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The goal of this paper is to investigate a new class of elliptic mixed boundary value
problems involving a nonlinear and nonhomogeneous partial differential operator (p, q)-
Laplacian, and a multivalued term represented by Clarke’s generalized gradient. First,
we apply a surjectivity result for multivalued pseudomonotone operators to examine
the existence of weak solutions under mild hypotheses. Then, a comparison theorem is
delivered, and a convergence result, which reveals the asymptotic behavior of solution
when the parameter (heat transfer coefficient) tends to infinity, is obtained. Finally, we

∗Corresponding author.

839

https://dx.doi.org/10.1142/S0219530521500287


May 21, 2022 15:28 WSPC/S0219-5305 176-AA 2150028

840 S. Zeng, S. Migórski & D. A. Tarzia

establish a continuous dependence result of solution to the boundary value problem on
the data.

Keywords: Mixed boundary value problem; (p, q)-Laplacian; Clarke’s generalized gradi-
ent; comparison; asymptotic behavior.
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1. Introduction

Let Ω be a bounded domain in R
N with a Lipschitz boundary Γ := ∂Ω which

is divided into three measurable and mutually disjoint parts Γ1, Γ2, and Γ3 such
that Γ1 has a positive measure. Let 1 < q < p < +∞, α, β, μ > 0, b ∈ R and
θ < p∗, where p∗ is the critical exponent to p (see (2.1) in Sec. 2). Given functions
g : Ω → R, r : Γ2 → R and j : Γ3 × R → R, in the paper we consider the following
nonlinear mixed boundary value problems:

Problem 1. Find u : Ω → R such that

−Δpu(x) − μΔqu(x) + β|u(x)|θ−2u(x) = g(x) in Ω,

u = 0 on Γ1,

−∂(p,q)u

∂ν
= r(x) on Γ2,

u = b on Γ3.

Problem 2. Find u : Ω → R such that

−Δpu(x) − μΔqu(x) + β|u(x)|θ−2u(x) = g(x) in Ω,

u = 0 on Γ1,

−∂(p,q)u

∂ν
= r(x) on Γ2,

−∂(p,q)u

∂ν
∈ α∂j(u) on Γ3,

where Δp denotes the p-Laplace differential operator of the form

Δpu = div(|∇u|p−2∇u) for all u ∈ W 1,p(Ω),

ν is the outward unit normal at the boundary Γ

∂(p,q)u

∂ν
:= (|∇u|p−2∇u + μ|∇u|q−2∇u) · ν

and ∂j stands for the Clarke subgradient of j with respect to its last variable (see
Definition 3).

Our motivation to study this type of problem comes from two sources. First, the
(p, q)-Laplacian operator has been used to model steady-state solutions to reaction–
diffusion problems arising in numerous applications in biophysics, plasma physics
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and in the study of chemical reactions, where the unknown generally denotes a
concentration of a substance, see, e.g., [1, 6] and the references therein. Second,
we have the mathematical interest in these type of problems mainly regarding the
existence and the convergence of solutions. Our present work is a continuation of a
very recent paper [8] in which a particular variational form of Problems 1 and 2 was
investigated for β = 0, μ = 0 and p = 2. There, u represents a temperature, g is the
internal energy, r represents the heat flux on Γ2, b is the prescribed temperature
on Γ3, and α > 0 is the heat transfer coefficient on Γ3.

The purposes of this paper are threefold. The first is to establish the existence
theorem for the weak solutions of nonsmooth elliptic mixed boundary value prob-
lem, Problem 2. Such existence result is based on a surjectivity theorem for a class
of multivalued pseudomonotone operators. The second purpose is to explore the
comparison principle and to study the asymptotic behavior of solution to Prob-
lem 2 as the heat transfer coefficient α → +∞. The last aim is to prove a result
on the continuous dependence of solution with respect to parameters α, β > 0 and
functions (g, r) ∈ Lp′

(Ω) × Lp′
(Γ2).

In Problem 2 the function j : Γ3 ×R → R is such that j(x, ·) is locally Lipschitz
for a.e. x ∈ Γ3 and not necessarily differentiable. In general j(x, ·) is nonconvex, so
the multivalued condition on Γ3 in Problem 2 is described by a nonmonotone rela-
tion expressed by the generalized gradient of Clarke. Such multivalued relation in
Problem 2 is met in modeling of certain types of steady-state heat conduction prob-
lems (the behavior of a semipermeable membrane of finite thickness, a temperature
control problems, etc., see for example [2, 3, 9, 10, 13, 14, 19]). Also, Problem 2 can
be considered as a prototype of several nonmonotone boundary semipermeability
models, see [12, 15, 17, 18, 24–28], which appear in hydraulics, fluid flow problems
through porous media, and electrostatics, where a solution represents the pressure
and the electric potentials. The analogous problems with maximal monotone multi-
valued boundary relations when j(x, ·) is a convex function have been first studied
in [5], see also references therein. Further, Problems 1 and 2 have been treated in
steady-state two phase Stefan models, see, e.g., [7, 21, 22]. It turns out that the
weak formulation of Problem 2 is a hemivariational inequality. More information
on this kind of inequalities can be found in [16, 15, 17, 20, 24].

The outline of the paper is as follows. Section 2 provides the necessary notation
and collects preliminary results. In Sec. 3, we prove the existence of weak solutions
to Problem 2, and discuss a comparison principle. Section 4 is concerned with the
asymptotic behavior of solution to Problem 2 and of a continuous dependence result
of Problem 2 with respect to the data (α, β, g, r).

2. Mathematical Prerequisites

In this section, we recall basic notation, definitions and necessary preliminary mate-
rial, which will be used in this paper. More details can be found, for instance,
in [4, 16, 23].
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Everywhere below, the symbols w−→ and → stand for the weak convergence and
the strong convergence, respectively. Given a Banach space Y , we also adopt the
notation ‖·‖Y and Y ∗ for a norm and the dual space of Y , respectively. The duality
brackets for the pair (Y ∗, Y ) is denoted by 〈·, ·〉. We say that a mapping F : Y → Y ∗

is of the type (S)+ (or F satisfies the (S+)–property), if for any sequence {un} ⊂ Y

with un
w−→ u in Y as n → ∞ for some u and lim sup〈Fun, un − u〉 ≤ 0, the

sequence {un} converges strongly to u in Y .
Let (Z, ‖ · ‖Z) be a reflexive Banach space. We say that a function J : Z → R

is locally Lipschitz at u ∈ Z if there exist a neighborhood N(u) of u in Z and a
constant Lu > 0 such that

|J(w) − J(z)| ≤ Lu‖w − z‖Z for all w, z ∈ N(u).

Definition 3. Given a locally Lipschitz function J : Z → R, we denote by J0(u; v)
the directional derivative in the sense of Clarke (or generalized directional deriva-
tive) of J at u ∈ Z in the direction v ∈ Z defined by

J0(u; v) = lim sup
λ→0+, w→u

J(w + λv) − J(w)
λ

.

The generalized gradient of J : Z → R at u ∈ Z is given by

∂J(u) = {ξ ∈ Z∗ | J0(u; v) ≥ 〈ξ, v〉 for all v ∈ Z}.

The properties of the generalized directional derivative and the generalized gra-
dient of a locally Lipschitz function are collected in what follows, see, e.g., [16,
Proposition 3.23].

Proposition 4. Let J : Z → R be a locally Lipschitz function on a Banach space
Z. Then, we have

(i) for every u ∈ Z, the function Z � v 
→ J0(u; v) ∈ R is positively homogeneous
and subadditive, i.e.

J0(u; λv) = λJ0(u; v) for all λ ≥ 0 and u, v ∈ Z

and

J0(u; v1 + v2) ≤ J0(u; v1) + J0(u; v2) for all u, v1, v2 ∈ Z.

(ii) Let u ∈ Z be fixed, for each v ∈ Z, there exists an element ξ(v) ∈ ∂J(u) such
that

J0(u; v) = 〈ξ(v), v〉, i.e. J0(u; v) = max{〈ξ, v〉 | ξ ∈ ∂J(u)}.

(iii) The function Z × Z � (u, v) 
→ J0(u; v) ∈ R is upper semicontinuous.
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(iv) The multivalued mapping u 
→ ∂J(u) is upper semicontinuous from Z into
w∗-Z∗.

Let Ω ⊂ R
N be a bounded domain such that its Lipschitz boundary Γ = ∂Ω is

divided into three measurable and mutually disjoint parts Γ1, Γ2, and Γ3 with Γ1

being of positive measure. Let 1 < p < +∞ and p′ > 1 be the conjugate exponent
of p, i.e. 1

p + 1
p′ = 1. In the sequel, we denote by p∗ the critical exponent to p given

by

p∗ =

⎧⎪⎨
⎪⎩

Np

N − p
if p < N,

+∞ if p ≥ N.

(2.1)

Throughout the paper, the norms of the Lebesgue space Lp(Ω) and Sobolev space
W 1,p(Ω) are defined by

‖u‖Lp(Ω) :=
(∫

Ω

|u(x)|p dx

) 1
p

for all u ∈ Lp(Ω)

and

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω;RN ) for all u ∈ W 1,p(Ω),

respectively. We introduce a subspace V of W 1,p(Ω) given by

V := {u ∈ W 1,p(Ω) | u = 0 on Γ1}.
It follows from the fact that Γ1 has a positive measure and the Poincaré inequality
that V endowed with the norm

‖u‖V :=
(∫

Ω

|∇u|p dx

) 1
p

for all u ∈ V

is a reflexive Banach space. Further, we consider the subsets K and K0 of V defined
by

K := {u ∈ V |u = b on Γ3}, (2.2)

K0 := {u ∈ V |u = 0 on Γ3}, (2.3)

respectively, where b ∈ R is given in Problem 1.

3. Existence and Comparison Results

In the section, we shall study the existence of a weak solution to Problem 2, and
discuss a comparison principle which reveals the relations between the solutions
of Problems 1 and 2 and the constant b. In what follows, we assume that (g, r) ∈
Lp′

(Ω) × Lp′
(Γ2).

The weak solutions of Problems 1 and 2 are understood as follows.
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Definition 5. We say that

(i) a function u : Ω → R is a weak solution of Problem 1, if u ∈ W 1,p(Ω) is such
that u = 0 on Γ1, u = b on Γ3 and∫

Ω

(|∇u(x)|p−2∇u(x) + μ|∇u(x)|q−2∇u(x),∇v(x)
)

RN dx

+
∫

Ω

β|u(x)|θ−2u(x)v(x) dx =
∫

Ω

g(x)v(x) dx −
∫

Γ2

r(x)v(x) dΓ

for all v ∈ W 1,p(Ω) with v = 0 on Γ1 and v = 0 on Γ3.
(ii) a function u : Ω → R is a weak solution of Problem 2, if u ∈ W 1,p(Ω) satisfies

u = 0 on Γ1 and∫
Ω

(|∇u(x)|p−2∇u(x) + μ|∇u(x)|q−2∇u(x),∇v(x))RN dx

+
∫

Ω

β|u(x)|θ−2u(x)v(x) dx + α

∫
Γ3

j0(x, u(x); v(x)) dΓ

≥
∫

Ω

g(x)v(x) dx −
∫

Γ2

r(x)v(x) dΓ

for all v ∈ W 1,p(Ω) with v = 0 on Γ1.

We introduce nonlinear mappings A : V → V ∗ and B : V → V ∗ defined by

〈Au, v〉 :=
∫

Ω

(|∇u(x)|p−2∇u(x) + μ|∇u(x)|q−2∇u(x),∇v(x))RN dx (3.1)

and

〈Bu, v〉 :=
∫

Ω

β|u(x)|θ−2u(x)v(x) dx (3.2)

for all u, v ∈ V , and the element f ∈ V ∗ given by

〈f, v〉 =
∫

Ω

g(x)v(x) dx −
∫

Γ2

r(x)v(x) dΓ for v ∈ V. (3.3)

Under these notations for A, B and f , an alternative form of Definition 5 reads as
follows:

(i)′ a function uα ∈ V is a weak solution to Problem 2 corresponding to α > 0, if
the following inequality holds:

〈Auα + Buα, v〉 + α

∫
Γ3

j0(x, uα(x); v(x))dΓ ≥ 〈f, v〉 for all v ∈ V. (3.4)

(ii)′ a function u∞ ∈ K is a weak solution to Problem 1, if the following equality
is true

〈Au∞ + Bu∞, v〉 = 〈f, v〉 for all v ∈ K0, (3.5)

where K and K0 are given by (2.2) and (2.3), respectively.
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Lemma 6. Under the above notation, for any b ∈ R, Problem 1 has a unique weak
solution u∞ ∈ K.

Proof. Observe that u∞ ∈ K solves (3.5) if and only if z∞ ∈ K0 defined by
z∞ := u∞ − b is a solution to

〈Az∞ + Bz∞, v〉 = 〈f − Bb, v〉 for all v ∈ K0. (3.6)

We use [11, Chap. 3, Example 1.7, p. 303] to infer that A is bounded, continuous,
strictly monotone (hence maximal monotone), of the type (S+), and

‖Au‖V ∗ ≤ ‖u‖p−1
V + μ‖∇u‖q−1

L(q−1)p′ (Ω;RN )
for all u ∈ V. (3.7)

From [16, Theorem 3.69], we can see that A is a pseudomonotone operator. The
operator B is monotone and continuous, and such that

‖Bu‖V ∗ ≤ c2‖u‖θ−1
V for all u ∈ V (3.8)

with some c2 > 0. Recall that the embedding of V into Lθ(Ω) is compact (thanks
to θ < p∗), so, B is completely continuous. This implies that B is pseudomonotone
as well. By the easily verifiable inequality

〈Au + Bu, u〉 ≥ ‖u‖p
V + μ‖∇u‖q

Lq(Ω;RN )
+ β‖u‖θ

Lθ(Ω) for all u ∈ V, (3.9)

we deduce that A + B is pseudomonotone and coercive. Therefore, by [4, Theo-
rem 1.3.70], Problem 1 is solvable. Moreover, A + B is strictly monotone, so, we
can use a standard way to prove that Problem 1 has a unique solution in K. This
completes the proof.

Next, we give the existence result to Problem 2. To this end, the following
assumption on the potential j is needed.

H(j): j : Γ3 × R → R is such that

(i) x 
→ j(x, r) is measurable on Γ3 for all r ∈ R,
(ii) r 
→ j(x, r) is locally Lipschitz continuous for a.e. x ∈ Γ3,
(iii) there exist constants c0, c1 ≥ 0 such that

|∂j(x, r)| ≤ c0 + c1|r|p−1 for all r ∈ R and for a.e. x ∈ Γ3,

(iv) j0(x, r; b− r) ≤ 0 for all r ∈ R and for a.e. x ∈ Γ3, b ≥ 0 is given in Problem 1.

Theorem 7. Assume that H(j) holds. Then, Problem 2 has at least one weak
solution in V .

Proof. First, analogously as in the proof of Lemma 6, we deduce that operator A+
B is pseudomonotone and coercive. Next, we consider the functional J : Lp(Γ3) → R

defined by

J(w) :=
∫

Γ3

j(x, w(x)) dΓ for w ∈ Lp(Γ3). (3.10)
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Since j satisfies hypothesis H(j), we could apply the same arguments as in the
proof of [16, Theorem 3.47] to obtain

(a) J given by (3.10) is well-defined and locally Lipschitz continuous in Lp(Γ3),
(b) it holds ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

J0(w; z) ≤
∫

Γ3

j0(x, w(x); z(x)) dΓ,

∂J(w) ⊂
∫

Γ3

∂j(x, w(x)) dΓ
(3.11)

for all w, z ∈ Lp(Γ3),
(c) there are constants cJ , dJ ≥ 0 such that

‖∂J(w)‖Lp′(Γ3)
≤ cJ + dJ‖w‖p

Lp(Γ3)
(3.12)

for all w ∈ Lp(Γ3).

Moreover, we claim that the set-valued operator V � u 
→ γ∗∂J(γu) ⊂ V ∗ is
pseudomonotone, where γ is the trace operator from V into Lp(Γ3). From Proposi-
tion 4(iv) and (3.12), we can see that for each u ∈ V , the set γ∗∂J(γu) is nonempty,
bounded, closed and convex in V ∗. Having in mind [16, Proposition 3.58], it is suf-
ficient to show that V � u 
→ γ∗∂J(γu) ⊂ V ∗ is a generalized pseudomonotone
operator. Let {un} ⊂ V and {ξn} ⊂ V ∗ be sequences such that ξn ∈ γ∗∂J(γun)
and

un
w−→ u in V , ξn

w−→ ξ in V ∗, and lim supn→∞〈ξn, un − u〉 ≤ 0.

Then, we are able to find a sequence {ηn} ⊂ Lp′
(Γ3) such that ξn = γ∗ηn for all

n ∈ N. The inequality (3.12) implies that {ηn} is bounded in Lp′
(Γ3). Passing to a

subsequence if necessary, we may find a function η ∈ Lp′
(Γ3) such that ηn

w−→ η in
Lp′

(Γ3), as n → ∞. The continuity and linearity of γ∗ implies that ξn = γ∗ηn
w−→

ξ = γ∗η in V ∗. Recall that the graph of the map w 
→ ∂J(w) is strongly-weakly
closed. This combined with the compactness of γ shows that η ∈ ∂J(γu), that is,
ξ ∈ γ∗∂J(γu). In addition, from the convergence

〈ξn, un〉 = 〈ηn, γun〉Lp′(Γ3)×Lp(Γ3)
→ 〈η, γu〉Lp′(Γ3)×Lp(Γ3)

= 〈γ∗η, u〉 = 〈ξ, u〉
we conclude that V � u 
→ γ∗∂J(γu) ⊂ V ∗ is generalized pseudomonotone. Hence
we deduce that the operator V � u 
→ γ∗∂J(γu) ⊂ V ∗ is pseudomonotone.

Furthermore, we are going to verify that the operator A + B + αγ∗∂J(γ·) is
coercive. Using hypotheses H(j)(iii), H(j)(iv) and inequality (3.11), one has

α〈ξ, u〉 = −α〈ξ,−u〉 ≥ −αJ0(u;−u) = −αJ0(u; b − u − b)

≥ −αJ0(u; b − u) − αJ0(u;−b)

≥ −α

∫
Γ3

j0(x, u(x); b − u(x)) dΓ − α

∫
Γ3

j0(x, u(x);−b) dΓ
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≥ −α

∫
Γ3

j0(x, u(x);−b) dΓ ≥ −
∫

Γ3

α(c0 + c1|u(x)|p−1)b dΓ

= −αc0b|Γ3| − αc1b‖u‖p−1
Lp−1(Γ3)

.

From the last inequality and (3.9), we obtain

〈Au + Bu + αγ∗∂J(γu), u〉
≥ ‖u‖p

V + μ‖∇u‖q
Lq(Ω;RN )

+ β‖u‖θ
Lθ(Ω) − αc0b|Γ3| − αc1b‖u‖p−1

Lp−1(Γ3)
,

which easily implies that V � u 
→ Au + Bu + αγ∗∂J(γu) ⊂ V ∗ is coercive.
Therefore, all conditions of [4, Theorem 1.3.70] are verified. Using this theorem,

we are able to find a function u ∈ V such that

Au + Bu + αγ∗∂J(γu) � f, (3.13)

where f ∈ V ∗ is given by (3.3). Multiplying (3.13) by v ∈ V and using the definition
of f and the Clarke subgradient, it yields

〈Au + Bu, v〉 + αJ0(γu; γv) ≥
∫

Ω

g(x)v(x) dx −
∫

Γ2

r(x)v(x) dΓ for all v ∈ V.

This together with (3.11) and the definition of A and B entails
∫

Ω

(|∇u|p−2∇u + μ|∇u|q−2∇u,∇v
)

RN dx +
∫

Ω

β|u(x)|θ−2u(x)v(x)dx

+ α

∫
Γ3

j0(x, γu(x); γv(x)) dΓ ≥
∫

Ω

g(x)v(x)dx −
∫

Γ2

r(x)v(x)dΓ

for all v ∈ V . This shows that u is also a weak solution of Problem 2. This completes
the proof of the theorem.

Further, we need the following condition.

H(0): g ∈ Lp′
(Ω) with g ≤ 0 in Ω and r ∈ Lp′

(Γ2) with r ≥ 0 on Γ2.

The corresponding comparison result for Problem 2 reads as follows.

Theorem 8. Suppose that H(j) and H(0) hold. Let uα be a solution of Problem 2
corresponding to α > 0, and u∞ be the unique solution of Problem 1. Then, for
each α > 0, the following statements hold :

(i) uα ≤ b in Ω,

(ii) uα ≤ u∞ in Ω.

Proof. (i) Set w = uα − b. It suffices to show that w+ = 0 in Ω. Since uα ∈ V ,
then it holds w = −b on Γ1. This shows that w+ = 0 on Γ1, thus, −w+ ∈ V . It
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allows one to take v = −w+ as a test function in (3.4) to get

〈Auα + Buα,−w+〉 + α

∫
Γ3

j0(x, uα(x);−w+(x)) dΓ ≥ 〈f,−w+〉.

Because Ab = 0, we have

−〈Auα − Ab, w+〉 − 〈Buα − Bb, w+〉 − 〈Bb, w+〉

+ α

∫
Γ3

j0(x, uα(x);−w+(x)) dΓ ≥ 〈f,−w+〉. (3.14)

By the monotonicity of B, we have

〈Buα − Bb, w+〉 ≥ 0 and 〈Bb, w+〉 ≥ 0.

So, (3.14) gives

〈f,−w+〉 + 〈Auα − Ab, w+〉 ≤ α

∫
Γ3

j0(x, uα(x);−w+(x)) dΓ.

The latter combined with the definition of f and hypothesis H(0) implies

〈Auα − Ab, w+〉 ≤ α

∫
Γ3

j0(x, uα(x);−w+(x)) dΓ. (3.15)

From condition H(j)(iv) and the fact j0(x, t, 0) = 0 for all t ∈ R and x ∈ Γ3, it
follows that

α

∫
Γ3

j0(x, uα(x);−w+(x))dΓ

= α

∫
{uα>b}

j0(x, uα(x); b − uα(x)) dΓ + α

∫
{uα≤b}

j0(x, uα(x); 0) dΓ ≤ 0.

Taking into account the above inequality and (3.15), we obtain

〈Auα − Ab, w+〉 ≤ 0.

Therefore, by the strict monotonicity of A, one finds ∇w+ = 0, i.e. w+ = 0. This
proves that uα ≤ b in Ω.

(ii) Denote w = uα − u∞. We are going to show that w+ = 0 in Ω. Recalling that
uα = u∞ = 0 on Γ1, we have −w+ ∈ V due to w = 0 on Γ1. Inserting v = −w+

into (3.4) we deduce

−〈Auα − Au∞, w+〉 − 〈Au∞, w+〉 − 〈Buα, w+〉

+ α

∫
Γ3

j0(x, uα(x);−w+(x)) dΓ ≥ 〈f,−w+〉. (3.16)

Choosing v = w+ ∈ K0 (because of u∞ ∈ K, i.e. u∞ = b on Γ3, and assertion (i),
uα ≤ b) in (3.5), we get

−〈Au∞, w+〉 = 〈−f + Bu∞, w+〉.
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Putting the above equality into (3.16) implies

−〈Auα − Au∞, w+〉 − 〈Buα − Bu∞, w+〉 + α

∫
Γ3

j0(x, uα(x);−w+(x)) dΓ ≥ 0.

Taking into account the monotonicity of B, we have

〈Auα − Au∞, w+〉 ≤ α

∫
Γ3

j0(x, uα(x);−w+(x))dΓ.

Note that u∞ ∈ K, so u∞ = b on Γ3. Then∫
Γ3

j0(x, uα(x);−w+(x))dΓ =
∫

Γ3

j0(x, uα(x);−(uα − b)+)dΓ

=
∫
{uα>b}

j0(x, uα(x); b − uα(x))dΓ

+
∫
{uα≤b}

j0(x, uα(x); 0)dΓ ≤ 0,

where we have used hypothesis H(j)(iv). Therefore, the last two inequalities
give

〈Auα − Au∞, w+〉 ≤ 0.

By virtue of the strict monotonicity of A, we conclude that w+ = 0. This means
that uα ≤ u∞ on Ω which completes the proof of the theorem.

We complete this section with the monotonicity property of solutions to Prob-
lem 2 with respect to the parameter α > 0.

Proposition 9. Suppose that H(j) and H(0) are fulfilled. If, in addition, the fol-
lowing inequality holds

j0(x, t;−(t − s)+) + cj0(x, s; (t − s)+) ≤ 0 (3.17)

for all c ≥ 1, all s, t ∈ R, s ≤ b, t ≤ b and a.e. x ∈ Γ3, then

(i) for each α > 0, Problem 2 has a unique solution uα ∈ V,

(ii) if ui := uαi is the unique solution to Problem 2 associated with αi > 0 for
i = 1, 2, and α1 ≤ α2, then one has

u1 ≤ u2 in Ω.

Proof. (i) For any α > 0 fixed, let u1 and u2 be two solutions to Problem 2. Then,
we have

〈Aui + Bui, v〉 + α

∫
Γ3

j0(x, ui(x); v(x)) dΓ ≥ 〈f, v〉

for all v ∈ V . We take v = u2 − u1 into the above inequality with i = 1 and
v = u1 − u2 for the inequality with i = 2, and sum up the resulting inequalities to
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850 S. Zeng, S. Migórski & D. A. Tarzia

obtain

〈Au1 − Au2, u2 − u1〉 + 〈Bu1 − Bu2, u2 − u1〉

+ α

∫
Γ3

j0(x, u1(x); u2(x) − u1(x))dΓ

+ α

∫
Γ3

j0(x, u2(x); u1(x) − u2(x))dΓ ≥ 0.

Next, we use the monotonicity of B to get

〈Au1 − Au2, u1 − u2〉 ≤ α

∫
Γ3

j0(x, u1(x); u2(x) − u1(x))dΓ

+ α

∫
Γ3

j0(x, u2(x); u1(x) − u2(x)) dΓ,

which together with inequality (3.17) entails

〈Au1 − Au2, u1 − u2〉 ≤ 0.

Therefore, from the strict monotonicity of A, we conclude that u1 = u2. This means
that for each α > 0, Problem 2 admits a unique solution.

(ii) Let α1, α2 > 0 be such that α1 ≤ α2. Let w = u1 − u2. By Theorem 8(i), we
have ui ≤ b in Ω for i = 1, 2. We shall verify that w+ = 0 in Ω. Since u1, u2 ∈ V ,
one finds that w = 0 on Γ1, and −w+ ∈ V . Hence, we have

〈Au1 + Bu1,−w+〉 + α1

∫
Γ3

j0(x, u1(x);−w+(x)) dΓ ≥ 〈f,−w+〉

and

〈Au2 + Bu2, w
+〉 + α2

∫
Γ3

j0(x, u2(x); w+(x)) dΓ ≥ 〈f, w+〉.

Summing up the inequalities above, it gives

〈Au1 − Au2, w
+〉

≤ 〈Bu1 − Bu2,−w+〉

+ α1

(∫
Γ3

j0(x, u1(x);−w+(x))dΓ +
α2

α1

∫
Γ3

j0(x, u2(x); w+(x)) dΓ
)

≤ α1

(∫
Γ3

j0(x, u1(x);−w+(x))dΓ +
α2

α1

∫
Γ3

j0(x, u2(x); w+(x))dΓ
)

,

where the last inequality is obtained by the monotonicity of B. Finally, from (3.17),
we have

〈Au1 − Au2, w
+〉 ≤ 0,

which shows that w+ = 0, that is, u1 ≤ u2. The proof is complete.
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Example 10. Note that hypothesis (3.17) is satisfied in the classical case, see [21],
for the function j(r) = 1

2 (r − b)2. Indeed, in this case, we have ∂j(r) = {r − b} and
j0(r; s) = (r − b) s for all r, s ∈ R. Let s, t ∈ R with s ≤ b, t ≤ b. Hence, for all
c ≥ 1, we get

I := j0(t;−(t − s)+) + cj0(s; (t − s)+) = (t − s)+((1 − c)b + cs − t).

For t ≤ s, we have (t − s)+ = 0 and I = 0. For s ≤ t, we obtain

I := (t − s)((1 − c)b + cs − t) ≤ (t − s)(c − 1)(t − b) ≤ 0.

Consequently, (3.17) holds.

Remark 11. It should be mentioned that if p = 2, β = 0, and μ = 0, then
Theorems 7 and 8, and Proposition 9 have been recently obtained in [8].

4. Asymptotic Analysis and Dependence Result

In this section, we focus our attention on the investigation of the asymptotic behav-
ior of solution to Problem 2, and we prove a continuous dependence theorem for
solution to Problem 2 with respect to the data (α, β, g, r) ∈ R

2 ×Lp′
(Ω)×Lp′

(Γ2).
We need one more hypothesis on the potential j.

H(1): If j0(x, t; b − t) = 0 for a.e. x ∈ Γ3 and for some t ∈ R, then t = b.

We start the section by providing the following convergence result which reveals
that any sequence of solutions to Problem 2 converges to the unique solution of
Problem 1 as the heat transfer coefficient α → +∞.

Theorem 12. Suppose that H(j), H(0) and H(1) are satisfied. Let {αn} ⊂ R,
αn > 0 be such that αn → +∞ as n → ∞, and un := uαn be a solution to
Problem 2 with α = αn, and u∞ ∈ K be the unique solution to Problem 1. Then

un → u∞ in V, as n → ∞. (4.1)

Proof. Let {αn} be a sequence of real positive numbers such that αn → +∞
as n → ∞, and {un} be a sequence of solutions to Problem 2 such that un is a
solution of Problem 2 corresponding to α = αn. First, we verify that sequence {un}
is bounded in V . To this end, we take v = u∞ − un ∈ V , uα = un and α = αn in
(3.4) to get

〈Aun + Bun, un − u∞〉 ≤ αn

∫
Γ3

j0(x, un(x); u∞(x) − un(x)) dΓ − 〈f, u∞ − un〉.

From u∞ ∈ K, it is clear that u∞ = b on Γ3. From hypothesis H(j)(iv), one has

αn

∫
Γ3

j0(x, un(x); u∞(x) − un(x)) dΓ = αn

∫
Γ3

j0(x, un(x); b − un(x))dΓ ≤ 0.
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By the definition of A and the monotonicity of B, we obtain

‖un‖p
V + μ‖∇un‖q

Lq(Ω;RN )
≤ 〈Aun, un〉 + 〈Bu∞, u∞ − un〉

+ ‖f‖V ∗(‖un‖V + ‖u∞‖V ),

and by using the Hölder inequality, we derive

‖un‖p
V + μ‖∇un‖q

Lq(Ω;RN )

≤ ‖un‖p−1
V ‖u∞‖V + μ‖∇un‖q−1

Lp′(q−1)(Ω;RN )
‖u∞‖V + ‖f‖V ∗(‖un‖V + ‖u∞‖V )

+ β‖u∞‖θ
Lθ(Ω) + M3‖u∞‖θ−1

L(θ−1)p′ (Ω)
‖un‖V

with some M3 > 0 which is independent of n, where we have used the fact that
the embedding from V into Lp(Ω) is continuous. Hence, it is easy to find that the
sequence {un} is bounded in V . Passing to a subsequence if necessary, we are able
to find an element u ∈ V such that

un
w−→ u in V, as n → ∞. (4.2)

Next, we are going to prove that u = u∞. For any w ∈ K, we have w − un ∈ V

for each n ∈ N. Inserting v = w − un into (3.4), we have

〈Aun + Bun, w − un〉 + αn

∫
Γ3

j0(x, un(x); w(x) − un(x))dΓ ≥ 〈f, w − un〉
(4.3)

for all w ∈ K. Since w ∈ K, it holds w = b on Γ3. The hypothesis H(j)(iv) implies

j0(x, un(x); w(x) − un) = j0(x, un(x); b − un(x)) ≤ 0 for a.e. x ∈ Γ3.

Combining the last two inequalities, it yields

〈Aun + Bun, w − un〉 ≥ 〈f, w − un〉 for all w ∈ K.

Next, by the monotonicity of A and B, we get

〈Aw + Bw, w − un〉 ≥ 〈f, w − un〉 for all w ∈ K.

Letting n → ∞ for the inequality above, one has

〈Aw + Bw, w − u〉 ≥ 〈f, w − u〉 for all w ∈ K.

Because A and B are both continuous and K is nonempty closed and convex, we
employ the Minty trick to deduce

〈Au + Bu, w − u〉 ≥ 〈f, w − u〉 for all w ∈ K

which implies

〈Au + Bu, w〉 = 〈f, w〉 for all w ∈ K0.

Keeping in mind that u∞ ∈ K is the unique solution of Problem 1, so, when we
verify that u ∈ K, then by the uniqueness of u∞, we get u = u∞. Obviously,
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it suffices to demonstrate that u = b on Γ3. From the compactness of the trace
operator of V into Lp(Γ3) and the upper semicontinuity of the function (u, v) 
→
j0(x, u; v), we use hypothesis H(j)(iii) and the Fatou lemma to find

lim sup
n→∞

∫
Γ3

j0(x, un(x); u∞(x) − un(x)) dΓ

≤
∫

Γ3

lim sup
n→∞

j0(x, un(x); u∞(x) − un(x)) dΓ

≤
∫

Γ3

j0(x, u(x); u∞(x) − u(x)) dΓ =
∫

Γ3

j0(x, u(x); b − u(x)) dΓ ≤ 0,

(4.4)

where we have used hypothesis H(j)(iv). Combining the boundedness of {un}, the
monotonicity of A and B, and (3.4), we obtain

−αn

∫
Γ3

j0(x, un(x); u∞(x) − un(x)) dΓ

≤ 〈Au∞ + Bu∞, u∞ − un〉 − 〈f, u∞ − un〉 ≤ M0

for some M0 > 0, which is independent of n. Hence

−
∫

Γ3

j0(x, un(x); u∞(x) − un(x)) dΓ ≤ M0

αn
. (4.5)

From (4.4) and (4.5), we have

0 ≤ −
∫

Γ3

j0(x, u(x); b − u(x)) dΓ ≤ lim sup
n→∞

M0

αn
= 0.

The latter combined with hypothesis H(j)(iv) gives j0(x, u(x); b − u(x)) = 0 for
a.e. x ∈ Γ3. It follows from condition H(1) that u(x) = b for a.e. x ∈ Γ3. This
means that u ∈ K. Therefore, we conclude that u = u∞. Note that every weakly
convergent subsequence of {un} converges to the same limit u∞, so we conclude
that the whole sequence of {un} converges weakly to u∞.

Finally, we shall prove that {un} converges strongly in V to u∞. We insert
w = u ∈ K into (4.3), use H(j)(iv) and the compactness of the embedding of V to
Lθ(Ω) (owing to θ < p∗) and derive

lim sup
n→∞

〈Aun, un − u〉 ≤ lim sup
n→∞

〈Bun, u − un〉

+ lim sup
n→∞

αn

∫
Γ3

j0(x, un(x); b − un(x)) dΓ + lim sup
n→∞

〈f, un − u〉 ≤ 0.

The (S+)-property of the operator A demonstrates that un → u in V , as n → ∞.
This completes the proof of the theorem.

In what follows, we explore the continuous dependence result for solution to
Problem 2 with respect to (α, β, g, r) ∈ R

2 × Lp′
(Ω) × Lp′

(Γ2).



May 21, 2022 15:28 WSPC/S0219-5305 176-AA 2150028

854 S. Zeng, S. Migórski & D. A. Tarzia

Theorem 13. Let {αn}, {βn} be sequences of real positive numbers such that αn →
α, βn → β as n → ∞ with α, β > 0, and {(gn, rn)} ⊂ Lp′

(Ω) × Lp′
(Γ2), (g, r) ∈

Lp′
(Ω) × Lp′

(Γ2) be such that

(gn, rn) w−→ (g, r) in Lp′
(Ω) × Lp′

(Γ2). (4.6)

Let {un} be a sequence such that un is a solution of Problem 2 associated with α =
αn, β = βn and (g, r) = (gn, rn) for each n ∈ N. Then, there exists a subsequence
{unk

} of {un} such that unk
→ u in V, where u ∈ V is a solution of Problem 2

corresponding to (α, β, g, r) ∈ R
2 × Lp′

(Ω) × Lp′
(Γ2).

Proof. Let un be a solution of Problem 2 corresponding to α = αn, β = βn and
(g, r) = (gn, rn) for each n ∈ N. Also, let u∞ ∈ K be the unique solution of
Problem 1. Then, u∞ − un ∈ V and we have

〈Aun, u∞ − un〉 + βn

∫
Ω

|un|θ−2un(u∞ − un)dx

+ αn

∫
Γ3

j0(x, un(x); u∞(x) − un(x))dΓ

≥
∫

Ω

gn(x)(u∞(x) − un(x)) dx −
∫

Γ2

rn(x)(u∞(x) − un(x)) dΓ. (4.7)

We claim that the sequence {un} is bounded in V . By virtue of H(j)(iv), we get

〈Aun, un〉

≤ 〈Aun, u∞〉 + βn

∫
Ω

|u∞|θ−2u∞(u∞ − un) dx

+ αn

∫
Γ3

j0(x, un(x); u∞(x) − un(x)) dΓ

−
∫

Ω

gn(x)(u∞(x) − un(x)) dx +
∫

Γ2

rn(x)(u∞(x) − un(x)) dΓ

≤ 〈Aun, u∞〉 −
∫

Ω

gn(x)(u∞(x) − un(x)) dx +
∫

Γ2

rn(x)(u∞(x) − un(x)) dΓ

+ βn

∫
Ω

|u∞|θ−2u∞(u∞ − un) dx.

Employing the Hölder inequality, the Sobolev embedding theorem and the trace
theorem, one finds

‖un‖p
V + μ‖∇un‖q

Lq(Ω;RN ) ≤ 〈Aun, un〉dx

≤ (‖un‖p−1
V + ‖un‖q−1

Lp′(q−1)(Ω;RN )
)‖u∞‖V + βnM1(‖un‖V ‖u∞‖θ−1

V + ‖u∞‖θ
V )

+ M2(‖gn‖Lp′(Ω) + ‖rn‖Lp′(Γ2)
)(‖u∞‖V + ‖un‖V )
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for some M1, M2 > 0. This implies that {un} is bounded in V . Passing to a sub-
sequence if necessary, we may assume that un

w−→ u in V , as n → ∞ with some
u ∈ V . Next, we apply the monotonicity of A and B to obtain

〈Av, v − un〉 + βn

∫
Ω

|v|θ−2v(v − un) dx + αn

∫
Γ3

j0(x, un(x); v(x) − un(x))dΓ

≥
∫

Ω

gn(x)(v(x) − un(x))dx −
∫

Γ2

rn(x)(v(x) − un(x))dΓ

for all v ∈ V . Passing to the upper limit as n → ∞, using the compactness of
the embedding V to Lθ(Ω), and of traces V to Lp(Γ2), and V to Lp(Γ3), and the
Lebesgue dominated convergence theorem, we have

〈Av + Bv, v − u〉 + α

∫
Γ3

j0(x, u(x); v(x) − u(x)) dΓ

≥ lim sup
n→∞

〈Av + Bv, v − un〉 + lim sup
n→∞

(αn − α)

×
∫

Γ3

j0(x, un(x); v(x) − un(x)) dΓ

+ lim sup
n→∞

α

∫
Γ3

j0(x, un(x); v(x) − un(x)) dΓ + lim sup
n→∞

(βn − β)

×
∫

Ω

|v|θ−2v(v − un) dx

≥ lim sup
n→∞

∫
Ω

gn(x)(v(x) − un(x)) dx − lim inf
n→∞

∫
Γ2

rn(x)(v(x) − un(x))dΓ

=
∫

Ω

g(x)(v(x) − u(x))dx −
∫

Γ2

r(x)(v(x) − u(x)) dΓ

for all v ∈ V . Invoking the Minty argument, we obtain

〈Au + Bu, v − u〉 + α

∫
Γ3

j0(x, u(x); v(x) − u(x)) dΓ

≥
∫

Ω

g(x)(v(x) − u(x)) dx −
∫

Γ2

r(x)(v(x) − u(x)) dΓ

for all v ∈ V . This points out that u ∈ V is a solution of Problem 2 corresponding
to (α, β, g, r) ∈ R

2 × Lp′
(Ω) × Lp′

(Γ2).
Furthermore, we shall prove that {un} converges strongly in V to u. A simple

calculation gives

〈Aun, un − u〉

≤ βn

∫
Ω

|un|θ−2un(u − un) dx + αn

∫
Γ3

j0(x, un(x); u(x) − un(x)) dΓ

−
∫

Ω

gn(x)(u(x) − un(x)) dx +
∫

Γ2

rn(x)(u(x) − un(x)) dΓ.
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We pass to the upper limit as n → ∞ to get lim supn→∞〈Aun, un − u〉 ≤ 0. The
latter combined with the (S+)-property shows that {un} converges strongly in V

to u. This completes the proof of the theorem.

Remark 14. If p = 2, β = 0, and μ = 0, then Theorem 12 coincides with the one
obtained in [8]. Particularly, when p = 2, β = 0, and μ = 0, Theorem 13 extends
the result established in [8] from two perspectives:

(1) in [8], the authors derived the continuous dependence result with respect to
(g, r) only, while this paper deals with a more complicated situation that Prob-
lem 2 is perturbated by parameters (α, g, r);

(2) we prove that any sequence of perturbed solutions {un} has a subsequence
converging to a solution of Problem 2 corresponding to (α, g, r), whereas [8,
Theorem 9] delivered only a convergence result in the weak topology.

Besides, it should be mentioned that [8, Sec. 6] provides several examples
of functional j which satisfy hypotheses H(j) and H(1). Finally, it is an open
problem to study a more general case when b is a suitable nonconstant function.
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[13] S. Migórski, A. A. Khan and S. D. Zeng, Inverse problems for nonlinear quasi–varia-
tional inequalities with an application to implicit obstacle problems of p–Laplacian
type, Inverse Probl. 35 (2019) ID 035004, 14p.
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tional inequalities with indefinite potential and Robin boundary condition, J. Optim.
Theory Appl. 175 (2017) 293–323.
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