Zeitschrift für angewandte
 Mathematik und Physik ZAMP

A class of elliptic mixed boundary value problems with (p, q)-Laplacian: existence, comparison and optimal control

Shengda Zeng(0), Stanisław Migórski, Domingo A. Tarzia, Lang Zou and Van Thien Nguyen

Abstract

The paper deals with two nonlinear elliptic equations with (p, q)-Laplacian and the Dirichlet-Neumann-Dirichlet (DND) boundary conditions, and Dirichlet-Neumann-Neumann (DNN) boundary conditions, respectively. Under mild hypotheses, we prove the unique weak solvability of the elliptic mixed boundary value problems. Then, a comparison and a monotonicity results for the solutions of elliptic mixed boundary value problems are established. We examine a convergence result which shows that the solution of (DND) can be approached by the solution of (DNN). Moreover, two optimal control problems governed by (DND) and (DNN), respectively, are considered, and an existence result for optimal control problems is obtained. Finally, we provide a result on asymptotic behavior of optimal controls and system states, when a parameter tends to infinity.

Mathematics Subject Classification. 35J25, 35J66, 35J92, 49J20, 35Bxx.
Keywords. Mixed boundary value problem, Optimal control, (p, q)-Laplacian, Comparison, Sensitivity, Asymptotic behavior.

1. Introduction

Let Ω be a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with a Lipschitz boundary $\Gamma:=\partial \Omega$ which is divided into three measurable and mutually disjoint parts Γ_{1}, Γ_{2}, and Γ_{3} such that Γ_{1} is of positive measure. Let $1<q<p<+\infty, \alpha, \beta, \mu>0, b>0$ and $\theta<p^{*}$, where p^{*} is the critical exponent to p (see (2.1) in Sect. 2). Given functions $g: \Omega \rightarrow \mathbb{R}, r: \Gamma_{2} \rightarrow \mathbb{R}$ and $l: \Gamma_{3} \times \mathbb{R} \rightarrow \mathbb{R}$, in the paper we are interested in the investigation of the following mixed boundary value problems involving (p, q)-Laplacian operator:

Problem 1. Find $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{array}{ll}
-\Delta_{p} u(x)-\mu \Delta_{q} u(x)+\beta|u(x)|^{\theta-2} u(x)=g(x) & \text { in } \Omega, \\
u=0 & \text { on } \Gamma_{1}, \\
-\frac{\partial_{(p, q)} u}{\partial \nu}=r(x) & \text { on } \Gamma_{2}, \\
u=b & \text { on } \Gamma_{3},
\end{array}
$$

and
Problem 2. Find $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{array}{ll}
-\Delta_{p} u(x)-\mu \Delta_{q} u(x)+\beta|u(x)|^{\theta-2} u(x)=g(x) & \text { in } \Omega, \\
u=0 & \text { on } \Gamma_{1}, \\
-\frac{\partial_{(p, q)} u}{\partial \nu}=r(x) & \text { on } \Gamma_{2}, \\
-\frac{\partial_{(p, q)} u}{\partial \nu}=\alpha l(x, u(x)) & \text { on } \Gamma_{3},
\end{array}
$$

where Δ_{p} denotes the p-Laplace differential operator of the form

$$
\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \text { for all } u \in W^{1, p}(\Omega)
$$

ν is the outward unit normal at the boundary Γ, and

$$
\frac{\partial_{(p, q)} u}{\partial \nu}:=\left(|\nabla u|^{p-2} \nabla u+\mu|\nabla u|^{q-2} \nabla u, \nu\right)_{\mathbb{R}^{N}}
$$

The weak solutions to Problems 1 and 2 are understood as follows.
Definition 3. We say that
(i) a function $u: \Omega \rightarrow \mathbb{R}$ is a weak solution of Problem 1, if $u \in W^{1, p}(\Omega)$ is such that $u=0$ on $\Gamma_{1}, u=b$ on Γ_{3} and

$$
\begin{aligned}
& \int_{\Omega}\left(|\nabla u(x)|^{p-2} \nabla u(x)+\mu|\nabla u(x)|^{q-2} \nabla u(x), \nabla v(x)\right)_{\mathbb{R}^{N}} \mathrm{~d} x \\
& \quad+\int_{\Omega} \beta|u(x)|^{\theta-2} u(x) v(x) \mathrm{d} x=\int_{\Omega} g(x) v(x) \mathrm{d} x-\int_{\Gamma_{2}} r(x) v(x) \mathrm{d} \Gamma
\end{aligned}
$$

for all $v \in W^{1, p}(\Omega)$ with $v=0$ on $\Gamma_{1} \cup \Gamma_{3}$,
(ii) a function $u: \Omega \rightarrow \mathbb{R}$ is a weak solution of Problem 2, if $u \in W^{1, p}(\Omega)$ satisfies $u=0$ on Γ_{1} and

$$
\begin{aligned}
& \int_{\Omega}\left(|\nabla u(x)|^{p-2} \nabla u(x)+\mu|\nabla u(x)|^{q-2} \nabla u(x), \nabla v(x)\right)_{\mathbb{R}^{N}} \mathrm{~d} x+\int_{\Omega} \beta|u(x)|^{\theta-2} u(x) v(x) \mathrm{d} x \\
& \quad+\alpha \int_{\Gamma_{3}} l(x, u(x)) v(x) \mathrm{d} \Gamma=\int_{\Omega} g(x) v(x) \mathrm{d} x-\int_{\Gamma_{2}} r(x) v(x) \mathrm{d} \Gamma
\end{aligned}
$$

for all $v \in W^{1, p}(\Omega)$ with $v=0$ on Γ_{1}.
The main feature of our research contains two perspectives. First, we deal with problems with mixed boundary value conditions and (p, q)-Laplacian operator. Note that (p, q)-Laplace operator with $1<q<p$ is the sum of a p-Laplacian and a q-Laplacian, so the energy functional $I(u)$ corresponding to the (p, q) Laplace operator defined by

$$
I(u):=\int_{\Omega}\left(\frac{\|\nabla u\|^{p}}{p}+\frac{\|\nabla u\|^{q}}{q}\right) \mathrm{d} x \text { for all } u \in W^{1, p}(\Omega)
$$

is mainly controlled by the exponent q if $u \in B_{1}(0):=\left\{u \in W^{1, p}(\Omega) \mid\|\nabla u\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)} \leq 1\right\}$, or by the exponent p when $u \in W^{1, p}(\Omega) \backslash B_{1}(0)$. This structure impels the huge potential applications of (p, q) Laplacian in diverse fields, for instance, it can used to describe exactly the geometry of composites made of two different materials with distinct power hardening exponents. Second perspective concerns applications in which mixed boundary value problems are a powerful mathematical tool. They have been widely applied to explain various complicated natural phenomena and to solve a lot of engineering problems, for instance, contact mechanics problems, semipermeability problems, and free boundary problems. The research of mixed boundary value problems with or without (p, q)-Laplacian can be found in Alves et al. [1], Axelsson et al. [2], Bai et al. [3], Barboteu et al. [4], Zeng et al. [36], Duvaut and Lions [8], Figueiredo [9], Gasiński and Papageorgiou [11], Gasiński and Winkert [12], Han [13], Liu et al. [16, 17], Maz'ya and Rossmann [19], Zeng et al. [34], Migórski et al. [22,23], Mihailescu and Rădulescu [25], Mitrea [26], Papageorgiou et al. [29], Liu and Papageorgiou [18], Papageorgiou et al. [27,28] and Yu and Feng [32]. Results on convergence of optimal solutions in optimal control problems can be found in Denkowski and Migórski [5], Gariboldi and Tarzia [10], Denkowski and Mortola [7], Zeng et al. [37], Migórski [20,21], Denkowski et al. [6, Section 4.2], Liu et al. [15], Zeng et al. [35] and the references therein.

The purpose of this paper is fourfold. The first goal is to prove the unique weak solvability of Problems 1 and 2 by applying a surjectivity theorem for pseudomonotone operators. The second purpose is to establish a comparison principle and a monotonicity result for solutions of Problems 1 and 2. The third aim is to deliver a convergence result which shows that the solution of Problem 1 can be approached by the solution of Problem 2, as $\alpha \rightarrow \infty$. Moreover, our last intention is to investigate two optimal control problems, Problems 9 and 10, and to examine the asymptotic behavior of optimal solutions (i.e., control-state pairs) and of minimal values for Problem 10, when parameter α in the boundary condition, representing for instance a heat transfer coefficient, tends to infinity.

The rest of the paper is organized as follows. In Sect. 2, we recall basic notation and collect the necessary preliminary material. Section 3 is devoted to the proof of existence and uniqueness of solutions to Problems 1 and 2, and to discuss a comparison principle as well as a convergence result to Problems1 and 2. Finally, in Sect. 4, we introduce two optimal control problems governed by Problems 1 and Problem 2, respectively, and explore the asymptotic behavior of the optimal controls and system states to Problem 10.

2. Mathematical background

In this section, we review some basic notation, definitions and the necessary preliminary material, which will be used in next sections. More details can be found, for instance, in $[6,24,30,31]$.

Let $\left(Y,\|\cdot\|_{Y}\right)$ be a Banach space and Y^{*} stand for the dual space to Y. We denote by $\langle\cdot, \cdot\rangle$ the duality brackets for the pair of Y^{*} and Y. Everywhere below, the symbols \xrightarrow{w} and \rightarrow represent the weak and strong convergences, respectively. We say that a mapping $F: Y \rightarrow Y^{*}$ is
(i) monotone, if

$$
\langle F u-F v, u-v\rangle \geq 0 \text { for all } u, v \in Y,
$$

(ii) strictly monotone, if

$$
\langle F u-F v, u-v\rangle>0 \text { for all } u, v \in Y \text { with } u \neq v,
$$

(iii) of type $(S)_{+}$(or F satisfies $\left(S_{+}\right)$-property), if for any sequence $\left\{u_{n}\right\} \subset Y$ with $u_{n} \xrightarrow{w} u$ in Y as $n \rightarrow \infty$ for some $u \in Y$ and $\limsup _{n \rightarrow \infty}\left\langle F u_{n}, u_{n}-u\right\rangle \leq 0$, then the sequence $\left\{u_{n}\right\}$ converges strongly to u in Y,
(iv) pseudomonotone, if it is bounded and for every sequence $\left\{u_{n}\right\} \subseteq Y$ converging weakly to $u \in Y$ with $\limsup _{n \rightarrow \infty}\left\langle F u_{n}, u_{n}-u\right\rangle \leq 0$, then

$$
\langle F u, u-v\rangle \leq \liminf _{n \rightarrow \infty}\left\langle F u_{n}, u_{n}-v\right\rangle \text { for all } v \in Y,
$$

(v) coercive, if

$$
\lim _{\|v\|_{Y} \rightarrow \infty} \frac{\langle F v, v\rangle}{\|v\|_{Y}}=+\infty
$$

It is not difficult to see that if F is of type $(S)_{+}$, then F is pseudomonotone as well. Note that the operator $F: Y \rightarrow Y^{*}$ is pseudomonotone if and only if it is bounded and $y_{n} \rightarrow y$ weakly in Y with $\limsup _{n \rightarrow \infty}\left\langle F y_{n}, y_{n}-y\right\rangle \leq 0$ entails $\lim _{n \rightarrow \infty}\left\langle F y_{n}, y_{n}-y\right\rangle=0$ and $F y_{n} \rightarrow F y$ weakly in Y^{*}. Furthermore, if $\stackrel{n \rightarrow \infty}{F} \in \mathcal{L}\left(Y, Y^{*}\right)$ (the class of linear and bounded operators) is nonnegative, then it is pseudomonotone.

Theorem 4. Let Y be a Banach space, and $F, G: Y \rightarrow Y^{*}$. Then, we have
(i) if F is bounded, hemicontinuous, and monotone, then F is pseudomonotone,
(ii) if F and G are pseudomonotone, then $F+G$ is also pseudomonotone.

The class of pseudomonotone and coercive operators enjoys the well-known surjectivity property.

Theorem 5. Let Y be a Banach space and $F: Y \rightarrow Y^{*}$ be pseudomonotone and coercive. Then F is surjective, i.e., for any $f \in Y^{*}$, there is at least one solution to the equation $F u=f$.

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain such that its Lipschitz boundary $\Gamma=\partial \Omega$ is divided into three measurable and mutually disjoint parts Γ_{1}, Γ_{2}, and Γ_{3}, and Γ_{1} has a positive measure. Let $1<p<+\infty$ and $p^{\prime}>1$ be the conjugate exponent of p, i.e., $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. In the sequel, we denote by p^{*} the critical exponent to p given by

$$
p^{*}= \begin{cases}\frac{N p}{N-p} & \text { if } p<N \tag{2.1}\\ +\infty & \text { if } p \geq N\end{cases}
$$

Throughout the paper, the norms of the Lebesgue space $L^{p}(\Omega)$ and Sobolev space $W^{1, p}(\Omega)$ are defined by

$$
\|u\|_{L^{p}(\Omega)}:=\left(\int_{\Omega}|u(x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \quad \text { for all } u \in L^{p}(\Omega)
$$

and

$$
\|u\|_{W^{1, p}(\Omega)}:=\left(\|u\|_{L^{p}(\Omega)}^{p}+\|\nabla u\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}\right)^{1 / p} \text { for all } u \in W^{1, p}(\Omega)
$$

respectively. We introduce a subspace V of $W^{1, p}(\Omega)$ given by

$$
V:=\left\{u \in W^{1, p}(\Omega) \mid u=0 \text { on } \Gamma_{1}\right\}
$$

From the fact that Γ_{1} has a positive measure and by the Poincaré inequality, it follows that V endowed with the norm

$$
\|u\|_{V}:=\left(\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \text { for all } u \in V
$$

is a reflexive Banach space. Further, we consider the subsets K and K_{0} of V defined by

$$
\begin{align*}
& K:=\left\{u \in V \mid u=b \text { on } \Gamma_{3}\right\}, \tag{2.2}\\
& K_{0}:=\left\{u \in V \mid u=0 \text { on } \Gamma_{3}\right\}, \tag{2.3}
\end{align*}
$$

respectively, where $b>0$ is given in Problem 1.
We end the section with the nonlinear operator $A: V \rightarrow V^{*}$ defined by

$$
\begin{equation*}
\langle A u, v\rangle=\int_{\Omega}\left(|\nabla u(x)|^{p-2} \nabla u(x)+\mu|\nabla u(x)|^{q-2} \nabla u(x), \nabla v(x)\right)_{\mathbb{R}^{N}} \mathrm{~d} x \tag{2.4}
\end{equation*}
$$

for all $u, v \in V$. The following result summarizes the main properties of this map (see, e.g., [14, Chapter 3, Example 1.7, p. 303]).

Proposition 6. Let $\mu>0$ and $1<q<p<+\infty$. Then, the operator $A: V \rightarrow V^{*}$ defined by (2.4) is bounded, continuous, strictly monotone (hence maximal monotone) and of type $\left(S_{+}\right)$.

3. Existence, uniqueness and convergence results

This section is devoted to study the unique solvability of Problems 1 and 2 . We discuss a comparison principle which reveals the essential relations between the unique weak solutions of Problems 1 and 2 as well as the constant $b>0$. We also establish a monotonicity property of solution to Problem 2 with respect to the parameter α, and obtain a convergence result which shows that the unique solution to Problem 1 can be approached by the unique solution to Problem 2 when the parameter α tends to infinity.

Let us consider the nonlinear operators $B, L: V \rightarrow V^{*}$ defined by

$$
\begin{equation*}
\langle B u, v\rangle:=\int_{\Omega} \beta|u(x)|^{\theta-2} u(x) v(x) \mathrm{d} x \text { for all } u, v \in V \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle L u, v\rangle:=\int_{\Gamma_{3}} l(x, u(x)) v(x) \mathrm{d} \Gamma \text { for all } u, v \in V \tag{3.2}
\end{equation*}
$$

respectively. By the Riesz representation theorem, we introduce the function $f \in V^{*}$ defined by

$$
\begin{equation*}
\langle f, v\rangle=\int_{\Omega} g(x) v(x) \mathrm{d} x-\int_{\Gamma_{2}} r(x) v(x) \mathrm{d} \Gamma \text { for all } v \in V \tag{3.3}
\end{equation*}
$$

Using the notation above, it is not difficult to see that Definition 3 can be equivalently rewritten as follows:
(i)' a function $u_{\alpha} \in V$ is called to be a weak solution of Problem 2 associated with $\alpha>0$, if it satisfies

$$
\begin{equation*}
\left\langle A u_{\alpha}+B u_{\alpha}, v\right\rangle+\alpha\left\langle L u_{\alpha}, v\right\rangle=\langle f, v\rangle \text { for all } v \in V, \tag{3.4}
\end{equation*}
$$

(ii)' a function $u_{\infty} \in K$ is called to be a weak solution of Problem 1, if

$$
\begin{equation*}
\left\langle A u_{\infty}+B u_{\infty}, v\right\rangle=\langle f, v\rangle \text { for all } v \in K_{0} \tag{3.5}
\end{equation*}
$$

where K and K_{0} are given by (2.2) and (2.3), respectively.
We assume that the function l in the operator L satisfies the following hypotheses.
$\mathrm{H}(1): l: \Gamma_{3} \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function (i.e., for all $s \in \mathbb{R}$, the function $x \mapsto l(x, s)$ is measurable, and for a.e. $x \in \Gamma_{3}, s \mapsto l(x, s)$ is continuous) such that
(i) there exist $a_{l} \in L_{+}^{p^{\prime}}\left(\Gamma_{3}\right)$ and $b_{l}>0$ satisfying

$$
|l(x, s)| \leq a_{l}(x)+b_{l}\left(1+|s|^{p-1}\right)
$$

for all $s \in \mathbb{R}$ and a.e. $x \in \Gamma_{3}$,
(ii) for a.e. $x \in \Gamma_{3}, s \mapsto l(x, s)$ is nondecreasing, i.e., it satisfies

$$
\left(l\left(x, s_{1}\right)-l\left(x, s_{2}\right)\right)\left(s_{1}-s_{2}\right) \geq 0
$$

for all $s_{1}, s_{2} \in \mathbb{R}$ and a.e. $x \in \Gamma_{3}$,
(iii) for a.e. $x \in \Gamma_{3}, l(x, s)=0$ if and only if $s=b$.

We next give a concrete example for function l which satisfies hypotheses $H(l)$.
Example 7. Let $b>0$ be given in Problem 1 and sgn: $\mathbb{R} \rightarrow\{-1,0,1\}$ be the sign function, namely,

$$
\operatorname{sgn}(s):= \begin{cases}1 & \text { if } s>0 \\ 0 & \text { if } s=0 \\ -1 & \text { if } s<0\end{cases}
$$

Also, let $1<p<+\infty$ and $\omega \in L^{\infty}\left(\Gamma_{3}\right), \omega>0$. Then, the function $l: \Gamma_{3} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
l(x, s)=\omega(x) \operatorname{sgn}(s-b)|s-b|^{p-1} \text { for all } s \in \mathbb{R} \text { and } x \in \Gamma_{3},
$$

satisfies hypotheses $H(l)$.
Besides, we need the following assumption.
$\mathrm{H}(0): \quad g \in L^{p^{\prime}}(\Omega)$ with $g \leq 0$ in $\Omega, r \in L^{p^{\prime}}\left(\Gamma_{2}\right)$ with $r \geq 0$ on Γ_{2}, and $b>0$.
The main results on existence, uniqueness, comparison, monotonicity and convergence to Problem 2 are provided in the following theorem.

Theorem 8. Assume that $H(l)$ and $H(0)$ are fulfilled. Then, we have
(i) Problem 1 has a unique solution $u_{\infty} \in K$,
(ii) for every $\alpha>0$, Problem 2 has a unique solution $u_{\alpha} \in V$,
(iii) $u_{\infty} \leq b$ in Ω,
(iv) for every $\alpha>0$, it holds $u_{\alpha} \leq b$ in Ω and $u_{\alpha} \leq b$ on Γ_{3},
(v) for every $\alpha>0$, it holds $u_{\alpha} \leq u_{\infty}$ in Ω,
(vi) if $0<\alpha_{1} \leq \alpha_{2}$, then $u_{\alpha_{1}} \leq u_{\alpha_{2}}$ in Ω,
(vii) if a sequence $\left\{\alpha_{n}\right\}$ is such that $\alpha_{n}>0$ for all $n \in \mathbb{N}$ with $\alpha_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then $u_{\alpha_{n}} \rightarrow u_{\infty}$ in V as $n \rightarrow \infty$.

Proof. (i) It is a direct consequence of [33, Lemma 6].
(ii) From (3.4), we can observe that $u \in V$ is a weak solution to Problem 2 if and only if it solves the following abstract operator equation: find $u \in V$ such that

$$
\begin{equation*}
A u+B u+\alpha L u=f \text { in } V^{*} \tag{3.6}
\end{equation*}
$$

By Proposition 6, we know that A is a bounded, continuous, strictly monotone (hence maximal monotone) operator, and of type $\left(S_{+}\right)$. Also, we can obtain

$$
\begin{equation*}
\|A u\|_{V^{*}} \leq\|u\|_{V}^{p-1}+\mu\|\nabla u\|_{L(q-1) p^{\prime}\left(\Omega ; \mathbb{R}^{N}\right)}^{q-1} \text { for all } u \in V \text {. } \tag{3.7}
\end{equation*}
$$

Employing [24, Theorem 3.69], we deduce that A is a pseudomonotone operator. As concerns operator B, it is monotone and continuous, and satisfies

$$
\begin{equation*}
\|B u\|_{V^{*}} \leq c_{1}\|u\|_{V}^{\theta-1} \text { for all } u \in V \tag{3.8}
\end{equation*}
$$

with some $c_{1}>0$. The latter combined with the compactness of the embedding of V to $L^{\theta}(\Omega)$ (due to $\theta<p^{*}$) implies that B is completely continuous, so, it is also pseudomonotone. For any $u \in V$, from hypotheses $H(l)$ and the Hölder inequality, we have

$$
\begin{aligned}
& \|L u\|_{L^{p^{\prime}}(\Omega)}=\sup _{v \in L^{p}\left(\Gamma_{3}\right),\|v\|_{L^{p}\left(\Gamma_{3}\right)}=1}\langle L u, v\rangle_{L^{p^{\prime}}\left(\Gamma_{3}\right) \times L^{p}\left(\Gamma_{3}\right)} \\
& \quad \leq \sup _{v \in L^{p}\left(\Gamma_{3}\right),\|v\|_{L^{p}\left(\Gamma_{3}\right)}=1} \int_{\Gamma_{3}}|l(x, u(x)) v(x)| \mathrm{d} \Gamma \\
& \quad \leq \sup _{v \in L^{p}\left(\Gamma_{3}\right),\|v\|_{L^{p}\left(\Gamma_{3}\right)}=1} \int_{\Gamma_{3}}\left(a_{l}(x)+b_{l}\left(1+|u(x)|^{p-1}\right)\right)|v(x)| \mathrm{d} \Gamma \\
& \quad \leq \sup _{v \in L^{p}\left(\Gamma_{3}\right),\|v\|_{L^{p}\left(\Gamma_{3}\right)}=1}\left(\left\|a_{l}\right\|_{L^{p^{\prime}}\left(\Gamma_{3}\right)}+b_{l}\left|\Gamma_{3}\right|^{\frac{1}{p^{p}}}+b_{1}\|u\|_{L^{p}\left(\Gamma_{3}\right)}^{p-1}\right)\|v\|_{L^{p}\left(\Gamma_{3}\right)} \\
& \quad \leq\left\|a_{l}\right\|_{L^{p^{\prime}}\left(\Gamma_{3}\right)}+b_{l}\left|\Gamma_{3}\right|^{\frac{1}{p^{\prime}}}+b_{1}\|u\|_{L^{p}\left(\Gamma_{3}\right)}^{p-1} .
\end{aligned}
$$

Hence, $L: V \rightarrow V^{*}$ is well-defined. From the compactness of the trace operator $\gamma: V \rightarrow L^{p}\left(\Gamma_{3}\right)$ and the definition of L, we can also see that L is continuous. Besides, we use condition $H(l)(i i)$ to infer that L is monotone, that is,

$$
\langle L u-L v, u-v\rangle=\int_{\Gamma_{3}}(l(x, u(x))-l(x, v(x)))(u(x)-v(x)) \mathrm{d} \Gamma \geq 0
$$

for all $u, v \in V$. This together with [24, Theorem 3.69] implies that L is a pseudomonotone operator. Therefore, by using Theorem 4(ii), we infer that $A+B+\alpha L: V \rightarrow V^{*}$ is pseudomonotone.

Next, let $\varepsilon>0$ be arbitrary. From hypothesis $H(l)$, we get the estimate

$$
\langle L u, u\rangle=\int_{\Gamma_{3}} l(x, u(x)) u(x) \mathrm{d} \Gamma=\int_{\Gamma_{3}} l(x, u(x))(u(x)-b) \mathrm{d} \Gamma+\int_{\Gamma_{3}} l(x, u(x)) b \mathrm{~d} \Gamma
$$

$$
\begin{aligned}
& \geq \int_{\Gamma_{3}} l(x, b)(u(x)-b) \mathrm{d} \Gamma+\int_{\Gamma_{3}} l(x, u(x)) b \mathrm{~d} \Gamma \\
& \geq-\int_{\Gamma_{3}}\left(a_{l}(x)+b_{l}\left(1+|u(x)|^{p-1}\right)\right) b \mathrm{~d} \Gamma \\
& \geq-b\left|\Gamma_{3}\right|^{\frac{1}{p}}\left\|a_{l}\right\|_{L^{p^{\prime}}\left(\Gamma_{3}\right)}-b_{l} b\left|\Gamma_{3}\right|-b_{l} b \int_{\Gamma_{3}}|u(x)|^{p-1} \mathrm{~d} \Gamma \\
& \geq-b\left|\Gamma_{3}\right|^{\frac{1}{p}}\left\|a_{l}\right\|_{L^{p^{\prime}}\left(\Gamma_{3}\right)}-b_{l} b\left|\Gamma_{3}\right|-\varepsilon\|u\|_{L^{p}\left(\Gamma_{3}\right)}^{p}-c(\varepsilon)
\end{aligned}
$$

with some $c(\varepsilon)>0$, where the last inequality is obtained by using the Young inequality. From the estimates above and definitions of A and B, we obtain

$$
\begin{align*}
& \langle A u+B u+\alpha L u, u\rangle \\
& \geq \geq u\left\|_{V}^{p}+\mu\right\| \nabla u\left\|_{L^{q}\left(\Omega ; \mathbb{R}^{N}\right)}^{q}+\beta\right\| u\left\|_{L^{\theta}(\Omega)}^{\theta}-\alpha b\left|\Gamma_{3}\right|^{\frac{1}{p}}\right\| a_{l} \|_{L^{p^{\prime}}\left(\Gamma_{3}\right)}-\alpha b_{l} b\left|\Gamma_{3}\right| \\
& \quad-\varepsilon \alpha\|u\|_{L^{p}\left(\Gamma_{3}\right)}^{p}-\alpha c(\varepsilon) \\
& \geq \\
& \quad\|u\|_{V}^{p}+\mu\|\nabla u\|_{L^{q}\left(\Omega ; \mathbb{R}^{N}\right)}^{q}+\beta\|u\|_{L^{\theta}(\Omega)}^{\theta}-\alpha b\left|\Gamma_{3}\right|^{\frac{1}{p}}\left\|a_{l}\right\|_{L^{p^{\prime}}\left(\Gamma_{3}\right)}-\alpha b_{l} b\left|\Gamma_{3}\right| \tag{3.9}\\
& \quad-\varepsilon \alpha c_{V}^{p}\|u\|_{V}^{p}-\alpha c(\varepsilon)
\end{align*}
$$

for all $u \in V$. We set $\varepsilon=\frac{1}{2 \alpha c_{V}^{p}}$, where $c_{V}>0$ is the constant for the embedding of V into $L^{p}\left(\Gamma_{3}\right)$, that is, $\|v\|_{L^{p}\left(\Gamma_{3}\right)} \leq c_{V}\|v\|_{V}$ for $v \in V$. Then, because of $p>1$, we conclude that $A+B+\alpha L$ is coercive. Therefore, all conditions of Theorem 5 are verified. Using this theorem, we deduce that Problem 2 has at least one solution. Furthermore, the strict monotonicity of A allows us to apply a standard method to show that Problem 2 has a unique solution $u_{\alpha} \in V$.
(iii) Let $u_{\infty} \in K$ be the unique solution of Problem 1. We set $w=\left(u_{\infty}-b\right)^{+}$. Then, one has $u_{\infty}=b$ on Γ_{3} and $w=0$ on Γ_{3}. Thus, $w \in K_{0}$. We take $v=w$ in (3.5) to get

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla u_{\infty}\right|^{p-2} \nabla u_{\infty}+\mu\left|\nabla u_{\infty}\right|^{q-2} \nabla u_{\infty}, \nabla\left(u_{\infty}-b\right)^{+}\right)_{\mathbb{R}^{N}} \mathrm{~d} x \\
& \quad+\int_{\Omega} \beta\left|u_{\infty}(x)\right|^{\theta-2} u_{\infty}(x)\left(u_{\infty}(x)-b\right)^{+} \mathrm{d} x=\left\langle A u_{\infty}+B u_{\infty}, w\right\rangle=\langle f, w\rangle \\
& \quad=\int_{\Omega} g(x)\left(u_{\infty}(x)-b\right)^{+} \mathrm{d} x-\int_{\Gamma_{2}} r(x)\left(u_{\infty}(x)-b\right)^{+} \mathrm{d} \Gamma .
\end{aligned}
$$

From condition $H(0)$, we deduce

$$
\int_{\Omega} g(x)\left(u_{\infty}(x)-b\right)^{+} \mathrm{d} x-\int_{\Gamma_{2}} r(x)\left(u_{\infty}(x)-b\right)^{+} \mathrm{d} \Gamma \leq 0
$$

while the monotonicity of B and nonnegativity of b guarantee that

$$
\int_{\Omega} \beta\left|u_{\infty}(x)\right|^{\theta-2} u_{\infty}(x)\left(u_{\infty}(x)-b\right)^{+} \mathrm{d} x \geq 0
$$

Taking into account the last two inequalities and the fact $\nabla b=0$, we have

$$
\left\langle A u_{\infty}-A b, w\right\rangle \leq 0
$$

The latter combined with the strict monotonicity of A implies that $w=0$. This means that $u_{\infty} \leq b$ in Ω.
(iv) Let $u_{\alpha} \in V$ be the unique solution of Problem 2 corresponding to $\alpha>0$. We put $w=\left(u_{\alpha}-b\right)^{+}$. Inserting $v=w$ into (3.4), it yields

$$
\begin{equation*}
\left\langle A u_{\alpha}+B u_{\alpha}, w\right\rangle+\alpha\left\langle L u_{\alpha}, w\right\rangle=\langle f, w\rangle . \tag{3.10}
\end{equation*}
$$

Hence, we have

$$
\begin{aligned}
& \left\langle A u_{\alpha}, w\right\rangle \leq-\alpha\left\langle L u_{\alpha}, w\right\rangle=-\alpha \int_{\Gamma_{3}} l\left(x, u_{\alpha}(x)\right)\left(u_{\alpha}(x)-b\right)^{+} \mathrm{d} \Gamma \\
& \quad=-\alpha \int_{\left\{u_{\alpha}>b\right\} \cap \Gamma_{3}} l\left(x, u_{\alpha}(x)\right)\left(u_{\alpha}(x)-b\right) \mathrm{d} \Gamma \leq-\alpha \int_{\left\{u_{\alpha}>b\right\} \cap \Gamma_{3}} l(x, b)\left(u_{\alpha}(x)-b\right) \mathrm{d} \Gamma \\
& \quad=0,
\end{aligned}
$$

where we have used the monotonicity of the function $s \mapsto l(x, s)$ and hypothesis $H(l)(\mathrm{iii})$, and the set $\left\{u_{\alpha}>b\right\}$ is defined by $\left\{u_{\alpha}>b\right\}:=\left\{x \in \Gamma_{3} \mid u_{\alpha}(x)>b\right\}$. Therefore, one has

$$
\left\langle A u_{\alpha}-A b, w\right\rangle \leq 0 .
$$

Then, it is true that $w=0$, i.e., $u_{\alpha} \leq b$ in Ω.
From Eq. (3.10) and the fact $u_{\alpha} \leq b$ in Ω, we have

$$
\begin{gather*}
0 \geq \alpha\left\langle L u_{\alpha}, w\right\rangle=\alpha \int_{\Gamma_{3}} l\left(x, u_{\alpha}(x)\right)\left(u_{\alpha}(x)-b\right)^{+} \mathrm{d} \Gamma \\
=\alpha \int_{\left\{u_{\alpha}>b\right\} \cap \Gamma_{3}} l\left(x, u_{\alpha}(x)\right)\left(u_{\alpha}(x)-b\right) \mathrm{d} \Gamma . \tag{3.11}
\end{gather*}
$$

Using the monotonicity of $s \mapsto l(x, s)$ and hypothesis $H(l)\left(\right.$ iii) again, we obtain $l\left(x, u_{\alpha}(x)\right)\left(u_{\alpha}(x)-b\right) \geq$ $l(x, b)\left(u_{\alpha}(x)-b\right)=0$ for a.e. $x \in\left\{u_{\alpha}>b\right\} \cap \Gamma_{3}$. This together with inequality (3.11) implies $l\left(x, u_{\alpha}(x)\right)=0$ due to $u_{\alpha}(x)>b$. On the other hand, condition $H(l)\left(\right.$ iii) turns out $u_{\alpha}(x)=b$. This leads to a contradiction. Therefore, we conclude that $u_{\alpha} \leq b$ on Γ_{3} as claimed.
(v) For any $\alpha>0$ fixed, let $u_{\alpha} \in V$ and $u_{\infty} \in K$ be the unique solutions of Problems 2 and 1 , respectively. We set $w=\left(u_{\alpha}-u_{\infty}\right)^{+}$. From assertion (iv) it follows that $u_{\alpha} \leq b$ on Γ_{3}. We use the definition of K (i.e., $u_{\infty}=b$ on Γ_{3}) to get $w=\left(u_{\alpha}-u_{\infty}\right)^{+}=0$ on Γ_{3}, so, $w \in K_{0}$. Taking $v=w$ into (3.4) and (3.5), respectively, we have

$$
\left\langle A u_{\infty}+B u_{\infty}, w\right\rangle=\langle f, w\rangle \quad \text { and } \quad\left\langle A u_{\alpha}+B u_{\alpha}, w\right\rangle+\alpha\left\langle L u_{\alpha}, w\right\rangle=\langle f, w\rangle .
$$

Summing up the equalities above, it gives

$$
\begin{aligned}
& \left\langle A u_{\alpha}-A u_{\infty}+B u_{\alpha}-B u_{\infty}, w\right\rangle=-\alpha\left\langle L u_{\alpha}, w\right\rangle \\
& \quad=-\alpha \int_{\Gamma_{3}} l\left(x, u_{\alpha}(x)\right)\left(u_{\alpha}(x)-u_{\infty}(x)\right)^{+} \mathrm{d} \Gamma=-\alpha \int_{\Gamma_{3}} l\left(x, u_{\alpha}(x)\right)\left(u_{\alpha}(x)-b\right)^{+} \mathrm{d} \Gamma \\
& \quad=0 .
\end{aligned}
$$

Employing the monotonicity of A and B, we have $w=0$, which implies $u_{\alpha} \leq u_{\infty}$ in Ω.
(vi) Let $0<\alpha_{1} \leq \alpha_{2}$ and $u_{i}:=u_{\alpha_{i}}$ be the unique solution of Problem 2 associated with $\alpha=\alpha_{i}$ for $i=1,2$. Hence,

$$
\left\langle A u_{i}+B u_{i}, v\right\rangle+\alpha_{i}\left\langle L u_{i}, v\right\rangle=\langle f, v\rangle \text { for all } v \in V .
$$

Let $w:=\left(u_{1}-u_{2}\right)^{+}$. Putting $v=w$ into the equality above and summing up the resulting equations, one has

$$
\left\langle A u_{1}-A u_{2}+B u_{1}-B u_{2}, w\right\rangle=\left\langle\alpha_{2} L u_{2}-\alpha_{1} L u_{1}, w\right\rangle=\alpha_{2}\left\langle L u_{2}-\frac{\alpha_{1}}{\alpha_{2}} L u_{1}, w\right\rangle
$$

$$
\begin{align*}
& =\alpha_{2} \int_{\Gamma_{3}}\left(l\left(x, u_{2}(x)\right)-\frac{\alpha_{1}}{\alpha_{2}} l\left(x, u_{1}(x)\right)\right)\left(u_{1}(x)-u_{2}(x)\right)^{+} \mathrm{d} \Gamma \\
& =\alpha_{2} \int_{\left\{u_{1}>u_{2}\right\} \cap \Gamma_{3}}\left(l\left(x, u_{2}(x)\right)-\frac{\alpha_{1}}{\alpha_{2}} l\left(x, u_{1}(x)\right)\right)\left(u_{1}(x)-u_{2}(x)\right) \mathrm{d} \Gamma . \tag{3.12}
\end{align*}
$$

Recalling that $u_{i} \leq b$ on Γ_{3} (see assertion (iv)), we use condition $H(l)$ (ii) to find that $0=l(x, b) \geq$ $l\left(x, u_{i}(x)\right)$ for a.e. $x \in \Gamma_{3}$ and $i=1,2$. From hypothesis $H(l)(i i)$ again and the fact $\frac{\alpha_{1}}{\alpha_{2}} \leq 1$, we get

$$
\begin{aligned}
& -\frac{\alpha_{1}}{\alpha_{2}} l\left(x, u_{1}(x)\right)\left(u_{1}(x)-u_{2}(x)\right) \leq-\frac{\alpha_{1}}{\alpha_{2}} l\left(x, u_{2}(x)\right)\left(u_{1}(x)-u_{2}(x)\right) \\
& \quad \leq-l\left(x, u_{2}(x)\right)\left(u_{1}(x)-u_{2}(x)\right) \text { for a.e. } x \in\left\{u_{1}>u_{2}\right\}
\end{aligned}
$$

Inserting the inequality above into (3.12) and using hypothesis $H(l)$ (ii), it yields

$$
\begin{aligned}
& \left\langle A u_{1}-A u_{2}+B u_{1}-B u_{2}, w\right\rangle \\
& \quad \leq \alpha_{2} \int_{\left\{u_{1}>u_{2}\right\} \cap \Gamma_{3}}\left(l\left(x, u_{2}(x)\right)-l\left(x, u_{1}(x)\right)\right)\left(u_{1}(x)-u_{2}(x)\right) \mathrm{d} \Gamma \leq 0
\end{aligned}
$$

Therefore, we conclude that $w=0$, and finally $u_{1} \leq u_{2}$ in Ω.
(vii) Let $\left\{\alpha_{n}\right\}$ be a sequence such that $\alpha_{n}>0$ for all $n \in \mathbb{N}$ and $\alpha_{n} \rightarrow \infty$ as $n \rightarrow \infty$. For each $n \in \mathbb{N}$, let $u_{n}:=u_{\alpha_{n}}$ be the unique solution of Problem 2 corresponding to $\alpha=\alpha_{n}$. We claim that sequence $\left\{u_{n}\right\}$ is bounded in V. For each $n \in \mathbb{N}$, we have

$$
\|f\|_{V^{*}}\left(\left\|u_{n}\right\|_{V}+\left\|u_{\infty}\right\|_{V}\right) \geq\left\langle f, u_{n}-u_{\infty}\right\rangle=\left\langle A u_{n}+B u_{n}+\alpha_{n} L u_{n}, u_{n}-u_{\infty}\right\rangle
$$

Applying conditions $H(l)$ (ii) and (iii), one finds

$$
\begin{aligned}
& \alpha_{n}\left\langle L u_{n}, u_{n}-u_{\infty}\right\rangle=\alpha_{n} \int_{\Gamma_{3}} l\left(x, u_{n}(x)\right)\left(u_{n}(x)-u_{\infty}(x)\right) \mathrm{d} \Gamma \\
& \quad=\alpha_{n} \int_{\Gamma_{3}} l\left(x, u_{n}(x)\right)\left(u_{n}(x)-b\right) \mathrm{d} \Gamma \geq \alpha_{n} \int_{\Gamma_{3}} l(x, b)\left(u_{n}(x)-b\right) \mathrm{d} \Gamma=0
\end{aligned}
$$

Then, we have

$$
\|f\|_{V^{*}}\left(\left\|u_{n}\right\|_{V}+\left\|u_{\infty}\right\|_{V}\right)+\left\langle A u_{n}+B u_{n}, u_{\infty}\right\rangle \geq\left\langle A u_{n}+B u_{n}, u_{n}\right\rangle
$$

We use the Hölder inequality and the monotonicity of B to get

$$
\begin{aligned}
& \left\|u_{n}\right\|_{V}^{p}+\mu\left\|\nabla u_{n}\right\|_{L^{q}\left(\Omega ; \mathbb{R}^{N}\right)}^{q} \leq\left\|u_{n}\right\|_{V}^{p-1}\left\|u_{\infty}\right\|_{V}+\beta\left\|u_{\infty}\right\|_{L^{\theta}(\Omega)}^{\theta} \\
& \quad+\mu\left\|\nabla u_{n}\right\|_{L^{p^{\prime}(q-1)}\left(\Omega ; \mathbb{R}^{N}\right)}^{q-1}\left\|u_{\infty}\right\|_{V}+\|f\|_{V^{*}}\left(\left\|u_{n}\right\|_{V}+\left\|u_{\infty}\right\|_{V}\right)+c_{2}\left\|u_{\infty}\right\|_{L^{(\theta-1) p^{\prime}}(\Omega)}^{\theta-1}\left\|u_{n}\right\|_{V}
\end{aligned}
$$

for some $c_{2}>0$. This reveals that sequence $\left\{u_{n}\right\}$ is bounded in V. Passing to the subsequence if necessary, we may assume that $u_{n} \xrightarrow{w} u$ in V as $n \rightarrow \infty$ with some $u \in V$. We are going to show that $u \in K$, i.e., $u=b$ on Γ_{3}. The boundedness of operators A, B and of sequence $\left\{u_{n}\right\}$ guarantee that there exists a constant $c_{3}>0$ independent of n such that

$$
\left\langle A u_{n}+B u_{n}-f, u_{\infty}-u_{n}\right\rangle \leq c_{3}
$$

for all $n \in \mathbb{N}$. Then, for each $n \in \mathbb{N}$, we have

$$
\left\langle L u_{n}, u_{n}-u_{\infty}\right\rangle=\frac{1}{\alpha_{n}}\left\langle A u_{n}+B u_{n}-f, u_{\infty}-u_{n}\right\rangle \leq \frac{c_{3}}{\alpha_{n}}
$$

Keeping in mind that the embedding of V into $L^{p}\left(\Gamma_{3}\right)$ is compact, we have $u_{n} \rightarrow u$ in $L^{p}\left(\Gamma_{3}\right)$. By the Lebesgue dominated convergence theorem, we get

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \frac{c_{3}}{\alpha_{n}} \geq \lim _{n \rightarrow \infty}\left\langle L u_{n}, u_{n}-u_{\infty}\right\rangle=\lim _{n \rightarrow \infty} \int_{\Gamma_{3}} l\left(x, u_{n}(x)\right)\left(u_{n}(x)-u_{\infty}(x)\right) \mathrm{d} \Gamma \\
& =\int_{\Gamma_{3}} l(x, u(x))\left(u(x)-u_{\infty}(x)\right) \mathrm{d} \Gamma=\int_{\Gamma_{3}} l(x, u(x))(u(x)-b) \mathrm{d} \Gamma \\
& \geq \int_{\Gamma_{3}} l(x, b)(u(x)-b) \mathrm{d} \Gamma=0 .
\end{aligned}
$$

So, it holds $l(x, u(x))(u(x)-b)=0$ for a.e. $x \in \Gamma_{3}$. Condition $H(l)($ iii $)$ points out that $u(x)=b$ for a.e. $x \in \Omega$. This means that $u \in K$.

Subsequently, we shall show that $u=u_{\infty}$. For any $w \in K$, we have

$$
\left\langle A u_{n}+B u_{n}, u_{n}-w\right\rangle+\alpha_{n}\left\langle L u_{n}, u_{n}-w\right\rangle=\left\langle f, u_{n}-w\right\rangle .
$$

Because of $w=b$ on Γ_{3}, the following inequality holds

$$
\begin{aligned}
& \left\langle L u_{n}, u_{n}-w\right\rangle=\int_{\Gamma_{3}} l\left(x, u_{n}(x)\right)\left(u_{n}(x)-w(x)\right) \mathrm{d} \Gamma \\
& \quad=\int_{\Gamma_{3}} l\left(x, u_{n}(x)\right)\left(u_{n}(x)-b\right) \mathrm{d} \Gamma \geq \int_{\Gamma_{3}} l(x, b)\left(u_{n}(x)-b\right) \mathrm{d} \Gamma=0 .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\left\langle A u_{n}+B u_{n}, w-u_{n}\right\rangle \geq\left\langle f, w-u_{n}\right\rangle \tag{3.13}
\end{equation*}
$$

From the monotonicity of A and B, we infer that

$$
\left\langle A w+B w, w-u_{n}\right\rangle \geq\left\langle f, w-u_{n}\right\rangle
$$

Passing to the limit as $n \rightarrow \infty$ in the inequality above, one gets

$$
\langle A w+B w, w-u\rangle \geq\langle f, w-u\rangle \text { for all } w \in K
$$

Due to $u \in K$, for any $t \in(0,1)$ and $v \in K$, we have $w_{t}:=t v+(1-t) u \in K$. Inserting $w=w_{t}$ into the inequality above, it gives

$$
\langle A u+B u, v-u\rangle=\lim _{t \rightarrow 0}\left\langle A w_{t}+B w_{t}, v-u\right\rangle \geq\langle f, v-u\rangle
$$

for all $v \in K$, namely,

$$
\langle A u+B u, v\rangle=\langle f, v\rangle
$$

for all $v \in K_{0}$. From assertion (i), we know that u_{∞} is the unique solution of Problem 1. Therefore, we deduce that $u=u_{\infty}$. Since, every weakly convergent subsequence of $\left\{u_{n}\right\}$ converges weakly to the same limit u_{∞}, it follows that the whole sequence $\left\{u_{n}\right\}$ converges weakly to u_{∞}.

Finally, it is easy to prove that u_{n} converges strongly in V to u_{∞}. Indeed, putting $w=u_{\infty}$ into (3.13), passing to the lower limit as $n \rightarrow \infty$ in the resulting inequality, and taking into account the monotonicity of B, we obtain

$$
\limsup _{n \rightarrow \infty}\left\langle A u_{n}, u_{n}-u_{\infty}\right\rangle \leq \limsup _{n \rightarrow \infty}\left\langle f, u_{n}-u_{\infty}\right\rangle+\limsup _{n \rightarrow \infty}\left\langle B u_{\infty}, u_{\infty}-u_{n}\right\rangle=0
$$

This inequality combined with the $\left(S_{+}\right)$-property of operator A implies that $u_{n} \rightarrow u_{\infty}$ in V as $n \rightarrow$ ∞.

4. Optimal control and asymptotic analysis

In this section, we investigate two optimal control problems driven by mixed boundary value problems, Problems 1 and 2, respectively. We prove existence of optimal controls and establish a result on the asymptotic convergence of optimal control-state pairs, when the parameter α tends to infinity.

Let $H=L^{p^{\prime}}(\Omega)$. Given a measured datum $z_{d} \in L^{p}(\Omega)$ and two regularization parameters $\lambda, \rho>0$, we consider the following distributed optimal control problems governed by Problems 1 and 2, respectively.

Problem 9. Find $g^{*} \in H$ such that

$$
\begin{equation*}
J\left(g^{*}\right)=\min _{g \in H} J(g), \tag{4.1}
\end{equation*}
$$

where the cost functional J is defined by

$$
\begin{equation*}
J(g)=\frac{\lambda}{p}\left\|u_{g}-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\frac{\rho}{p^{\prime}}\|g\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}} \tag{4.2}
\end{equation*}
$$

and u_{g} is the unique solution to Problem 1 corresponding to $g \in L^{p^{\prime}}(\Omega)$.
and
Problem 10. Given $\alpha>0$, find $g^{*} \in H$ such that

$$
\begin{equation*}
J_{\alpha}\left(g^{*}\right)=\min _{g \in H} J_{\alpha}(g) \tag{4.3}
\end{equation*}
$$

where the cost functional J_{α} is defined by

$$
\begin{equation*}
J_{\alpha}(g)=\frac{\lambda}{p}\left\|u_{\alpha g}-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\frac{\rho}{p^{\prime}}\|g\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}} \tag{4.4}
\end{equation*}
$$

and $u_{\alpha g}$ is the unique solution to Problem 2 corresponding to $g \in L^{p^{\prime}}(\Omega)$ and $\alpha>0$.
A control-state pair $\left(g^{*}, u_{g^{*}}\right)$ on which the infimum of (4.1) is attained is called an optimal solution to Problem 9. An analogous notion is applied to Problem 10.

The first result of this section is on existence of solutions to Problems 9 and 10.
Theorem 11. Assume that $H(l)$ and $r \in L_{+}^{p^{\prime}}\left(\Gamma_{2}\right)$ hold. Then, we have
(i) Problem 9 has at least one optimal solution $\left(g^{*}, u_{g^{*}}^{*}\right) \in H \times K$,
(ii) for each $\alpha>0$, Problem 10 has at least one optimal solution $\left(g_{\alpha}^{*}, u_{\alpha g_{\alpha}^{*}}^{*}\right) \in H \times V$.

Proof. We prove statement (ii), while assertion (i) can be obtained in a similar way. For any $\alpha>0$ fixed, it follows from definition (4.4) that J_{α} is bounded from below. This permits us to find a minimizing sequence $\left\{g_{n}\right\} \subset H$ of Problem 10 such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J_{\alpha}\left(g_{n}\right)=\inf _{g \in H} J_{\alpha}(g):=m_{\alpha} \geq 0 \tag{4.5}
\end{equation*}
$$

By the coercivity of J_{α}, we can see that sequence $\left\{g_{n}\right\}$ is bounded in $L^{p^{\prime}}(\Omega)$. By the reflexivity of $L^{p^{\prime}}(\Omega)$, we may assume, passing to a subsequence if necessary, that

$$
\begin{equation*}
g_{n} \xrightarrow{w} g \text { in } L^{p^{\prime}}(\Omega) \tag{4.6}
\end{equation*}
$$

for some $g \in H$. Let us denote by $u_{n} \in V$ the unique solution to Problem 2 corresponding to $g=g_{n}$ and $\alpha>0$. We claim that $\left\{u_{n}\right\}$ is bounded in V. Let $\varepsilon:=\frac{1}{2 \alpha c_{V}^{p}}$. For every $n \in \mathbb{N}$, a simple computation gives (see (3.9), for example)

$$
\begin{aligned}
& \left\|g_{n}\right\|_{L^{p^{\prime}}(\Omega)}\left\|u_{n}\right\|_{L^{p}(\Omega)}+\|r\|_{L^{p^{\prime}}\left(\Gamma_{2}\right)}\left\|u_{n}\right\|_{L^{p}\left(\Gamma_{2}\right)} \\
& \quad \geq\left\langle f_{n}, u_{n}\right\rangle=\left\langle A u_{n}+B u_{n}+\alpha L u_{n}, u_{n}\right\rangle \\
& \quad \geq\left\|u_{n}\right\|_{V}^{p}+\mu\left\|\nabla u_{n}\right\|_{L^{q}\left(\Omega ; \mathbb{R}^{N}\right)}^{q}+\beta\left\|u_{n}\right\|_{L^{\theta}(\Omega)}^{\theta}-\alpha b\left|\Gamma_{3}\right|^{\frac{1}{p}}\left\|a_{l}\right\|_{L^{p^{\prime}}\left(\Gamma_{3}\right)}-\alpha b_{l} b\left|\Gamma_{3}\right|
\end{aligned}
$$

$$
\begin{equation*}
-\varepsilon \alpha c_{V}^{p}\left\|u_{n}\right\|_{V}^{p}-\alpha c(\varepsilon) \tag{4.7}
\end{equation*}
$$

where $f_{n} \in V^{*}$ is defined by

$$
\left\langle f_{n}, v\right\rangle=\int_{\Omega} g_{n}(x) v(x) \mathrm{d} x-\int_{\Gamma_{2}} r(x) v(x) \mathrm{d} \Gamma \text { for all } v \in V .
$$

The latter combined with the continuity of the embeddings of V to $L^{p}(\Omega)$ and of V to $L^{p}\left(\Gamma_{2}\right)$ implies that sequence $\left\{u_{n}\right\}$ is bounded in V. Without any loss of generality, we may suppose that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } V \text { as } n \rightarrow \infty \tag{4.8}
\end{equation*}
$$

with some $u \in V$.
Next, we verify that u is the unique solution of Problem 2 corresponding to $g \in L^{p^{\prime}}(\Omega)$ and $\alpha>0$. In fact, for each $n \in \mathbb{N}$, one has

$$
\begin{equation*}
\left\langle A u_{n}+B u_{n}+\alpha L u_{n}, w\right\rangle=\left\langle f_{n}, w\right\rangle \tag{4.9}
\end{equation*}
$$

for all $w \in V$. We insert $w=u-u_{n}$ into (4.9) to get

$$
\left\langle A u_{n}, u_{n}-u\right\rangle=\left\langle B u_{n}+\alpha L u_{n}-f_{n}, u-u_{n}\right\rangle .
$$

Passing to the upper limit as $n \rightarrow \infty$ in this equality and using the compactness of embeddings of V to $L^{p}(\Omega)$ and of V to $L^{p}\left(\Gamma_{2}\right)$, and the monotonicity of B and L, we obtain

$$
\limsup _{n \rightarrow \infty}\left\langle A u_{n}, u_{n}-u\right\rangle \leq \limsup _{n \rightarrow \infty}\left\langle B u+\alpha L u-f_{n}, u-u_{n}\right\rangle=0
$$

Taking into account the above result and the fact that A satisfies (S_{+})-property, we find that $u_{n} \rightarrow u$ in V as $n \rightarrow \infty$. Letting $n \rightarrow \infty$ in Eq. (4.9), one has

$$
\langle A u+B u+\alpha L u, w\rangle=\langle f, w\rangle
$$

for all $w \in V$. Now, it is obvious that u is the unique solution of Problem 2 corresponding to $g \in L^{p^{\prime}}(\Omega)$ and $\alpha>0$.

Finally, from the weak lower semicontinuity of the norm function $g \mapsto\|g\|_{L^{p^{\prime}}(\Omega)}$, we infer that

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} J_{\alpha}\left(g_{n}\right)=\liminf _{n \rightarrow \infty}\left(\frac{\lambda}{p}\left\|u_{n}-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\frac{\rho}{p^{\prime}}\left\|g_{n}\right\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}\right) \\
& \quad=\lim _{n \rightarrow \infty} \frac{\lambda}{p}\left\|u_{n}-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\liminf _{n \rightarrow \infty} \frac{\rho}{p^{\prime}}\left\|g_{n}\right\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}} \\
& \quad \geq \frac{\lambda}{p}\left\|u-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\frac{\rho}{p^{\prime}}\|g\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}=J_{\alpha}(g) .
\end{aligned}
$$

This together with (4.5) entails that $(g, u) \in H \times V$ is an optimal solution to Problem 10. This completes the proof.

The second result of this section is on the asymptotic behavior of the optimal solutions to Problem 10.
Theorem 12. Assume that $H(l)$ and $r \in L_{+}^{p^{\prime}}\left(\Gamma_{2}\right)$ hold. Let $\left\{\alpha_{n}\right\}$ be a sequence such that $\alpha_{n}>0$ and $\alpha_{n} \rightarrow+\infty$ as $n \rightarrow \infty$, and let $\left(g_{\alpha_{n}}, u_{\alpha_{n} g_{\alpha_{n}}}\right)$ be an optimal solution for Problem 10. Then, there exist an optimal solution $\left(g_{\infty}^{*}, u_{\infty g_{\infty}^{*}}^{*}\right)$ for Problem 9 and a subsequence of $\left\{\left(g_{\alpha_{n}}, u_{\alpha_{n}} g_{\alpha_{n}}\right)\right\}$, still denoted by the same way, such that

$$
g_{\alpha_{n}} \rightarrow g_{\infty}^{*} \quad \text { in } L^{p^{\prime}}(\Omega) \text { and } u_{\alpha_{n} g_{\alpha_{n}}} \rightarrow u_{\infty g_{\infty}^{*}}^{*} \quad \text { in } V \text { as } n \rightarrow \infty .
$$

Moreover, the sequence $\left\{J_{\alpha_{n}}\left(g_{\alpha_{n}}\right)\right\}$ of optimal values for Problem 10 converges to the optimal value $J\left(g_{\infty}^{*}\right)$ of Problem 9.

If Problem 9 has a unique optimal solution, then the whole sequence $\left\{\left(g_{\alpha_{n}}, u_{\alpha_{n} g_{\alpha_{n}}}\right)\right\}$ converges in $L^{p^{\prime}}(\Omega) \times V$ to $\left(g_{\infty}^{*}, u_{\infty g_{\infty}^{*}}^{*}\right)$ as $n \rightarrow \infty$.

Proof. Let $\left\{\alpha_{n}\right\}$ be a sequence such that $\alpha_{n}>0$ and $\alpha_{n} \rightarrow+\infty$ as $n \rightarrow \infty$, and let $\left(g_{n}, u_{n}\right):=$ $\left(g_{\alpha_{n}}, u_{\alpha_{n} g_{\alpha_{n}}}\right)$ be an optimal solution to Problem 10 corresponding to $\alpha_{n}>0$. It is obvious that

$$
\frac{\lambda}{p}\left\|u_{n}-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\frac{\rho}{p^{\prime}}\left\|g_{n}\right\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}=J_{\alpha_{n}}\left(g_{n}\right) \leq J_{\alpha_{n}}(g)=\frac{\lambda}{p}\left\|\widetilde{u}_{n}-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\frac{\rho}{p^{\prime}}\|g\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}},
$$

for any $g \in H$, where $\widetilde{u}_{n} \in V$ is the unique solution of Problem 2 corresponding to $\alpha_{n}>0$ and $g \in L^{p^{\prime}}(\Omega)$. Employing Theorem $8\left(\right.$ vii), we have $\widetilde{u}_{n} \rightarrow u_{\infty}$ in V as $n \rightarrow \infty$, where u_{∞} is the solution of Problem 1 associated with $g \in L^{p^{\prime}}(\Omega)$. We can observe that sequence $\left\{g_{n}\right\}$ is bounded in $L^{p^{\prime}}(\Omega)$. Without any loss of generality, we may assume that

$$
g_{n} \xrightarrow{w} g \text { in } L^{p^{\prime}}(\Omega) \text { as } n \rightarrow \infty
$$

for some $g \in H$. Next, for each $n \in \mathbb{N}$, we have

$$
\left\langle A u_{n}+B u_{n}, u_{\infty}-u_{n}\right\rangle+\alpha_{n}\left\langle L u_{n}, u_{\infty}-u_{n}\right\rangle=\left\langle f_{n}, u_{\infty}-u_{n}\right\rangle .
$$

Using the same arguments as in the proof of (4.7), we obtain that sequence $\left\{u_{n}\right\}$ is bounded in V. Passing to a subsequence if necessary, we may suppose that

$$
u_{n} \xrightarrow{w} u \text { in } V \text { as } n \rightarrow \infty
$$

for some $u \in V$. Since $\left\{u_{n}\right\}$ is bounded in V, by the former argument, one has

$$
\begin{equation*}
\left\langle L u_{n}, u_{n}-u_{\infty}\right\rangle \leq \frac{1}{\alpha_{n}}\left[\left\langle A u_{n}+B u_{n}-f_{n}, u_{\infty}-u_{n}\right\rangle\right] \leq \frac{c_{4}}{\alpha_{n}} \tag{4.10}
\end{equation*}
$$

for some $c_{4}>0$ which is independent of n. We use the compactness of embedding of V to $L^{p}\left(\Gamma_{3}\right)$, apply (4.10) and the Lebesgue dominated convergence theorem to get

$$
0=\lim _{n \rightarrow \infty} \frac{c_{4}}{\alpha_{n}} \geq \lim _{n \rightarrow \infty}\left\langle L u_{n}, u_{n}-u_{\infty}\right\rangle=\left\langle L u, u-u_{\infty}\right\rangle \geq\left\langle L u_{\infty}, u-u_{\infty}\right\rangle=0
$$

Hence, it holds $u(x)=b$ for a.e. $x \in \Gamma_{3}$, i.e., $u \in K$. We take the limit as $n \rightarrow \infty$ in the following inequality

$$
\begin{equation*}
\left\langle A u_{n}+B u_{n}, w-u_{n}\right\rangle \geq\left\langle f_{n}, w-u_{n}\right\rangle \tag{4.11}
\end{equation*}
$$

for all $w \in K$ to get $\langle A u+B u, v\rangle=\langle f, v\rangle$ for all $v \in K_{0}$. This means that $u \in K$ is the unique solution of Problem 1 corresponding to g. Choosing $w=u$ into (4.11) and passing to the upper limit as $n \rightarrow \infty$, we use the $\left(S_{+}\right)$-property of A to get that $u_{n} \rightarrow u$ in V as $n \rightarrow \infty$. Note that from

$$
J_{\alpha_{n}}\left(g_{n}\right) \leq J_{\alpha_{n}}(h) \text { for all } h \in H,
$$

we have

$$
\begin{aligned}
& J(g)=\frac{\lambda}{p}\left\|u-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\frac{\rho}{p^{\prime}}\|g\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}} \\
& \quad \leq \liminf _{n \rightarrow \infty}\left(\frac{\lambda}{p}\left\|u_{n}-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\frac{\rho}{p^{\prime}}\left\|g_{n}\right\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}\right)=\liminf _{n \rightarrow \infty} J_{\alpha_{n}}\left(g_{n}\right) \leq \liminf _{n \rightarrow \infty} J_{\alpha_{n}}(h) \\
& \quad=\liminf _{n \rightarrow \infty}\left(\frac{\lambda}{p}\left\|\widehat{u}_{n}-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\frac{\rho}{p^{\prime}}\|h\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}\right)=\frac{\lambda}{p}\left\|\widehat{u}-z_{d}\right\|_{L^{p}(\Omega)}^{p}+\frac{\rho}{p^{\prime}}\|h\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}=J(h)
\end{aligned}
$$

for all $h \in H$, where we have applied Theorem $8\left(\right.$ vii) and \widehat{u}_{n} is the unique solution of Problem 2 corresponding to $h \in L^{p^{\prime}}(\Omega)$ and $\alpha_{n}>0$. Therefore, we can see that g is also a solution of Problem 9. In the meanwhile, we have $g=g_{\infty}^{*}$ and $u=u_{\infty g_{\infty}^{*}}^{*}$.

Finally, we show that g_{n} converges strongly to g_{∞}^{*} in $L^{p^{\prime}}(\Omega)$. Keeping in mind that

$$
\left\|g_{\infty}^{*}\right\|_{L^{p^{\prime}}(\Omega)} \leq \liminf _{n \rightarrow \infty}\left\|g_{n}\right\|_{L^{p^{\prime}}(\Omega)}
$$

and $J_{\alpha_{n}}\left(g_{n}\right) \leq J_{\alpha_{n}}\left(g_{\infty}^{*}\right)$, we have

$$
\begin{equation*}
J\left(g_{\infty}^{*}\right) \leq \liminf _{n \rightarrow \infty} J_{\alpha_{n}}\left(g_{n}\right) \leq \limsup _{n \rightarrow \infty} J_{\alpha_{n}}\left(g_{n}\right) \leq \limsup _{n \rightarrow \infty} J_{\alpha_{n}}\left(g_{\infty}^{*}\right)=J\left(g_{\infty}^{*}\right) \tag{4.12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
J\left(g_{\infty}^{*}\right)=\lim _{n \rightarrow \infty} J_{\alpha_{n}}\left(g_{n}\right) \text { and }\left\|g_{\infty}^{*}\right\|_{L^{p^{\prime}}(\Omega)}=\lim _{n \rightarrow \infty}\left\|g_{n}\right\|_{L^{p^{\prime}}(\Omega)} \tag{4.13}
\end{equation*}
$$

Thus, we conclude that $g_{n} \rightarrow g_{\infty}^{*}$ in $L^{p^{\prime}}(\Omega)$ by using the triangle inequality and the fact that $g_{n} \xrightarrow{w} g$ in $L^{p^{\prime}}(\Omega)$. The convergence of the sequence $\left\{J_{\alpha_{n}}\left(g_{\alpha_{n}}\right)\right\}$ of optimal values for Problem 10 to the optimal value $J\left(g_{\infty}^{*}\right)$ of Problem 9 is a consequence of (4.13). This completes the proof.

Remark 13. Let $y_{d} \in L^{p}\left(\Omega ; \mathbb{R}^{N}\right)$ be a desired element. Theorems 11 and 12 established in this section are valid when the cost functionals (4.2) and (4.4) are replaced by the ones

$$
\begin{aligned}
& J(g)=\frac{\lambda}{p}\left\|\nabla u_{g}-y_{d}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}+\frac{\rho}{p^{\prime}}\|g\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}} \\
& \quad J_{\alpha}(g)=\frac{\lambda}{p}\left\|\nabla u_{\alpha g}-y_{d}\right\|_{L^{p}\left(\Omega ; \mathbb{R}^{N}\right)}^{p}+\frac{\rho}{p^{\prime}}\|g\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}
\end{aligned}
$$

respectively.

Acknowledgements

The authors wish to thank the two knowledgeable referees for their useful remarks in order to improve the paper. This project has received funding from the NNSF of China Grant Nos. 12001478, 12026255, 12026256 and 12001463, the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 823731 CONMECH, National Science Center of Poland under Project No. 2021/41/B/ST1/01636, and the Startup Project of Doctor Scientific Research of Yulin Normal University No. G2020ZK07. It is also supported by Natural Science Foundation of Guangxi Grant Nos. 2021GXNSFFA196004, 2020GXNSFBA297137 and 2018GXNSFAA281353, and the Ministry of Science and Higher Education of Republic of Poland under Grants Nos. 4004/GGPJII/H2020/2018/0 and 440328/PnH2/2019.

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Alves, M.J., Assunçao, R.B., Miyagaki, O.: Existence result for a class of quasilinear elliptic equations with ($p-q$)Laplacian and vanishing potentials. Ill. J. Math. 59, 545-575 (2015)
[2] Axelsson, A., Keith, S., McIntosh, A.: The Kato square root problem for mixed boundary value problems. J. Lond. Math. Soc. 74, 113-130 (2006)
[3] Bai, Y.R., Papageorgiou, N.S., Zeng, S.D.: A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian. Math. Z. 300, 325-345 (2022)
[4] Barboteu, M., Bartosz, K., Han, W., Janiczko, T.: Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact. SIAM J. Numer. Anal. 53, 527-550 (2015)
[5] Denkowski, Z., Migórski, S.: Control problems for parabolic and hyperbolic equations via the theory of G - and Γ convergence. Ann. Mat. Pura Appl. 149, 23-39 (1987)
[6] Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York (2003)
[7] Denkowski, Z., Mortola, S.: Asymptotic behavior of optimal solutions to control problems for systems described by differential inclusions corresponding to partial differential equations. J. Optim. Theory Appl. 78, 365-391 (1993)
[8] Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)
[9] Figueiredo, G.M.: Existence of positive solutions for a class of $p \& q$ elliptic problems with critical growth on \mathbb{R}^{N}. J. Math. Anal. Appl. 378, 507-518 (2011)
[10] Gariboldi, C., Tarzia, D.: Convergence of distributed optimal controls on the internal energy in mixed elliptic problems when the heat transfer coefficient goes to infinity. Appl. Math. Optim. 47, 213-230 (2003)
[11] Gasiński, L., Papageorgiou, N.S.: Asymmetric ($p, 2$)-equations with double resonance. Calc. Var. PDEs 56(88), 23p (2017)
[12] Gasiński, L., Winkert, P.: Existence and uniqueness results for double phase problems with convection term. J. Differ. Equ. 268, 4183-4193 (2020)
[13] Han, W.: Singular perturbations of variational-hemivariational inequalities. SIAM J. Math. Anal. 52, 1549-1566 (2020)
[14] Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer Academic Publishers, Dordrecht (1997)
[15] Liu, Y.J., Migórski, S., Nguyen, V.T., Zeng, S.D.: Existence and convergence results for an elastic frictional contact problem with nonmonotone subdifferential boundary conditions. Acta Math. Sci. 41, 1151-1168 (2021)
[16] Liu, Z.H., Motreanu, D., Zeng, S.D.: Positive solutions for nonlinear singular elliptic equations of p-Laplacian type with dependence on the gradient. Calc. Var. PDEs 58(28), 22p (2019)
[17] Liu, Z.H., Motreanu, D., Zeng, S.D.: Generalized penalty and regularization method for differential variationalhemivariational inequalities. SIAM J. Optim. 31, 1158-1183 (2021)
[18] Liu, Z., Papageorgiou, N.S.: Positive Solutions for Resonant (p, q)-equations with convection. Adv. Nonlinear Anal. 10, 217-232 (2021)
[19] Maz'ya, V., Rossmann, J.: Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains. Arch. Ration. Mech. An. 194, 669-712 (2009)
[20] Migórski, S.: Sensitivity analysis of distributed-parameter optimal control problems for nonlinear parabolic equations. J. Optim. Theory Appl. 87, 595-613 (1995)
[21] Migórski, S.: Convergence of optimal solutions in control problems for hyperbolic equations. Ann. Polon. Math. 62, 111-121 (1995)
[22] Migórski, S., Khan, A.A., Zeng, S.D.: Inverse problems for nonlinear quasi-variational inequalities with an application to implicit obstacle problems of p-Laplacian type. Inverse Probl. 35, 035004 (2019)
[23] Migórski, S., Khan, A.A., Zeng, S.D.: Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems. Inverse Probl. 36, 024006 (2020)
[24] Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics, vol. 26. Springer, New York (2013)
[25] Mihǎilescu, M., Rǎdulescu, V.: Sublinear eigenvalue problems associated to the Laplace operator revisited. Israel J. Math. 181, 317-326 (2011)
[26] Mitrea, M.: Mixed boundary-value problems for Maxwell's equations. Trans. Am. Math. Soc. 362, 117-143 (2010)
[27] Papageorgiou, N.S., Rǎdulescu, V.D., Repovš, D.D.: Positive solutions for nonlinear Neumann problems with singular terms and convection. J. Math. Pures Appl. 136, 1-21 (2020)
[28] Papageorgiou, N.S., Rǎdulescu, V.D., Repovš, D.D.: Anisotropic (p, q)-equations with gradient dependent reaction. Nonlinearity 34, 5319-5343 (2021)
[29] Papageorgiou, N.S., Qin, D., Rădulescu, V.D.: Nonlinear eigenvalue problems for the (p, q)-Laplacian. Bull. Sci. Math. 172, 103039 (2021)
[30] Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis Theory and Methods. Springer, Switzerland (2019)
[31] Sofonea, M., Migórski, S.: Variational-Hemivariational Inequalities with Applications. Monographs and Research Notes in Mathematics, Chapman \& Hall/CRC, Boca Raton (2017)
[32] Yu, S., Feng, Z.S.: Lions-type theorem of the p-Laplacian and applications. Adv. Nonlinear Anal. 10, 1178-1200 (2021)
[33] Zeng, S.D., Migórski, S., Tarzia, D.: A new elliptic mixed boundary value problem with (p, q)-Laplacian and Clarke subdifferential: existence, comparison and convergence results. Anal. Appl. (2021). https://doi.org/10.1142/ S0219530521500287
[34] Zeng, S.D., Rădulescu, V.D., Winkert, P.: Douvle phase implicit obstacle problems with convection and multivalued mixed boundary value conditions. SIAM J. Math. Anal. 54, 1898-1926 (2022)
[35] Zeng, S.D., Migórski, S., Khan, A.A.: Nonlinear quasi-hemivariational inequalities: existence and optimal control. SIAM J. Control Optim. 59(2), 1246-1274 (2021)
[36] Zeng, S.D., Bai, Y.R., Gasiński, L., Winkert, P.: Existence results for double phase implicit obstacle problems involving multivalued operators. Calc. Var. Partial Differ. Equ. 59, 18 (2020)
[37] Zeng, S.D., Migórski, S., Liu, Z.H.: Well-posedness, optimal control and sensitivity analysis for a class of differential variational-hemivariational inequalities. SIAM J. Optim. 31, 2829-2862 (2021)

Shengda Zeng
Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing
Yulin Normal University
Yulin 537000
People's Republic of China
e-mail: zengshengda@163.com
Shengda Zeng
Department of Mathematics
Nanjing University
Nanjing 210093 Jiangsu
People's Republic of China
Shengda Zeng
Faculty of Mathematics and Computer Science
Jagiellonian University in Krakow
ul. Lojasiewicza 6
30348 Kraków
Poland

Stanisław Migórski
College of Applied Mathematics
Chengdu University of Information Technology
Chengdu 610225 Sichuan Province
People's Republic of China
e-mail: stanislaw.migorski@uj.edu.pl
Stanisław Migórski
Chair of Optimization and Control
Jagiellonian University in Krakow
ul. Lojasiewicza 6
30348 Kraków
Poland

Domingo A. Tarzia
Depto. Matemática, FCE
Universidad Austral
Paraguay 1950
S2000FZF Rosario
Argentina
e-mail: DTarzia@austral.edu.ar

Domingo A. Tarzia
CONICET
Buenos Aires
Argentina

Lang Zou
School of Mathematics and Computational Science
Xiangtan University
Xiangtan City 411105 Hunan Province
People's Republic of China
e-mail: langzou@xtu.edu.cn

Van Thien Nguyen
Department of Mathematics
FPT University
Education Zone, Hoa Lac High Tech Park, Km29 Thang Long Highway, Thach That ward Hanoi
Vietnam
e-mail: thiennv.k4@gmail.com
(Received: February 2, 2022; revised: May 9, 2022; accepted: May 30, 2022)

