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Introduction

Sitting at the back of the classroom, a student yawns while 
staring at their cell phone. The teacher notices this gesture 
and interrupts the lecture by commenting publicly, “Nice 
to see you paying attention back there.” Understanding the 
meaning of this remark might seem natural—the teacher 
is pointing out the student’s neglect. Nonetheless, the pro-
cess of grasping this meaning is complex, involving several 
underlying questions: Does the teacher really mean what 
they literally say? If not, what are they trying to communi-
cate? Do they expect the student to infer the true meaning 
behind their words?

Pragmatic language is ubiquitous, an everyday manner of 
addressing social interactions (Rapp et al. 2012). It is used 
to convey a meaning different from a literal understanding 
of the words (Bendersky et al. 2021; Bohrn et al. 2012). 
Because of this property, context claims a singular signifi-
cance in pragmatic language, especially when it comes in 
the form of sarcasm (Tsolakopoulos et al. 2023). Sarcasm 
is a specific form of pragmatic language in which a speaker 
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There is growing interest in the neural network of pragmatic language and its potential overlap with the Theory of Mind 
(ToM) network. However, no Spanish-adapted fMRI tasks were used for studying sarcasm, the subtype of pragmatic lan-
guage most related to ToM. Furthermore, stimuli used in prior studies often impose high cognitive demands, confounding 
its sarcasm brain representation with the executive network. We investigate the neural correlates of sarcasm in Spanish 
using a novel experimental paradigm designed to minimize cognitive load and enhance ecological validity. Eighteen 
healthy, right-handed participants underwent a 3T fMRI session with a sarcasm comprehension task. Brain activations 
analysed with SPM12 were calculated for sarcasm vs. literal contrast. Sarcasm activated the left temporo-parietal junc-
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(BA 21 & 22), and Left Temporal Pole (BA 38). Sarcasm comprehension involves an extensive fronto-temporal-parietal 
network, with prominent activation of ToM-related areas. These findings suggest an overlap between sarcasm and ToM 
networks, emphasizing the role of the medial prefrontal cortex in pragmatic language, the left inferior frontal gyrus in 
semantic integration, and the role of a left-lateralized frontotemporal network for sarcasm processing.
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conveys the opposite of what is literally said, often with the 
intention to criticize (Filik et al. 2019; Gibbs 1986; Matsui 
et al. 2016; Rankin et al. 2009), mock (Filik et al. 2019), or 
to be humorous (Kreuz and Glucksberg 1989). In the class-
room example, the teacher’s words sarcastically criticize 
the student’s lack of attention. At this point, it is important 
to mention that, while sarcasm is frequently conflated with 
irony, the two differ in intentionality: irony broadly denotes 
non-literal communication without inherent criticism, 
whereas sarcasm explicitly aims to mock or ridicule (Filik 
et al. 2019). This distinction is critical, as many studies on 
“irony” employ sarcastic stimuli.

To grasp the actual meaning of sarcastic utterances, one 
must be able to (1) recognize that the speaker does not 
believe what they literally say (Pexman and Glenwright 
2007; Winner and Gardner 1993), (2) recognize that the 
speaker intends the listener not to believe the literal mean-
ing of the words (Parola et al. 2016; Winner and Gardner 
1993), that is, to capture his sarcastic intentions (Pexman 
and Glenwright 2007). Should the listener lack these capaci-
ties, they could mistakenly understand that the speaker is 
either mistaken or lying, respectively (Pexman and Glen-
wright 2007; Winner and Gardner 1993).

Thus, sarcasm comprehension relies on more than just 
linguistic processing—it involves the ability to infer another 
person’s thoughts, intentions, and emotions (Bohrn et al. 
2012; Channon et al. 2005; Winner and Gardner 1993). This 
ability, known as Theory of Mind (ToM) or mentalization 
(Frith and Frith 2006; Winner and Gardner 1993), is essen-
tial since literal interpretation alone is insufficient for under-
standing sarcastic remarks (Valles-Capetillo et al. 2022). 
Additionally, sarcasm is communicated through contextual 
or paralinguistic cues, helping the listeners infer the speak-
er’s true meaning (Kreuz and Glucksberg 1989; Matsui et 
al. 2016; Nakamura et al. 2022; Rankin et al. 2009; Uchi-
yama et al. 2006; Woodland and Voyer 2011). Contextual 
cues arise from the incongruity between the literal meaning 
of a sentence and the context in which it is spoken (Kreuz 
and Glucksberg 1989; Matsui et al. 2016; Nakamura et al. 
2022; Rankin et al. 2009), while paralinguistic cues, such 
as prosody and facial expressions, reinforce the speaker’s 
sarcastic intent (Matsui et al. 2016; Nakamura et al. 2022; 
Rankin et al. 2009; Valles-Capetillo et al. 2022).

In recent years, scientific interest in the neural correlates 
of sarcasm, and pragmatic language in general, has grown. 
Consequently, numerous neuroimaging studies have sought 
to map the neural substrates underlying this function, pri-
marily examining whether these correlates overlap with the 
ToM network. In this context, four quantitative meta-anal-
yses have synthesized results from neuroimaging studies to 
explore neural differences in processing literal versus prag-
matic language, collectively underscoring the role of ToM 

in pragmatic language comprehension (Bohrn et al. 2012; 
Hauptman et al. 2023; Rapp et al. 2012; Reyes-Aguilar et 
al. 2018). Hauptman et al. (2023) found that pragmatic lan-
guage comprehension is supported by the ToM network. The 
remaining three of these studies further distinguish between 
subtypes of pragmatic language, such as metaphors, idiom-
atic expressions, proverbs and sarcasm. They reported that 
the two brain regions most consistently associated with sar-
casm are the mPFC and left IFG, which are key nodes of the 
ToM network (Abu-Akel and Shamay-Tsoory 2011; Arioli 
et al. 2021; Arioli and Canessa 2019; Frith and Frith 2006; 
Schurz et al. 2014).

Activation in the mPFC is consistently observed across 
nearly all neuroimaging studies on sarcasm (Eviatar and Just 
2006; Rapp et al. 2010, 2013; Uchiyama et al. 2006; Wang 
et al. 2006a; Bosco et al. 2017; Filik et al. 2019; Nakamura 
et al. 2022; Spotorno et al. 2012; Varga et al. 2013). More-
over, lesion studies associate mPFC atrophy with deficits 
in sarcasm comprehension and ToM (Rankin et al. 2009; 
Shamay-Tsoory et al. 2005), and fMRI studies comparing 
patients that struggle with sarcasm comprehension with 
controls consistently show reduced mPFC engagement dur-
ing irony/sarcasm processing in the first group (Rapp et 
al. 2013; Varga et al. 2013; Herold et al. 2018; Wang et al. 
2006a; Williams et al. 2013).The mPFC is highly involved 
in inferring others’ attitudes and intentions in the ToM liter-
ature (Abu-Akel and Shamay-Tsoory 2011; Frith and Frith 
2006; Schurz et al. 2014). Uchiyama et al. (2006) proposed 
that mPFC decodes the speaker’s attitude in sarcasm, show-
ing a strong connection between sarcasm processing and 
ToM, even to a greater extent than other types of pragmatic 
language (Bohrn et al. 2012).

Regarding the left IFG, Bohrn et al. (2012), Rapp et al. 
(2012), and Hauptman et al. (2023) consistently reported 
its activation across studies on pragmatic language, with 
Reyes-Aguilar et al. (2018) highlighting its specific role in 
understanding irony. According to several neuroimaging 
studies, the left IFG is involved in both ToM and semantic 
processing (Bosco et al. 2017; Filik et al. 2019; Herold et 
al. 2018; Matsui et al. 2016; Nakamura et al. 2022; Obert et 
al. 2016; Rapp et al. 2010; Spotorno et al. 2012; Uchiyama 
et al. 2006; Wang et al. 2006a, b). Given its critical role in 
these dual processes, Rapp et al. (2012) proposed that the 
left IFG is involved in selecting and evaluating the mean-
ings of statements. This idea is further supported by Jang et 
al. (2013), who found left IFG activation during the inter-
pretation of highly implicit utterances, and by Bosco et al. 
(2017), who demonstrated its importance in detecting both 
ironic and deceitful statements. Additionally, Spotorno et 
al. (2012) found increased functional connectivity between 
the mPFC and left IFG during sarcastic compared to literal 
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sentences, suggesting ToM integration with language pro-
cessing during sarcasm interpretation.

Several studies have found activations in the left or bilat-
eral superior temporal sulcus/gyrus (STS/STG), another 
crucial area of the ToM network (Abu-Akel and Shamay-
Tsoory 2011; Arioli et al. 2021; Frith and Frith 2006), dur-
ing pragmatic language tasks (Akimoto et al. 2014; Eviatar 
and Just 2006; Herold et al. 2018; Obert et al. 2016; Shibata 
et al. 2007; Varga et al. 2013; Wang et al. 2006a, b). The 
STS is implicated in multiple functions, including semantic 
processing (Friederici 2011; Murphy et al. 2023), decoding 
visuospatial cues in social interactions (Arioli and Canessa 
2019), and relaying emotional signals between the TPJ 
and limbic system (Abu-Akel and Shamay-Tsoory 2011). 
As Hein and Knight (2008) noted, the role of the STS may 
vary depending on its co-activation: it can support the ToM 
network when coactivated with the mPFC, or aid speech 
processing when coactivated with the IFG—both functions 
being essential for interpreting sarcasm.

Other key ToM regions were reported in the sarcasm lit-
erature, such as the temporoparietal junction (TPJ) (Abu-
Akel and Shamay-Tsoory 2011; Arioli et al. 2021; Arioli 
and Canessa 2019; Frith and Frith 2006; Schurz et al. 2014). 
For instance, several studies have reported TPJ activation 
(primarily bilaterally) either during the contextual process-
ing phase preceding sarcasm (Herold et al. 2018; Varga et al. 
2013) or throughout the task in general (Bosco et al. 2017; 
Spotorno et al. 2012). This suggests that the TPJ’s role in 
sarcasm comprehension may be linked to understanding 
communicative intentions and the social context where this 
type of language occurs (Herold et al. 2018), consistent with 
ToM-related functions and its involvement in other forms of 
pragmatic language (Arioli and Canessa 2019; Bambini et 
al. 2011).

Still, no study has yet explored the neural substrates of 
sarcasm in the Spanish language, although efforts have been 
made to study other types of pragmatic language process-
ing in Spanish (Bendersky et al. 2021; Elizalde Acevedo et 
al. 2025). That is, research regarding this topic has largely 
focused on English-speaking contexts, limiting the gener-
alizability of findings to other populations. Given that over 
330 million people worldwide are native Spanish speakers, 
exploring sarcasm in this language provides a culturally 
and linguistically diverse perspective, thereby promoting a 
more inclusive and representative science. Moreover, this 
approach enables the investigation of potential differences 
in the expression and interpretation of sarcasm that might 
remain undetected in studies focused solely on English. 
Additionally, existing sarcasm paradigms often impose a 
high cognitive load on participants by requiring them to 
retain and integrate prior information, potentially compro-
mising ecological validity, engage networks not directly 

related to the intrinsic processing of sarcasm, such as the 
general Multiple Demand Network (Diachek et al. 2020).

The study of sarcasm processing has clinical implica-
tions. It seems to depend on frontotemporal regions, also 
known as the social brain (supporting ToM skills besides 
other social cognition domains) (Arioli and Canessa 2019), 
which are often classified as “non-eloquent areas” (Herbet 
and Duffau 2020). As a result, epilepsy surgery protocols 
may underestimate their function, assuming minimal risk to 
language if resected. However, damage to these networks 
can cause subtle but significant deficits in social commu-
nication, as already mentioned. By developing a task that 
maps the neural correlates of sarcasm in Spanish, this study 
provides a potential tool to identify and preserve key hubs 
of pragmatic processing during temporal or frontal lobe 
resections, thereby refining preoperative risk stratification 
and improving long-term outcomes.

This study aims to explore the neural substrates of sar-
casm processing in the Spanish language using a novel 
fMRI task designed to minimize cognitive load and increase 
ecological validity. By integrating multimodal (visual-lin-
guistic) stimuli, the task seeks to isolate sarcasm-specific 
neural correlates, while reducing interference from execu-
tive networks associated with task complexity. It is hypoth-
esized that sarcasm comprehension in Spanish will engage 
a bilateral frontotemporal neural network partially overlap-
ping with the ToM network, consistent with the previous 
cross-linguistic findings abovementioned.

Materials and Methods

Participants

Healthy native Spanish speakers were recruited for this 
study from Estudios en Neurociencias y Sistemas Comple-
jos (ENyS– CONICET), located at ‘Hospital El Cruce.’ The 
sample comprised 18 participants (9 males, 10 females) 
with a mean age of 24.33 years (SD = 5.37, range = 18–36) 
and a mean of 16.4 years of education (SD = 2.98, range 
= 12–23) for the full cohort. Seventeen participants were 
right-handed. Participants with neurological, mental or lan-
guage disorders, visual impairments, or any MRI exclusion 
criteria were excluded. All participants gave informed con-
sent to take part in the study, which was evaluated by the 
Ethics Committee of the Hospital El Cruce, according to the 
declaration of Helsinki. Participants did not receive finan-
cial compensation for their participation in the study.
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Stimuli

A novel Spanish sarcasm event-related paradigm was 
used during fMRI scanning in this study. The paradigm 
was created by our research group, as well as validated at 
a behavioural level (for this process, see  h t t p s : / / o s f . i o / g h 
r j c /     ) . Stimuli consisted of sixty vignettes, each composed 
of cartoon-like characters accompanied by a written utter-
ance. The paradigm was specifically developed to investi-
gate sarcasm processing while minimizing cognitive load 
and enhancing ecological validity. Noteworthy, while full 
ecological validity is unattainable in an fMRI setting, our 
paradigm represents a compromise: it improves upon prior 
designs by incorporating multimodal cues, yet maintains 
the experimental control needed to isolate sarcasm-related 
processes.

The task was structured as follows (Fig. 1). Sixty dif-
ferent vignettes were presented, each displayed for 4500 
ms with an interstimulus interval of 500 ms. These timing 
parameters were selected based on the validation of the 
task at the behavioural level (Ocampo et al., under review), 
indicating that 4500 ms allowed sufficient multimodal 

Instruments

The Edinburgh Inventory, a ten-item questionnaire, was 
used to assess hand dominance (Oldfield, 1971), while 
WAT (Word Accentuation Test) in Spanish (Del Ser et al., 
1997) was used to assess verbal IQ because it is as a brief, 
validated screening tool to confirm verbal competence in a 
high-functioning sample, avoiding ceiling effects of stan-
dard IQ tests and minimizing participant burden. (Table 1).

Table 1 Evaluation and task results
Mean SD

Word accentuation test 24.76 2.76
Edinburgh Handedness Inventory 58.83 48.23
Baseline condition accuracy 70% 25%
Literal condition accuracy 71% 23%
Sarcasm condition accuracy 72% 19%
Total task accuracy 71% 12%
No significant differences were found between conditions

Table 2 Brain activations by contrasts
Peak Regions Hemisphere MNI coordinates Z-value k

x y z
Sarcasm vs. literal
AG (BA 39) L −58 −54 8 4.76 2069
STG (BA 22) L −62 −40 20 4.48
MTG (BA 21) L −64 −30 0 4.48
SMG (BA 40) L −34 −30 18 2.77 35
amPFC (BA 10) L −8 58 30 3.19 21
IFG (BA 44, 45, 47) L −52 14 14 3.28 435
Insula (BA 13) L −38 −4 2 2.90
Amygdala L −16 −6 −16 3.88 143
TP (BA 38) L −50 6 −24 3.33 108
VC (BA 17, 18, 19) L −10 68 −8 4.44 1071
VM (BA 7) L −8 −44 52 2.91 25
PreM (BA 6) L −46 −2 46 4.30 829
Sarcasm vs. baseline
AG (BA 39) L −58 −58 10 3.27 224
MTG (BA 21) L −50 −24 −10 2.89 39
FEF (BA 8) L −14 34 50 3.81 133
dlPFC (BA 9) L −16 52 32 3.02
Amygdala L −8 −4 −20 3.41 21
SMG (BA 40) L −46 −40 42 2.81 50
dPCC (BA 31) L −6 −54 34 2.58 36
VC (BA 18, 19) L −10 −64 −6 4.51 1018
PreM (BA 6) L −16 −16 68 3.60 85
PriM (BA 4) B −16 −28 74 3.38 74
PriS (BA 1) L −38 −20 36 2.76 110
Abbreviations: AG = angular gyrus; STG = superior temporal gyrus; MTG = medial temporal gyrus; SMG = supramarginal gyrus; amPFC 
= anterior medial prefrontal cortex; IFG = inferior frontal gyrus; TP = temporal pole; VC = visual cortex; VM = visuomotor cortex; PreM = 
premotor cortex; FEF = frontal eye fields; dlPFC = dorsolateral prefrontal cortex; dPCC = dorsal posterior cingulate cortex; PriM = primary 
motor cortex; PriS = primary somatosensory cortex; Hem = hemisphere; k = cluster size (number of voxels); BA = Brodmann area
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written utterance but lacked context, while image-only stim-
uli lacked the written utterance.

Stimuli were presented with E-prime software (Psychol-
ogy Software Tools, Pittsburgh, PA, USA). The task script, 
images, and stimulus presentation order are openly available 
on the Open Science Framework (see https://osf.io/hb28f/). 
During the task, participants were required to report the type 
of stimuli displayed via a right hand four keys response box. 
Accuracy and response time were measured during the task. 
Before entering the scanner, participants were trained on a 
small subset of vignettes to familiarize them with the task 
and ensure accurate performance. During task performance, 
all trials - including those with incorrect responses - were 
retained for analysis. This decision was based on binomial 
tests confirming all participants performed significantly 
above chance level (20%, p < 0.05), indicating meaningful 
task engagement.

Image Acquisition

Structural and functional MRI data for the entire brain were 
acquired using a 3 T Philips Achieva scanner with the fol-
lowing acquisition sequences. For structural images, a high-
resolution 3D T1-weighted sequence (Cartesian Plane) was 
acquired in the sagittal plane with the following parameters: 
repetition time (TR) = 7.0 ms, echo time (TE) = 3.2 ms, flip 
angle (FA) = 10°, field of view (FOV) in-plane = 240 × 240 
mm, matrix size = 240 × 240, phase encoding in both antero-
posterior, 180 slices acquired in 3D mode, Nav = 1 (signal 
averaging), voxel size = 1 × 1 × 1 mm³, and acquisition 
bandwidth = 191.5 Hz/pixel. Images were reconstructed 
with an in-plane interpolation factor of 2. Additionally, a 

processing and natural response formulation while avoiding 
rushed decisions (shorter durations) or over-reflection (lon-
ger durations), preserving ecological validity. The vignettes 
were divided into three categories: (1) a sarcastic condition 
consisting of 20 vignettes, (2) a literal condition consisting 
of 20 vignettes, and (3) a baseline condition consisting of 
20 vignettes, evenly including image-only and text-only 
stimuli. The total duration of the task was 5 min and 19 s. 
The design of the paradigm was event related.

The order of stimulus presentation was optimized using 
Chris Rorden’s fMRI Design Software. This tool generates 
sequences that maximize the statistical power of event-
related designs by improving the efficiency of beta weight 
estimation for specific conditions or contrasts. The software 
accounts for experiment duration, TR (repetition time), 
stimulus duration, and frequency to minimize noise-related 
variance and enhance design efficiency. This optimization 
is critical in event-related paradigms to ensure robust detec-
tion of neural correlates (fMRI Simulator.  h t t p  : / /  w w w .  m c  c 
a u  s l a n  d c e  n t e  r . s  c . e  d u / C  R N  L / t o o l s / f m r i s i m). All participants 
were exposed to the same order of stimuli.

To ensure comparability between the sarcastic and lit-
eral conditions, each sarcastic vignette was paired with a 
literal counterpart. The written utterances were identical in 
both conditions (e.g., “¡Veo que estás prestando atención!”, 
which translates to “I see you’re paying attention!”). The 
distinction between sarcasm and literal meaning was con-
veyed through changes in the image context and the char-
acter’s expressions (e.g., the student was either paying 
attention or not). This design allowed for a direct contrast 
between the two language conditions, isolating the neural 
correlates specific to sarcasm processing. Similarly, text-
only stimuli of the baseline condition presented the same 

Fig. 1 Graphic representation of sarcasm paradigm. The figure shows 
four different types of stimuli used in the task (English: “I see you’re 
paying attention!”/Spanish: “¡Veo que estás prestando atención!”), 

one for sarcasm, one for literal, and two for the baseline (only text and 
only image). The total time of the task can be observed, as well as the 
display time of the vignettes and the interval between them
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second-level analyses (group), a one-sample t-test was 
performed to compare the Sarcasm > Literal and Sarcasm 
> Baseline conditions. The last contrast was performed to 
isolate sarcasm-specific neural activity by subtracting low-
level sensory and task-related unspecific cognitive process-
ing captured in the baseline condition. Parameter estimates 
were obtained using an ordinary least squares adjustment.

For each contrast, masking was performed using the 
Neuromorphometrics Atlas ( h t t p  s : /  / w w w  . n  e u r  o m o r  p h o  
m e t  r i c s . c o m /) to restrict analyses to gray matter regions, 
excluding white matter and ventricular cerebrospinal fluid. 
Finally, one-sample t-tests were conducted on the contrast 
images using SPM12. Statistical maps were thresholded 
at an uncorrected p-value of < 0.01. We chose to employ 
Monte-Carlo correction of the brain volume to establish 
an appropriate voxel contiguity threshold (Slotnick and 
Schacter 2004). This correction has the advantage of higher 
sensitivity to smaller effect sizes, while still correcting for 
multiple comparisons across the whole brain volume. The 
procedure is based on the fact that the probability of observ-
ing clusters of activity due to voxel-wise Type I error (i.e., 
noise) decreases systematically as cluster size increases. 
Therefore, the cluster extent threshold can be determined 
to ensure an acceptable level of corrected cluster-wise Type 
I error. Similar procedures have been used previously to 
estimate fMRI spatial correlation (e.g., see Katanoda et al. 
2002; Ross and Slotnick 2008). An individual voxel thresh-
old was then applied to achieve the assumed voxel-wise 
Type I error rate (P < 0.01). The probability of observing a 
given cluster extent was computed across iterations under 
P < 0.05 (corrected for multiple comparisons).

Results

Behavioural Performance

Recorded participants successfully performed the task. The 
instruments and task response results are presented in Table 
1. A repeated measures ANOVA revealed no significant dif-
ferences in accuracy across conditions.

Neuroimaging Results

Sarcasm Vs. Literal

The sarcasm vs. literal contrasts elicited left-lateralized acti-
vations along the Angular Gyrus (BA 39), Supramarginal 
Gyrus (BA 40), Superior Temporal Gyrus (BA 22), Medial 
Temporal Gyrus (BA 21), anteromedial Prefrontal Cortex 
(BA 10), Inferior Frontal Gyrus (BA 44, 45, 47), Amygdala, 
Temporal Pole (BA 38), Insula (BA 13), Visual Cortex (BA 

field mapping sequence was obtained to correct geometric 
distortions due to magnetic field inhomogeneities.

Functional images were acquired using a T2- weighted 
BOLD-sensitive sequence. A single run consisting of 4 
dummy scans and 102 volumes was collected, 35 slices per 
volume. Acquisition was performed following the AC–PC 
(anterior commissure-posterior commissure) orientation. 
Each slice had a resolution of 96 × 94 pixels with a voxel 
size of 2.4 × 2.4 × 3.5 mm³, no inter-slice gap, a slice thick-
ness of 3.5 mm, and slices were acquired in an interleaved 
manner. Volumes were recorded with TR = 1490 ms, TE 
= 35 ms, and FA = 90°. The total duration of the functional 
run was 5 min and 19 s.

Image Processing

Data were processed following the steps described in previ-
ous studies (Alba-Ferrara et al. 2016; Bendersky et al. 2021; 
Elizalde Acevedo et al. 2025; Olano et al. 2020). Image pre-
processing and statistical analyses were performed using the 
SPM12 software package (Wellcome Department of Cog-
nitive Neurology;  h t t p  s : /  / w w w  . fi   l .  i o n .  u c l  . a c  . u k / s p m). The 
functional images were subjected to geometric distortion 
correction and motion correction. A mean functional image 
was calculated from the unwarped and motion-corrected 
volumes. The structural (T1-weighted) images were co-reg-
istered to the mean functional image for each subject. Sub-
sequently, the structural images were segmented into gray 
and white matter. The segmented gray matter images (both 
functional and structural) were normalized to Montreal 
Neurological Institute (MNI) space. The normalized images 
were resampled as needed and smoothed with an 8 mm full-
width at half maximum (FWHM) Gaussian kernel. A 128 s 
high-pass filter was applied to remove low-frequency drifts. 
Additionally, estimated head motion parameters (from the 
realignment step) and other nuisance regressors (e.g., mean 
signals from whole brain, ventricles, and white matter) 
were included in the design matrix to reduce non-neuronal 
variability.

First-level statistical analysis was based on a general 
linear model (GLM) (Friston et al. 1995). The time series 
was high-pass filtered with a 128 s cut off and convolved 
with the canonical hemodynamic response function (HRF) 
to model the expected response. In addition, global scaling 
was applied per session. The design matrix included four 
regressors of interest corresponding to the task conditions: 
Sarcasm, Literal, Image Only, and Text Only. Events were 
modeled as a function of stimulus onset, with a fixed dura-
tion corresponding to stimulus presentation. The “Image 
Only” and “Text Only” regressors were pooled and used 
as the baseline condition. Individual contrast maps (first 
level) were calculated for each main condition. For the 
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TPJ, and STS) showed significant left lateralized activa-
tion, which may support the hypothesis of overlap between 
sarcasm and ToM networks, broadly consistent with prior 
studies (Bohrn et al. 2012; Bosco et al. 2017; Channon et al. 
2005; Eviatar and Just 2006; Filik et al. 2019; Hauptman et 
al. 2023; Nakamura et al. 2022; Rankin et al. 2009; Rapp et 
al. 2010, 2012, 2013; Shamay-Tsoory et al. 2005; Spotorno 
et al. 2012; Uchiyama et al. 2006, 2012; Varga et al. 2013; 
Wang et al. 2006a).

However, activations were not restricted to ToM regions. 
Additional left-lateralized areas, including the amygdala, 
insula, temporal pole, the posterior medial temporal gyrus 
(pMTG) and the posterior inferior temporal gyrus (pITG), 
were also recruited. This broader activation pattern may 
reflect involvement of high-level semantic and contextual 
integration processes, rather than ToM mechanisms alone. 
Sarcasm processing may begin with the fusiform gyrus, 
a key region in detecting visual language information 
(Elizalde Acevedo et al., 2025). Concurrently, emotionally 
salient cues could be processed by the amygdala (Mat-
sui et al. 2016; Nakamura et al. 2022; Rankin et al. 2009; 
Uchiyama et al. 2012). These inputs might trigger parallel 
streams which overlap in several areas: one dedicated to lin-
guistic decoding and another to ToM-based inference.

17, 18, 19), Visuomotor Cortex (BA 7), and Premotor and 
Supplementary Motor Cortex (BA 6) (Table 1; Fig. 2).

Sarcasm Vs. Baseline

The sarcasm vs. baseline contrasts showed activations in 
the left Angular Gyrus (BA 39), left Supramarginal Gyrus 
(BA 40), left Medial Temporal Gyrus (BA 21), left Frontal 
Eye Field (BA 8), left Dorsolateral Prefrontal Cortex (BA 
9), right Anterior Prefrontal Cortex (BA 10), left Amygdala, 
left Dorsolateral Posterior Cingulate Cortex (BA 31), left 
Secondary Visual Cortex (BA 18), left Visual Association 
Cortex (BA 19), bilateral Primary Motor Cortex (BA 4), left 
Premotor and Supplementary Motor Cortex (BA 6), and left 
Primary Sensory Cortex (BA 1) (Table 1; Fig. 3).

Discussion

This study aimed to explore the neural correlates of sarcasm 
in the Spanish language using a novel fMRI paradigm. 
While the small sample size limits generalizability, results 
suggest that brain areas typically associated with ToM are 
also involved in sarcasm processing. That is, in the sarcasm 
vs. literal contrast, four core ToM regions (mPFC, IFG, 

Fig. 2 Overview of sarcasm vs. literal contrast activations. Panel (a) 
depicts axial slices, and panel (b) illustrates a sagittal template of the 
same contrast. The sagittal view in (b) explicitly highlights the left-
hemispheric distribution of activations. A primary cluster spans the 

angular and supramarginal gyri, extending anteriorly to the superior 
and medial temporal gyri and encompassing the temporoparietal junc-
tion. A second cluster is visible along the three cytoarchitectonic sub-
divisions of the inferior frontal gyrus
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pITG, as part of a broader temporo-frontal network that also 
includes the left IFG (Friederici 2011).

In this regard, the left pMTG may play a crucial role dur-
ing sarcasm comprehension. Bosco et al. (2017) reported 
that the MTG was more active for sarcastic sentences than 
for literal or deceptive ones, hypothesizing that the left 
MTG may aid in distinguishing utterances based on shared 
contextual knowledge between speakers. In addition, recent 
findings have positioned the left pMTG as a critical node 
in resolving semantic narrowing, defined as the process 
by which the range of possible meanings is incrementally 
reduced based on semantic and contextual cues (Murphy 
et al. 2023). In the context of sarcasm, semantic narrowing 
may help reduce interpretative ambiguity when contextual 
cues are strong. If contextual cues clearly indicate sarcasm, 
the left pMTG may efficiently limit the interpretative space, 
guiding rapid inferences. However, sarcasm also involves 
reconciling ambiguities or contradictions between literal 
and intended meanings. Thus, this dual demand may help 
to explain extended activations in the left pMTG. This inter-
pretation would complement Bosco et al. (2017) view, plus 
it may underscore the dynamic interplay between semantic 
and other networks, such as the ToM, in this complex lin-
guistic process (Hauptman et al. 2023).

Linguistic Processing Pathway

Semantic and syntactic information may initially be pro-
cessed by the left pSTS (Friederici 2011; Murphy et al. 
2023), supported by the left pMTG for semantic decoding 
(Murphy et al. 2023). These areas could prepare initial rep-
resentations of phrases, which are then refined by the poste-
rior IFG (BA 44/45), enabling the formation and evaluation 
of coherent linguistic structures (Friederici 2011). Notably, 
stronger activations in the sarcasm condition raise the possi-
bility of higher linguistic complexity in pragmatic language 
compared to literal, or may reflect interconnections with 
other networks, such as the ToM network (Hauptman et al. 
2023). As our paradigm controlled for syntactic complex-
ity across conditions– phrases were the same, with context 
being the variable– this could be interpreted as tentative 
support for a higher network integration during sarcasm 
comprehension. However, the linguistic complexity of sar-
casm may also stem from its inherent ambiguity; as men-
tioned before, both mistaken and deceitful utterances may 
be possible alternatives when a sarcasm phrase is presented 
(Pexman and Glenwright 2007; Winner and Gardner 1993). 
Semantic ambiguities have been shown to engage the left 
posterior temporal cortex, including the pSTS, pMTG, and 

Fig. 3 Overview of sarcasm vs. baseline contrast activations. Panel 
(a) shows axial slices, while panel (b) displays a sagittal template of 
the same contrast. The sagittal view in (b) highlights the involvement 
of the left hemisphere, consistent with the overall left-lateralization 

observed in the results. The main cluster extends across the frontal 
fields and dorsolateral prefrontal cortex. Significant activations are 
also observed in the angular and supramarginal gyri
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supports the view that sarcasm processing relies on an 
integrated interplay between ToM and linguistic networks 
(Hauptman et al. 2023; Paunov 2018).

Integration and Resolution Through a ToM and 
Semantic Related Area

Both streams might converge in the pars triangularis and 
pars orbitalis of the IFG (BA 45/47), regions implicated in 
context integration during both semantic and non-semantic 
tasks (Branzi and Lambon Ralph 2023), and to ToM pro-
cesses (Abu-Akel and Shamay-Tsoory 2011; Arioli et al. 
2021; Schurz et al. 2014). The IFG has already been asso-
ciated with an integrative function in sarcasm comprehen-
sion (Matsui et al. 2016; Nakamura et al. 2022), as a region 
involved in dual semantic and ToM processes (Bosco et al. 
2017; Filik et al. 2019; Herold et al. 2018; Obert et al. 2016; 
Rapp et al. 2010; Spotorno et al. 2012; Uchiyama et al. 2006; 
Wang et al. 2006a, b), and as a convergence point of seman-
tic and emotional processes (Belyk et al. 2017). Addition-
ally, it has been identified as a multi-domain area involved 
in detecting incongruencies and prediction violations across 
various cognitive tasks (Branzi and Lambon Ralph 2023). 
In the case of sarcasm, this integrative function would not 
act in isolation; rather, it likely operates in conjunction with 
the mPFC, which, as previously discussed, aids in detect-
ing the inherent context-content incongruence characteristic 
of sarcastic expressions (Nakamura et al. 2022); both areas 
also coactivate more strongly during sarcasm processing 
than the literal one (Spotorno et al. 2012).

Furthermore, this hypothesis aligns with a frontotempo-
ral progression of semantic processing (Murphy et al. 2023). 
The IFG may evaluate the possible meanings of an utterance 
by determining whether it is semantically coherent and con-
textually congruent (Friederici et al., 2011; Murphy et al. 
2023). Given its integrative and violation prediction role, 
it could possibly assess whether plausible meanings align 
with the speaker’s inferred mental state and intentions. That 
is, given its privileged position within the network, the IFG 
may serve as the final integration site where the sarcastic 
meaning is evaluated, selected and consolidated (Bosco et 
al. 2017; Rapp et al. 2012).

Conclusion

This study offers preliminary insights regarding the neural 
correlates of sarcasm comprehension in Spanish, reveal-
ing that sarcasm processing may recruit an extensive left-
lateralized fronto-temporal-parietal network. Notably, our 
findings point to a potential overlap between sarcasm and 
ToM networks, in general alignment with prior research. 

ToM and Contextual Processing Pathway

Simultaneously, ToM processes may infer the speaker’s 
intentions and contextual nuances during sarcasm compre-
hension. The TPJ is central to representing others’ mental 
states (Abu-Akel and Shamay-Tsoory 2011; Arioli and 
Canessa 2019), while the mPFC infers attitudes/intentions 
(Uchiyama et al. 2006) and detects incongruencies between 
the literal meaning and contextual reality (Arioli and Can-
essa 2019; Nakamura et al. 2022). The left insula, closely 
interacting with the amygdala, also contributes through 
empathy-related processing (Arioli et al. 2021) and apprais-
ing emotional cues (Phan et al. 2002). Specifically, the left 
insula and amygdala likely assess the emotional salience 
of external stimuli, thus detecting emotional cues used by 
the ToM network for decoding intentions during sarcasm 
comprehension (Matsui et al. 2016; Nakamura et al. 2022; 
Rankin et al. 2009; Uchiyama et al. 2012).

Notably, the TPJ has also been shown to play a role in 
contextual processing prior to sarcasm detection (Herold 
et al. 2018; Varga et al. 2013), particularly in paradigms 
requiring extensive contextual preparation before sarcastic 
expressions (Bosco et al. 2017; Spotorno et al. 2012). Addi-
tionally, different parts of the TPJ have been linked to lin-
guistic processes, such as the left STS and the left AG. The 
pSTS, as mentioned, has been identified as a key syntactic 
and semantic processing area (Friederici 2011; Murphy et 
al. 2023). Hein and Knight (2008) proposed that the func-
tion of this area may vary depending on whether it coacti-
vates with the mPFC or the IFG. Based on this proposal, it 
could be argued that the left STS, prominent in the sarcasm 
vs. literal contrast, has a dual role in sarcasm comprehen-
sion: (1) in conjunction with the left IFG, it contributes to 
the high-level semantic processing required for understand-
ing sarcasm; and (2) it supports ToM processes in the mPFC 
(also see Akimoto et al. 2014). On the other hand, AG has 
also been linked to contextual integration during narrative 
comprehension (Branzi et al. 2021), and in both semantic 
and non-semantic tasks (Branzi and Lambon Ralph 2023). It 
may act as a buffer for contextual and semantic information, 
aiding in the online processing of linguistically demanding 
tasks (Branzi and Lambon Ralph 2023).

Taken together, this evidence suggests the multifaceted 
role of the TPJ in sarcasm processing. In addition to its 
discussed role in representing mental states, the TPJ also 
appears to contribute to linguistic, non-ToM related pro-
cesses, particularly through buffering and integrating con-
textual and semantic information. The dual role of these 
areas could be further supported by the recent meta-analysis 
conducted by Hauptman et al. (2023), which demonstrated 
that comprehension of non-literal language recruited both 
ToM and linguistic networks. Consequently, this tentatively 
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