted by the W1:P—norm is not good for our goals. We
need to introduce in W' a so called weak topology, that is defined as the weaker
topology (that is the one with less open sets) that makes all the linear functional on
WP continuous.

Given a sequence of functions {up}, C WP, we say that {up}, weakly converges to a
function u in WP (we will write up — u to mean such a convergence) if and only if

0 0
lim upvdr = / uvdz, lim YR g :/ Y vd
h—oo Jq Q h—oo Jo 8xi Q 8$i
for every i = 1,...,n and for every v € LI(2), where ¢ is such that ]1) + é =1.

We will use an infinite dimensional spaces extension of Bolzano-Weierstrass theorem:
Let p > 1 and ||ug||wi.» < M Vh. Then there exists a subsequence that weakly converge
in WhHp,

Clearly all the definitions given above for Sobolev spaces, can be extended to the case
of vector valued functions, i.e. when N > 1.

Let us consider the integral functional Z and assume, for sake of simplicity that the
integrand function is of the type f = f(z,z). Furthermore we assume that f is a
Carathéodory function, that is

(1) f(-, z) is measurable in Q, for every z € R*V;
(2) f(=,-) is continuous in R*V, for a.e. z € Q.

These conditions ensure that for every measurable function w in €2 the integral

/Q f(z, w(2))ds

(Wfor simplicity of notation we write [|[Vul||Le instead of || |Vu| ||Lp-
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is well defined.

Now let us consider the following functional

Z(u) = / f(z, Du)dz.
Q
For such functionals it is opportune to introduce the so called natural growth conditions
2P —e1 < flz,2) < ea(1+ [2[F), (1)

where ¢1,co > 0 and p > 1.

Condition (1) allows to say that Z is well defined. Indeed since f is a Carathéodory
function, the upper bound in (1) implies that f(z, Du(x)) is integrable in 2 and 7 is
finite in WP,

Starting from some results by Tonelli in the 20’s and from furhter researchs of the last
50 years, when N = 1, the functional Z is lower semicontinuous in the weak topology
of WH! (and then in WP p > 1 also) if and only if f is convex in the variables z.

In the case N > 1 we have to replace the convexity assumption with the weaker condition
of quasiconvezity due to Morrey [35].

Let zp € R*™, f : Q x R*™ — R is quasiconvex if for a.e. 2 € Q and for every
© € C°(Q,RY) we have

F (@0, 20) < ﬁ /Q f(20, 20 + Do)

Condition (1) implies that Z is coercive in WP, i.e.

lim Z(u) = +o0.

llwl[—o0

In fact,
/ |Du|Pdx < Z(u) + c1,
Q

so if {up }p, is a minimizing sequence, we have that ||Dup||z» < c¢. Then if we have that
also ||up||w1.» is bounded, by results about weak convergence, it follows that {uy}, has
a subsequence weakly converging to a function w.

For instance, let N = 1 and Z be defined in the Dirichlet class ug + W, P(Q) with f
convex in z and satisfying (1). Then there exists a minimizer.

There are many functionals that can be considered in the Calculus of Variations,
whose integrand functions don’t satisfy growth condition (1).
For instance, let us consider the following convex integrand functions:

f1(z) = |2|Plog™(1 + |2|) p>1, a>0

fa(2) = (14 |2[) log(1 + |2]) — |2]
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fa(z) = |z|atbsinloglos(lzl+e)  p 50 6> 14+bV2
n
p . .
f4(2)=(1+\2\2)5+2|zi|p’ pi>pVi=1,...,n
=1

f5(2) = [2]*)
fo(z) = [h(]2))]*®

(in the definition of f5 and fg, @ : & — R is a bounded measurable function. Moreover
h: Rt — R is a convex function)

fr(z) = el*° a>0

As it can be easily checked, the functions f; — fg satisfy growth conditions that are
known as (p, q)—growth conditions, that is for a.e. z € Q

2|P —c1 < f(z,2) < a1+ [2]7) (2)

where p < q and c1,co > 0.
Functionals with (p, ¢)—growth of type (2) came out naturally in problems concerning
non linear elasticity. A typical integrand function for these problems is, if n = N,

f(@,2) = a(@)|z + |det(2)], z€RY, p<N

that satisfy (2) with ¢ = N.

Clearly there are also integrand functions of different type, that cannot be described
using (p, g)—growth conditions. In particular there are functions for which there exists
two positive convex functions gi, g2 (eventually g; = g2) such that for a.e. z € Q

91(l2]) —e1 < f(#,2) < ca(1 4 g2(I2]), 3)

where ¢1,cy > 0. We say that f has general growth conditions if (3) is satisfied.

In the last ten years also the study of functionals under non natural growth con-
ditions has been developed, in particular to prove regularity of minimizers and lower
semicontinuity in the vectorial case.

The aim of this short note is an overview of our recent contribution to problem of
the Calculus of Variations with non standard growth conditions.
We focus mainly on the regularity properties of minima of integral functionals in the
scalar (N = 1) as well as in the vectorial (N > 1) case. We also try to sketch the
main ideas and techniques underlying the most relevant proofs. Moreover we present
the basic of the theory of Orlicz and Orlicz-Sobolev spaces, which turned out to be one
of the most effective tools of analysis of some classes of problems.
Of course, due to the complexity of such problems and the huge amount of available
results, we gave up any ambition to be exhaustive. Nevertheless, we think that the list
of references is rather complete:
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items [1] to [19] refers mainly to Orlicz spaces and their applications to Partial Differ-
ential Equations;
items [20] to [39] to the case of “natural” growth conditions;
lastly, items [40] to [78] to the case of “non standard’ ones.

Studies about the lower semicontinuity will not be treated at all; however items [79]
to [92] in the cited references cover those we feel to be the most important works of
these twenty years on the subject.

REGULARITY PROBLEM: The scalar case.

Let us consider a scalar integral functional (N = 1)

T(u) = /Q f(z, Du(a))dz, (4)

where f : @ x R® — R is convex in z and satisfy natural growth conditions (1). As
we have seen above, using the proceeding of the Direct Methods, we have that there
exists a minimizer for Z in the Sobolev space W1P(Q), i.e. a function u that has weak
derivatives in L7 .. From here one could ask if this minimizer has more regularity.

The regularity problem has been open for a long time and has come to a solution, almost
in the scalar case, by a celebrated result due to De Giorgi (1957 [22]), in which it is
proved the Holder-continuity of solutions of an elliptic differential equation in divergence
form. In many cases these type of equations can be seen as the Euler-Lagrange equation
of a functional of the Calculus of Variations.

The De Giorgi theorem has been generalized in many directions and it applies to wider
classes of functionals that allow the first variation. A fundamental contribution to this
aim has been given by Giaquinta-Giusti (1980-1984 [25], [26], [27]). They proved that
the minimizers of functionals of type (4), under natural growth conditions (1), satisfy
some inequalities of the kind of the ones introduced by De Giorgi, without passing to
the first variation of the functional, but using directly the minimizing properties.

More precisely, let Qg a cube strictly contained in {2 and let us define the families of
sets

Arr={z € Qr: u(zr) <k},
Bir={z € Qr: u(z) > k}.

Then a minimum u € W,.?(Q) of functional (4), under natural growth conditions (1)
satisfies

C1
DulPds < — / (u = k)Pde + cs) Ag.g|® (5)
/x;lk,p (R - p)p Ak,R
and
C3
DulPds < — / (k = u)Pda + c4| By g|® (6)
/;k,p (R - p)p Bk,R
where 0 < p < R, ¢1,-..,cq4, are positive constants and |E| denotes the Lebesgue

measure of a subset £ C R™.
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The main properties of inequalities (5) and (6) is that they contain the whole information
relative to the continuity of the minimizer.

A different proof of the Holder continuity of solutions to elliptic equations has been
obtained by Moser (1961, [36]), through an inequality, due to Harnack, that extends
a classical result for armonic functions. More precisely it proves that each positive
solution u satisfies

infu > csupu.

Qr Qr
Di Benedetto and Trudinger (1984, [23]) has proved that the positive minimizers of
a functional Z under growth conditions (1) and without differentiability hypothesis,
satisfy the Harnack inequality.
In the regularity results we have recalled above and in each of their many extensions,
the natural growth conditions (1) are essential.

The study of regularity of minimizers under non standard growth conditions, has

begun about ten years ago. A considerable contribution is due to P.Marcellini that
in a group of papers starting from 1989, [65]-[69], studied the regularity of minimizers
under (p, g)—growth conditions and under general growth conditions and in the case of
functionals with exponential growth. More precisely, he gave some interesting Lipschitz
regularity results for the gradient of the minimizers, i.e. Du € Wlf)coo ().
Notice that using a standard method, we obtain higher regularity. Indeed, if u € Wlt’fo,
then by applying De Giorgi theorem to some suitable differential equations satisfied by
the derivatives of u, we find that u € Cllo’g‘. Then recursively we obtain that u € Cl’f)ca
for every k and finally u € C'°° according to regularity of data.

The regularity of minimizers of functionals under non standard growth conditions

has been intensely studied in the last years (see references [40]-[78]).

In the case of (p, ¢)—growth conditions, we have that the functional could be not well
defined in the same space in which it is coercive, moreover in this case it is interesting
to investigate the regularity properties of the minimizers.

Actually one finds that the exponents p and ¢ cannot be too far from (more precisely
qg<p*= nn—_’;)). To understand this fact the following counterexample to regularity in
the scalar case is fundamental

Example (P.MARCELLINI [64] - M.GIAQUINTA [57]). Let B = B1(0) and let us

consider the functional . )
L1 d.
B

i=1
) = In—4 z2
24 -1
\V Z?:l 3322

2 ou

ox,

ou
8.’1,‘1'

1
2

Here we assume that n > 2 and v : B — R.
It can be checked that the function

u(z

is a minimizer of functional (2.3), almost if n > 6. Furthermore this function is clearly
not continuous on the half-lines (0,...,0,z,), with z,, # 0.
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More generally, the problem that arises in the above counterexample can be gener-
alized if one considers a functional of the form

/Q [|Du|p + Z |Diu\p"] dx. (7)

=1

In this case in fact, it has been proved (see [74]) that if 1 < p < p;, fori =1,...,n,
to get some regularity result for the minimizers of such a functional, it is needed that
the non homogeneous exponents p; satisfy an opportune upper bound. More precisely,
if we introduce the harmonic mean

1 1 i 1
P nipi
and its Sobolev conjugate:
np - ifp<n
n—p

any q > p otherwise.

then one finds that a minimizer of functional (7) is a bounded function (that is u €
L2 (©2)) if and only if

loc .
max p; < p .
08X p; <P
It is not known if this bound is also sufficient to get higher regularity, but it remains
a possible comparison term, when one tries to find some regularity properties of the
minimizers.

When we deal with a functional wich has general growth conditions of type (3), one
can ask what are the conditions to be satisfied by g; and g-.
These conditions pass through the concepts of N—function and the Orlicz-Sobolev
spaces.

A convex function g : [0, +00) — R is said to be a Young function if it satisfies

g(0)=0 lim g(t) = +oo.

t——+oo

If ¢ is the right derivative of g, then ¢ is non decreasing and left continuous. Moreover

t
g(t) = / p(s)ds VYt €[0,+00).
0
By the convexity of g we have

g(t) <tp(t) Vi€ 0,+00). (8)
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In the following we will denote as positive Young functions those that vanish only for
t=0.
We will say that a Young function g is a N—function if it is a positive Young function
and satisfies

0 (1)

m —= =0, lim —= =400
t—0t t—otoo ¢
If g is a N—function, then (8) holds with ¢ a non decreasing function, left continuous,
©(0) =0, ¢(t) > 0 for every t > 0 and ¢(t) — +00 as t — +o0.
We will say that two positive Young functions g, h are equivalent near to +oo if there
exists tg, k1, k2 > 0 such that

h(kt) < g(t) < h(kat) Yt > to.

Let m > 1. A positive Young function g is of class A3 if one of three equivalent
conditions is satisfied:

o) SATG(H) VA1, >0, (i)
% is decreasing, (ii)
o(t)t < mg(t) vVt > 0. (iii)

It is easy to check that g(¢t) = t™, with m > 1 is a N—function of class A"

The function g(t) = t™log®(1 + ¢t), where m > 1 and « > 0 is equivalent at +o0o to a
N —function of class AY™¢ (e > 0).

The function g(t) = tetbsinloglog(ett) js equivalent near to +oo, to a N—function of
class AT if b> 0 and a > 1+ /2b.

If g € AT, it is easy to see that g(t) < ct™ for ¢ > 1.

Observe that the class A} contains just the linear functions.

Let » > 1. A positive Young function g is said of class V5 if one of the following
three conditions is satisfied

g0 = Ng(t) VA1, £20, ()
%:) is increasing, (ii)
e(t)t > rg(t) Vit > 0. (iii)

Every positive Young function is of class V1. We have that:

g(t) =t" (r > 1) is a function of class V5.

g(t) = t"log™(1 +t), where r > 1 and a > 0, is equivalent at +oo to a N—function of
class V5.

g(t) = totbsinloglog(ett) ig equivalent near to +o0o, to a N—function of class V3~°, if
b> 0 and a > 1+ v/2b.
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g(t) = exp(t®) is of class V7 for all » > 1, but g ¢ AT
Let g be a N—function. We introduce the Fenchel’s conjugate of g, that is a
N —function denoted by g, defined by

9(s) = max{st — g(s)}.
The following Young inequality holds
st < g(s)+ g(t) Vs, t > 0.

In the following, when no confusion arise we will not specify the exponent m, writing
simply g € Aq to say that g is a function of the class AD*.
We have that
gE Ny <= g€V,

and then of course
gE A NVy < g,7€ As.

Given an open set with finite measure 2 C R”, we introduce the Orlicz class of
functions K,(Q,RY) associated to a N—function g, as the set of all the measurable
functions in €2 such that

/Qg(|u(a:)|)da: < +o0.

As usual we identify functions wich differ on a set of zero measure. Since g is a convex
function, it is easy to prove that K is a convex set, but in general K,(Q, RY) is not a
linear space.

Indeed the following result holds

K, is a linear space if and only if g € Ay

We define the Orlicz functions space Ly (€2, RY) as the smallest linear space containing
K,. We have L,(Q,RY) = {au: a € R, u € K, (Q,RY)}. Moreover K, = L, if and
only if g € A,.

If g(t) = tP we have that L,(Q,RN) = LP(Q,RV).
The Orlicz space L, (2, RY) is a Banach space when endowed with the norm

fullzy o = int {05 [ o (M) ar <1}, (10)

Also a Holder-type inequality holds: let u € L, and v € Lz, then uv € L' and

Juv]|Lr < 2[|ullz, o]z,

The Orlicz spaces arises as a generalization of LP spaces and appear for the first time
in a monography of Zygmud in 1935. The first almost complete text about these spaces
was by Krasnosel’skii-Rutickii [14], while more recently we refer to Rao-Ren [17] (see
also [1]).
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The closure of the space C§°(2, RY) with respect to the norm (10) is denoted by
E4(Q,RN). It represents the largest linear space contained in the Orlicz class K;. Then

we can argue that
E, C K, C L,.

The equality holds if and only if g € As.

The Orlicz-Sobolev functions space WL, (£, RY), consists of all the functions u €
Ly(2,RY) whose derivatives in the sense of distributions are in L,. WL, is still a
Banach space, with the norm

lullwrz, @ ryy = llullL,@ry) + |1 Dullz, @rN)- (11)

As usual, W(}LQ(Q,RN ) denotes the completion of CSO(Q,RN ) with respect to the
topology inducted by the norm (11).

Let us recall some embedding results in Orlicz-Sobolev spaces.
If g is a N—function such that

1 o1
9~ ()
/0‘ prw ds < 400 (12)
+oo —1
/ I (8) 45 < +oo. (13)
1 sttw

We define for every t € [0, +00) the function

L g(s)
h(t) :/0 gHL ds.

S n

We will say that the inverse function of A is the Sobolev-conjugate of g, that is g, = h™!.
It can be proved that:
if g(t) = tP, where 1 < p < n, then g.(t) = ct? , where p* = n"—_pp and c¢ is such that

1 _ _xp*
= = p .
(4]
It can be easily checked that g, is still a N—function, such that
im 25— wkso
t—+oo g, ()

and then L, C L, , 1 <m <n and g € A, then g, € Agf. Analougusly g* € Vg* if
g€V, withl <r<n.
The following embedding result holds
If Q C R™ s an open set with Lipschitz boundary and if g is a N—function satisfying
(12) and (13), then
WLy < L,,.

The proof of this theorem and of other connected results can be found in Adams [1]
(see also Donaldson-Trudinger [8], Trudinger [19]; recently embedding results have been
obtained by Cianchi [4],[5]).
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Let g be a N—function; if g(|Du|) € L1(Q, RY) we have the following Poincaré-type
inequality (see Bhattacharya-Leonetti [42])

[ (7)< ()"

where d = diam(Q2), w,, is the volume of the unit ball in R” and uq is the average of u
in Q i.e. )
ug = —/ u(x)dz.
€2 Jo

Let us introduce the weak* topology in Lg(Q,RN )- Since the Orlicz space L, is
the dual space of E;(Q2,RY), then we say that a sequence {up};, C L,(Q,RY) weakly
converge to a function u in the weak* topology of L, if

Sl

/ o(|Dul)da (14)
Q

lim [ wpvdx = / uvdz Yo € E5(Q,RY).
Q Q

h—o0

Therefore, since we have that E5 = Lj if and only if g € A,, we have that L, is a
reflexive space if and only if, assuming that g € A,, it happens also that g € As. The
latter is equivalent to g € As N V4 (see Rao-Ren [17]).

As g € Ay N Vy, the weak® topology and the weak topology in L, agree, that is
(Lg)* = L. In this case we have that up, — u in the weak topology of L, if

lim upvdr = / uvdx Vv € L.
h—oo Jq Q
We can characterize the weak* convergence in W'L,: up — u in w* — WL, (QRY) if
and only if up, — u and Dju — D;u for every i = 1,...,n in w* — L, (Q,RV).

The Orlicz-Sobolev spaces have been used in the study of elliptic partial differen-
tial equations. In particular we refer to Donaldson-Trudinger [8], Gossez [11],[12],[13],
Fougeres [10], Talenti [18].

Let us came back to the regularity of minimizers of functionals with non standard
growth.
In the following we will consider local minimizers of a functional Z, that is those functions
u € WhHQ,RY) such that f(-, Du) € L} () and

loc

| twpwds< [ f@Dut Dy,
spt(y) spt(y)

for every 1 € WH1(Q,RY) with spt(y)) CC Q.
Let
9(|z]) —er < f(z,2) < e2(g(|2]) + 1),

where g is a N—function. For an integrand function of this type we consider local
minimizers that are functions of the Orlicz-Sobolev space WLy ().
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In Mascolo-Papi [69], [70] it is proved that:

(1) If g € A for some m > 1, then the local minimizers satisfy the Euler-Lagrange
equations (this fact is not trivial since we are assuming no natural growth condi-
tions and then is not possible to apply the classical method to derive the system
in variation);

(2) if g € AT, the local minimizers satisfy an inequality of De Giorgi-type and are
locally bounded;

(3) if g € AL N V4 then the positive local minimizers satisfy a Harnack-type in-
equality.

The Harnack inequality in the case of p — ¢ growth, with p* > ¢ has been proved by
Moscariello [72] and also results of Holder continuity can be found in Moscariello-Nania
[73] and Lieberman [63].

Moreover we have some boundedness results for local minimizers of integral function-
als of the general form

To(u) = /Q f(z,u, Du)dz.

These results can be found in Dall’ Aglio-Mascolo-Papi [49].
Let us assume that the integrand function f : (z,s,2) € & x R x R* — R satisfy the
following growth conditions

9(121) = e1 < f(w,5,2) < c2[g4(2) + gu(s)) (15)

where ¢ is a Young function and g, is his Sobolev conjugate, as defined above.
If we assume that:
(i) g € AP NVE where r > 1, 1 < m < min{r*,n} and 0 < 8 < 1,
(ii) f satisfy one of the following hypothesis
- For a.e. z € Q, f(x,-,-) is convex in R x R";
- For a.e. z € Q and for every s € R, f(z,s,-) is convex in R" and there exists a
constant ¢z > 0 such that

f(z,s1,2) < c3f(x,s2,2) Vsi1,se such that |s;| < |s3] and every z € RV,

then a local minimizer of Ty, u € W'L,(), is locally bounded and the following in-
equality holds
5 e
sup o (ul) < 1+ Cre | [ (o (u)Pd]
R
2

Qr

where Qg CC Q is a cube of side 2R.
It is clear that the growth condition (15) is a generalization of the condition ¢ < p*,
usually assumed in the case of p — ¢ growth, to general growth conditions.
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REGULARITY PROBLEM: The vectorial case.

The De Giorgi regularity theorem cannot be extended to vectorial functionals, that
is when N > 1. This fact was proved by De Giorgi in 1968. In the following example
indeed he proved that there exists a linear elliptic system with regular coefficients, that
has non continuous solutions.

Example (E.DE GIORGI). Let @ = B;(0) C R", with n = N > 3. Let us consider the
following functional in W12((Q2)

n n 2
/ Z |Dyu’|? + ( Z ((n = 2)0q; + n%) Dau’) dx.
Q2 a,i=1 a,i=1 z

The corresponding Euler-Lagrange system is
« ] 7 1,2
/QAijIB('T)DﬂU'JDaSO de =0  Voe Wy (QRY),

where we set

;T
|2

AZB(.’E) = 5(1,85733' + [(n - 2)(5a7j +n :| [(n — 2)5,39 + nl‘j.’EIB € LOO(Q)

|2

This system is strongly elliptic since there are two positive constants v, M such that
0<v<Mand .
v|ef? < AF (2)€L85 < M.

It can be shown that the function

x n 1
—, where v=—|[1—
|| 2 An2 —8n +5

u(z) =

belongs to W12(Q,RY) and solves the above Euler-Lagrange system. Nevertheless u is
not bounded at the origin.

More counterexamples to regularity in the vectorial case are due to Giusti-Miranda
[31] and Necas [37]. However, under natural growth conditions, we have regularity
results: we recall the ones of Uhlenbeck [38], [39] (case of f(z) = |z[P, p > 2), Giaquinta-
Modica [28], [29] (growth p > 2) and Acerbi-Fusco [21] (1 < p < 2).

More recently Marcellini [68] has given a C1**—regularity theorem for the minimizers
of functionals under general growth conditions of the type

T(u) = /Q 9(|Dul)dz,

where u : Q@ — RY and g has an exponential form: g(t) = exp(t®), @ € Rt or even
g € A with m > 2.
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Recently Dall’Aglio-Mascolo [50], study the boundedness of local minimizers of vec-
torial functionals of the type

Zs(u) = /Qg(x,\Du\)dx

where u : Q C R* — RY, by introducing the concept of a Q — N—function.
We say that g : @ x RT — R* is a (2 — N)—function if:

- g(-,t) is measurable in Q for every ¢ > 0;

- g(z,-) is a N—function in RT for a.e. z € Q.

For instance g(z,t) = a(z)h(t) where a is a bounded function in  and A is a
N—function is a function of this kind, as well as g(z,t) = [h(t)]*®), with a bounded
and h a N—function.

Integrands of the form g(z,t) = t*(*) appears for the first time in some papers of
Zhikov [77],[78].
Acerbi-Fusco in [41] study the case where « is a discontinuous function, assuming only
two values p, ¢ in two subsets of (2 separated by a regular surface.

In the scalar case, the functional g(z,t) = t*(#) has been studied by Mascolo-Papi
[69], Chiado Piat-Coscia [46], Fan [53], with a € L™ and p < a(z) < g < p*.

Then the functional Z3 is defined in the most suitable functional class i.e. the Orlicz
class associated to the (2 — N)—function g(z,t).
Let

K, (Q,RY) = {u : /Qg(a:,u)da: < oo} .
K, is a vector space if and only if g € AY* that is if and only if
g(z, At) < X™g(z,t), Vt>0,A>1a.e. in .

To get the regularity result some further assumptions on g are given.
Assume that:

- g is a Q — N—function of class Ay, g;(x,t) is a Carathéodory function and g(z,1) €
L>(Q);

- g(z,t) has weak derivatives with respect to = in L}, ., g, (z,t) is a Carathéodory
function and there exists a function v € L*(Q2), with s > nm, such that

90 (2, 1)| < v(2)g(z, t)t° Vt > 0, a.e. in Q

with § > 0 small enough.

Under the previous assumptions it is proved that
(i) If u € WoH(Q,RN) and g(z,|Dul) € L}, (Q), then g==7 (z, [u]) € L} ().

oc loc loc

(ii) The local minimizers of Z3 in W}l _L,(Q, RY) are locally bounded.

The result obtained is new also in the case of f(z) = g(|z]) with a N—function
g € Ag.
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In particular, the function g(z,t) = [h(t)]**) with & € W* and s > nm ed h a
N —function of class Ay satisfies the above hypothesis.

Observe that in the case of g(z,t) = t*(*) with a € Wb* (s > n) and p < a(z) < n,
the following embedding result holds:

WL, =W'L, < L*

na(zx)
n—a(z)’

Moreover, the assumption o € W%, with s > n is sharp in some sense. Indeed it is
possible to find a function o« € W" with r < n, such that the immersion result is no

longer true.

where o* =

Let us consider the case of f(z,2) = f(z), z € R*Y | assuming that we have p — ¢
growth conditions:
2P < f(z) e+ [2]7)  p<q

In [59] Leonetti-Mascolo-Siepe study the regularity of local minimizers when 1 < p <
g < 2 (for the case of natural growths, p = ¢ < 2 one can refer to Acerbi-Fusco [21]).
The higher summability of the gradient of minimizer is obtained using the method of
a-priori estimates.

First one obtains a higher integrability result for minimizers of a suitable perturbated
functional, and then, by mean of a double approximation argument, the same result is
proved for the minimizers of the original functional.

For a general integrand function f = f(z) it is needed that p > nz—fz

When we consider a particular class of integrands, i.e. f(z) = g(|2|), with g a N—function
of class Ay, then the same regularity result is proved without conditions on p and g,
taking in account the boundedness result of [50].

In Mingione-Siepe [71], it is proved the everywhere C'®-regularity of minimizers of
the model functional

/ |Du|log(1 + |Dul)dx,
Q

that grows in a nearly linear way. In particular the result is proved in the vectorial
case under the special assumption that the integrand function depends of the modulus
of the gradient, and in the scalar case without assuming any special structure for the
functional.
The method used here consists of a classical Moser-type iteration technique, together
with standard methods that allow to prove C'*®-regularity. To avoid the problem of
the growth (1,1 + €) of such a functional is used a technique close to the one described
above to prove the regularity result of [59].

Finally, Leonetti-Mascolo-Siepe, in a paper [60] wich will appear soon, prove C1®
regularity for minimizers of general functionals of the type

T(u) = /Q 9(| Dul)dz

where g € A and 1 < m < 2.
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