
International Journal of Thermal Sciences 211 (2025) 109690 

A
1

Contents lists available at ScienceDirect

International Journal of Thermal Sciences

journal homepage: www.elsevier.com/locate/ijts

Analytical and numerical study of a convection–diffusion–reaction–source
problem in multilayered materials
Guillermo Federico Umbricht a,b,∗, Domingo Alberto Tarzia a,b, Diana Rubio c

a Departamento de Matemática, Facultad de Ciencias Empresariales, Universidad Austral, Paraguay 1950, Rosario, S2000FZF, Santa Fe, Argentina
b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Buenos Aires, Argentina
c Instituto de Tecnologías Emergentes y Ciencias Aplicadas (UNSAM-CONICET), Centro de Matemática Aplicada, Escuela de Ciencia y Tecnología, Universidad
Nacional de General San Martín, 25 de mayo y Francia, San Martín, B1650, Buenos Aires, Argentina

A R T I C L E I N F O

Keywords:
Heat transfer
Multilayer
Composite materials
Interfacial thermal resistance

A B S T R A C T

In this work, a thermal energy transfer problem in a one-dimensional multilayer body is theoretically analyzed,
considering diffusion, advection, internal heat generation or loss linearly dependent on temperature in each
layer, as well as heat generation due to external sources. Additionally, the thermal contact resistance at the
interfaces between each pair of materials is taken into account. The problem is mathematically modeled,
and explicit analytical solutions are derived using Fourier techniques. A convergent finite difference scheme
is also formulated to simulate specific cases. The solution is consistent with previous results. A numerical
example is provided, demonstrating the coherence between the obtained results and the physical behavior
of the problem. This work was recently published for a two-layer body; the generalization to 𝑚-layer bodies
allows for conclusions that enhance the theoretical understanding of heat transfer in multilayer materials and
may contribute to improving the thermal design of multilayer engineering systems.
1. Introduction

The physical and mathematical analysis of mass and heat transfer
problems in multilayer composite materials is a topic of extensive
current study [1–5]. This interest is primarily due to the direct applica-
tions of these problems across various fields of science, engineering,
and industry. The breadth of these applications is evident from the
abundance of published literature. For example, studies include the
growth of brain tumors [6], analysis of microelectronic problems [7],
thermal conduction in composite materials [8], drug release anal-
ysis in stents [9], permeability studies of the skin [10], moisture
analysis in composite tissues [11], pollution determination in porous
media [12,13], greenhouse gas emission analysis [14], lithium-ion cell
analysis [15], innovations in wool cleaning techniques [16], and heat
conduction through skin analysis [17], among others.

Mass and/or heat transfer problems in multilayer materials have
been analytically addressed using various methods, including recur-
sive image methods [18], separation of variables [1,2,8,19–21], and
solutions involving integral functions such as Laplace and Fourier
transforms [22–25]. Numerical techniques such as the method of funda-
mental solutions [26], finite differences, and finite element methods [1,
3,21] have also been employed. A comprehensive and updated review
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of mass and heat transfer in multilayer materials and the mathematical
techniques used can be found in [8,19,27].

As evident from the previous paragraph, the literature on transport
problems in multilayer materials is extensive, but it lacks generality.
Most of the cited articles focus solely on diffusion, neglecting other
thermal transfer processes. Moreover, many do not consider the ther-
mal contact resistance at the interfaces between each pair of materials.
For example, while [27] offers a comprehensive study of heat transfer
processes in multilayer materials, it omits the analysis of external heat
sources and thermal contact resistance at each interface. Other papers
address heat transfer problems in multilayer materials but only under
steady-state conditions [28–32].

To study more realistic problems, it is essential to understand
the full thermal processes, which involve analyzing the influence of
external heat generation sources, dissipative terms, and thermal contact
resistance. The key physical processes in mass and heat transfer prob-
lems in multilayer materials include diffusion, advection, internal heat
generation/consumption, and heat generation from external sources.
Internal heat generation or consumption rates are often considered
proportional to the local temperature. This phenomenon is used in
various processes, including perfusion terms in Pennes’ biological heat
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text and data mining, AI training, and similar technologies. 
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Nomenclature

Subscripts and Superscripts
0 – initial value
𝑚 (1,… , 𝑀) – layer number
𝑀 – number of body layers
𝑛 – eigenvalue number
𝐻 – homogeneous system
∞ – stationary state
Capital Letters
𝐴 – auxiliary dimensionless parameter
𝐵 – auxiliary dimensionless parameter
�̄� – auxiliary temporal function
𝐵 𝑖 – Biot number
𝐵 𝑖∗ – auxiliary dimensionless parameter
�̄� 𝑖 – auxiliary dimensionless parameter
𝐶 – the specific heat at constant pressure

[𝐉(𝐤𝐠◦𝐂)−𝟏]
𝐷 – differential operator [◦𝐂 𝐬−𝟏]
�̄� – dimensionless differential operator
𝐾 – auxiliary dimensionless parameter
𝐿 – body length [𝐦]
𝑁 – auxiliary dimensionless parameter
𝑃 𝑒 – Péclet number
𝑃 – auxiliary function (numerical method) [◦𝐂]
 – partition (numerical method)
𝑅 – thermal resistance [𝐦]
�̄� – dimensionless thermal resistance
𝑆 – auxiliary dimensionless heat source
𝑇 – temperature field relative to ambient [◦𝐂]
𝑇𝑟 – reference temperature [◦𝐂]
𝑍 – auxiliary parameter (numerical method)
Lowercase Letters
𝑎 – auxiliary parameter [◦𝐂 𝐦2 𝐖−1]
𝑓 – dimensionless auxiliary spatial function
𝑔 – dimensionless auxiliary temporal function
ℎ – convection heat transfer coefficient

[𝐖𝐦−2(◦𝐂)−𝟏]
𝑙 – interface location [𝐦]
𝑙 – dimensionless interface location
𝑞 – auxiliary function
𝑟 – auxiliary function
𝑠 – heat source [◦𝐂 𝐬−𝟏]
�̄� – dimensionless auxiliary heat source
�̂� – dimensionless heat source
𝑡 – temporary variable [𝐬]
𝑡𝑗 – particular time (numerical method) [𝐬]
𝑥 – spatial variable [𝐦]
𝑥𝑖 – particular position (numerical method) [𝐦]
𝑦 – dimensionless spatial variable
Greek Letters
𝛼 – thermal diffusivity coefficient [𝐦2𝐬−𝟏]
�̄� – dimensionless thermal diffusivity coefficient
𝛽 – fluid velocity [𝐦 𝐬−𝟏]
𝜈 – generation/consumption coefficient [𝐬−𝟏]
�̄� – dimensionless generation/consumption

coefficient
𝜅 – thermal conductivity coefficient [𝐖(𝐦◦𝐂)−𝟏]
�̄� – dimensionless thermal conductivity

coefficient
𝜌 – density [𝐤𝐠𝐦−𝟑]
𝜏 – dimensionless temporary variable
𝜃 – dimensionless temperature
c

2 
𝛩 – dimensionless auxiliary temperature
function

𝜒 – auxiliary dimensionless parameter
𝛥𝑡 – time discretization step (numerical method)

[𝐬]
𝛥𝑥 – spatial discretization step (numerical

method) [𝐦]
𝛾 – auxiliary dimensionless parameter
𝛤 – auxiliary dimensionless function
𝜎 – auxiliary dimensionless parameter
𝜖 – auxiliary parameter (numerical method)
𝜑 – auxiliary dimensionless parameter
𝜓 – auxiliary dimensionless parameter
𝛹 – auxiliary dimensionless parameter
𝜇 – auxiliary dimensionless parameter
𝜙 – auxiliary dimensionless parameter
𝜉 – auxiliary dimensionless parameter
𝜂 – auxiliary dimensionless parameter
𝛿 – auxiliary dimensionless parameter
𝜄 – auxiliary parameter (numerical method)
𝜆 – dimensionless temporal eigenvalue
𝜔 – dimensionless spatial eigenvalue
𝛺 – auxiliary parameter (numerical method)
𝛬 – auxiliary parameter (numerical method)

[𝐖(𝐦◦𝐂)−𝟏]
𝜐 – auxiliary parameter (numerical method)
𝛱 – auxiliary parameter (numerical method)

[𝐦−𝟏]
𝜁 – auxiliary parameter (numerical method)

transfer equation [33], the fin equations used for segmented multilayer
fin analysis [34], and the kinetics of first-order chemical reactions [35,
36]. Advection terms are common in various transfer processes, for
example, in flow batteries [37]. External heat source terms are useful
for modeling processes where heat is delivered to the system through
various thermal mechanisms [38].

In this work, we propose an analytical and numerical study of
ransient heat transfer in a multilayer body governed by a Convection–
iffusion–Reaction–Source (CDRS) equation. The model considers dif-

usion, advection, internal heat generation/loss, external heat gener-
tion, and thermal contact resistance at the interfaces. An analytical
xpression for the solution is derived, consistent with previous findings.
he existence of infinite eigenvalues is discussed, an orthogonality
elation between the spatial functions involved is obtained, and the
pecific case of two-layer materials is addressed. Additionally, the
roposed numerical approach aims to simulate solutions for specific

case studies using finite difference methods.
This work was recently published for a two-layer body [39]. How-

ver, generalizing to 𝑚-layer bodies is necessary since most industrial
nd natural processes involve composite materials with multiple layers.
his type of modeling is crucial for accurately capturing tempera-
ure gradients and heat transfer dynamics in more complex systems.
urthermore, multilayer analysis enables more precise and applicable

solutions in fields such as materials engineering, biomedicine, and
energy industries.

2. Mathematical modeling

The scenario involves the transient thermal energy transfer in a one-
imensional multilayer body. Each layer is assumed to be homogeneous
nd isotropic. Additionally, heat gain or loss within each layer is
onsidered at a rate proportional to the local temperature, along with
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Fig. 1. General scheme of the problem of interest.

advection driven by one-dimensional fluid flow. Heat generation from
external sources is also assumed. Thermal runaway phenomena and
heat transfer by radiation are neglected.

The total length of the multilayer body is denoted by 𝐿. The
interface between the 𝑚th and 𝑚 + 1-th materials is located at position
𝑙𝑚 for 𝑚 = 1,… , 𝑀− 1, where 0 < 𝑙𝑚 < 𝐿. In Fig. 1, a reference diagram
is shown, with an arrow indicating the direction of heat flow.

A transient energy conservation equation representing a balance
between diffusion, advection, internal heat gain or loss, and heat
generation from external sources of a one-dimensional multilayer body
can be written as:

𝜌𝑚 𝐶𝑚
𝜕 𝑇𝑚
𝜕 𝑡 (𝑥, 𝑡) = 𝐷𝑚𝑇𝑚(𝑥, 𝑡) +𝜌𝑚 𝐶𝑚 𝑠𝑚(𝑥, 𝑡), (𝑥, 𝑡) ∈ (𝑙𝑚−1, 𝑙𝑚) ×R+, (1)

where 𝐷𝑚 is a parabolic differential operator that has already been
used in other works [40]. This operator is defined as follows for
𝑚 = 1,… , 𝑀 :

𝐷𝑚𝑇𝑚(𝑥, 𝑡) ∶= 𝜅𝑚
𝜕2𝑇𝑚
𝜕 𝑥2 (𝑥, 𝑡) − 𝜌𝑚 𝐶𝑚 𝛽𝑚

𝜕 𝑇𝑚
𝜕 𝑥 (𝑥, 𝑡) + 𝜌𝑚 𝐶𝑚 𝜈𝑚 𝑇𝑚(𝑥, 𝑡). (2)

In the expressions (1)–(2), commonly referred to as the CDRS equa-
tion, the subscripts denote the 𝑚th layer of the material, where 𝑥 and 𝑡
represent the spatial and temporal variables, respectively. The functions
𝑇𝑚(𝑥, 𝑡), satisfying 𝑇𝑚(𝑥, 𝑡) ∈ 𝐶2(𝑙𝑚−1, 𝑙𝑚) × 𝐶1(0,+∞), represent the
temperature above ambient in the 𝑚th layer at position 𝑥 and time
𝑡; 𝜌𝑚 and 𝐶𝑚 denote the density and specific heat of each material,
respectively.

The first two terms on the right-hand side of Eq. (2) describe heat
transfer due to diffusion and advection, while the third term represents
internal heat generation or loss proportional to the local temperature.
The coefficient 𝜅𝑚 denotes the thermal conductivity of the material in
each layer, 𝛽𝑚 represents the flow velocity, and 𝜈𝑚 corresponds to the
coefficient relating the rate of internal heat generation or loss to the
local temperature. The differentiable functions 𝑠𝑚, given in (1), model
an external heat source acting on the body. All material properties
are assumed to be temperature-independent. A similar equation can
be applied to model the concentration field in a one-dimensional mass
transfer problem [38].

Heat is generated due to external sources and within each layer at
a rate proportional to the local temperature. Heat transfer within the
body occurs via diffusion and advection, driven by a one-dimensional
fluid flow imposed in each layer, flowing from left to right. Each layer is
characterized by distinct thermal properties, flow velocity, and internal
heat generation rate.

General convective boundary conditions are assumed at the left and
right boundaries, respectively. These conditions represent a balance
between two factors: convective heat transfer between the body and
3 
the surroundings, and diffusion and advection into and out of the
body. Note that while advection transfers energy from the surroundings
to the first layer, it also removes energy from the last layer to the
surroundings.

⎧

⎪

⎨

⎪

⎩

𝜅1
𝜕 𝑇1
𝜕 𝑥 (𝑥, 𝑡) = ℎ1 𝑇1(𝑥, 𝑡) + 𝜌1𝐶1𝛽1 𝑇1(𝑥, 𝑡), 𝑥 = 0, 𝑡 ∈ R+,

𝜅𝑀
𝜕 𝑇𝑀
𝜕 𝑥 (𝑥, 𝑡) = −ℎ𝑀 𝑇𝑀 (𝑥, 𝑡) + 𝜌𝑀𝐶𝑀𝛽𝑀 𝑇𝑀 (𝑥, 𝑡), 𝑥 = 𝐿, 𝑡 ∈ R+,

(3)

where ℎ𝑚 for 𝑚 = 1,… , 𝑀 denotes the convection heat transfer
coefficient.

Additionally, the temperature discontinuity at each interface is
taken into account due to the thermal contact resistance at the junction
of each pair of materials. Thus, for 𝑚 = 1, 2,… , 𝑚 − 1, it holds that:

𝑇𝑚+1(𝑥, 𝑡) = 𝑇𝑚(𝑥, 𝑡) + 𝑎𝑚 𝜅𝑚
𝜕 𝑇𝑚
𝜕 𝑥 (𝑥, 𝑡), 𝑥 = 𝑙𝑚, 𝑡 ∈ R+. (4)

where 𝑎𝑚 is a constant that depends on the physical configuration of the
surface in thermal contact, and 𝑎𝑚 𝜅𝑚 represents the thermal contact
resistance at the 𝑚th interface, which, for simplicity, will hereafter
be denoted as 𝑅𝑚. Additionally, by applying energy conservation, this
implies continuity of the heat flux across each interface. That is to say,

𝜅𝑚+1
𝜕 𝑇𝑚+1
𝜕 𝑥 (𝑥, 𝑡) − 𝜌𝑚+1 𝐶𝑚+1 𝛽𝑚+1 𝑇𝑚+1(𝑥, 𝑡)

= 𝜅𝑚
𝜕 𝑇𝑚
𝜕 𝑥 (𝑥, 𝑡) − 𝜌𝑚 𝐶𝑚 𝛽𝑚 𝑇𝑚(𝑥, 𝑡), 𝑥 = 𝑙𝑚, 𝑡 ∈ R+,

(5)

Finally, an initial spatial distribution of temperature in each layer
is assumed. This implies the following conditions

𝑇𝑚(𝑥, 𝑡) = 𝑇𝑚,0(𝑥), 𝑥 ∈
[

𝑙𝑚−1, 𝑙𝑚
]

, 𝑡 = 0. (6)

Note 1. The problem described by Eqs. (1)–(6) is analyzed at a macro-
scopic scale, as the findings may not hold true for other scales. This is largely
because the thermophysical properties of interfaces between materials, as
well as their effects, can vary considerably depending on the scale. For exam-
ple, at the nanoscale, the one-dimensional heat transfer problem between two
layers cannot be adequately solved using the methods outlined in this work.
At that scale, alternative approaches, such as non-equilibrium molecular
dynamics simulations or non-equilibrium Green’s function methods based
on interatomic potentials, are required. This nanoscale issue is particularly
important in the study of interface nanodevices and has recently been
explored by several researchers [41–44] for different materials, including
graphene-silver, graphene-gold, graphene-silicon, and graphene-copper.

In the next section we obtain an explicit analytical solution to the
problem we have just described given by the Eqs. (1)–(6).

3. Analytical solution

The transient heat transfer problem to be solved is defined by
the Eqs. (1)–(6). To simplify the approach, the expressions are non-
dimensionalized by introducing the following parameters for 𝑚 =
1, 2,… , 𝑀 ,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦 = 𝑥
𝐿
, 𝑙𝑚 =

𝑙𝑚
𝐿
, �̄�𝑚 =

𝑅𝑚
𝐿
, 𝜏 = 𝛼𝑀

𝐿2
𝑡, 𝜃𝑚 =

𝑇𝑚
𝑇𝑟
, �̄�𝑚 =

𝛼𝑚
𝛼𝑀

,

𝑃 𝑒𝑚 = 𝐿
𝛼𝑀

𝛽𝑚, �̄�𝑚 = 𝐿2

𝛼𝑀
𝜈𝑚, �̄�𝑚 = 𝐿2

𝑇𝑟 𝛼𝑀
𝑠𝑚, �̄�𝑚 =

𝜅𝑚
𝜅𝑀

,

𝐵 𝑖1 = 𝐿
𝜅𝑀

ℎ1, 𝐵 𝑖𝑀 = 𝐿
𝜅𝑀

ℎ𝑀 ,

(7)

where 𝛼𝑚 =
𝜅𝑚
𝜌𝑚𝐶𝑚

represents the thermal diffusivity coefficient of
de 𝑚th material, 𝑃 𝑒𝑚 and 𝐵 𝑖𝑚 denote the dimensionless Péclet and
Biot numbers, respectively, and the parameter 𝑇𝑟 represents any ref-
erence temperature. This change of variables is applied to Eqs. (1)–(6),
resulting in the following dimensionless system:
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕 𝜃𝑚
𝜕 𝜏 (𝑦, 𝜏) = �̄�𝑚𝜃𝑚(𝑦, 𝜏) + �̄�𝑚(𝑦, 𝜏), (𝑦, 𝜏) ∈ (𝑙𝑚−1, 𝑙𝑚) × R+,

𝜕 𝜃1
𝜕 𝑦 (𝑦, 𝜏) = 𝐵 𝑖1∗ 𝜃1(𝑦, 𝜏), 𝑦 = 0, 𝜏 ∈ R+,

𝜕 𝜃𝑀
𝜕 𝑦 (𝑦, 𝜏) = 𝐵 𝑖𝑀 ∗ 𝜃𝑀 (𝑦, 𝜏), 𝑦 = 1, 𝜏 ∈ R+,

𝜃𝑚+1(𝑦, 𝜏) = 𝜃𝑚(𝑦, 𝜏) + �̄�𝑚
𝜕 𝜃𝑚
𝜕 𝑦 (𝑦, 𝜏), 𝑦 = 𝑙𝑚, 𝜏 ∈ R+,

𝜕 𝜃𝑚+1
𝜕 𝑦 (𝑦, 𝜏) = 𝛾𝑚 𝜃𝑚(𝑦, 𝜏) + 𝜎𝑚

𝜕 𝜃𝑚
𝜕 𝑦 (𝑦, 𝜏), 𝑦 = 𝑙𝑚, 𝜏 ∈ R+,

𝜃𝑚(𝑦, 𝜏) = 𝜃𝑚,0(𝑦), 𝑦 ∈
[

𝑙𝑚−1, 𝑙𝑚
]

, 𝜏 = 0,

(8)

where

̄𝑚𝜃𝑚(𝑦, 𝜏) = �̄�𝑚
𝜕2𝜃𝑚
𝜕 𝑦2 (𝑦, 𝜏) − 𝑃 𝑒𝑚

𝜕 𝜃𝑚
𝜕 𝑦 (𝑦, 𝜏) + �̄�𝑚 𝜃𝑚(𝑦, 𝜏), (9)

and

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐵 𝑖1∗ =
𝑃 𝑒1
�̄�1

+
𝐵 𝑖1
�̄�1

, 𝐵 𝑖𝑀 ∗ = 𝑃 𝑒𝑀 − 𝐵 𝑖𝑀 ,

𝛾𝑚 =
𝑃 𝑒𝑚+1
�̄�𝑚+1

−
𝑃 𝑒𝑚
�̄�𝑚

�̄�𝑚
�̄�𝑚+1

, 𝜎𝑚 =
�̄�𝑚
�̄�𝑚+1

+ �̄�𝑚
𝑃 𝑒𝑚+1
�̄�𝑚+1

.

(10)

Then, the advective term is removed from Eq. (9) by applying a sub-
stitution that can be interpreted as a change in the coordinate system.
This transformation effectively shifts the system into a reference frame
moving with the fluid velocity. Similar coordinate system changes have
been used in the literature to address various situations. For instance,
see [45–48]. The proposed substitution in this case is:

𝜃𝑚(𝑦, 𝜏) = exp (𝜒𝑚 𝑦
)

𝛩𝑚(𝑦, 𝜏), (𝑦, 𝜏) ∈ [𝑙𝑚−1, 𝑙𝑚] × R+, (11)

where

𝜒𝑚 =
𝑃 𝑒𝑚
2 �̄�𝑚

. (12)

The change of variables (11)–(12) is applied to Eqs. (8)–(10) leading to
he following system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕 𝛩𝑚
𝜕 𝜏 (𝑦, 𝜏) = �̄�𝑚

𝜕2𝛩𝑚
𝜕 𝑦2 (𝑦, 𝜏)

+𝜓𝑚 𝛩𝑚(𝑦, 𝜏) + �̂�𝑚(𝑦, 𝜏), (𝑦, 𝜏) ∈ (𝑙𝑚−1, 𝑙𝑚) × R+,
𝜕 𝛩1
𝜕 𝑦 (𝑦, 𝜏) = �̄� 𝑖1 𝛩1(𝑦, 𝜏), 𝑦 = 0, 𝜏 ∈ R+,

𝜕 𝛩𝑀
𝜕 𝑦 (𝑦, 𝜏) = �̄� 𝑖𝑀 𝛩𝑀 (𝑦, 𝜏), 𝑦 = 1, 𝜏 ∈ R+,

𝛩𝑚+1(𝑦, 𝜏) = 𝜙𝑚 𝛩𝑚(𝑦, 𝜏) + 𝜇𝑚
𝜕 𝛩𝑚
𝜕 𝑦 (𝑦, 𝜏), 𝑦 = 𝑙𝑚, 𝜏 ∈ R+,

𝜕 𝛩𝑚+1
𝜕 𝑦 (𝑦, 𝜏) = 𝜂𝑚 𝛩𝑚(𝑦, 𝜏) + 𝜑𝑚

𝜕 𝛩𝑚
𝜕 𝑦 (𝑦, 𝜏), 𝑦 = 𝑙𝑚, 𝜏 ∈ R+,

𝛩𝑚(𝑦, 𝜏) = 𝛩𝑚,0(𝑦), 𝑦 ∈
[

𝑙𝑚−1, 𝑙𝑚
]

, 𝜏 = 0,
(13)

where

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜓𝑚 = �̄�𝑚 − �̄�𝑚 𝜒2
𝑚, �̂�𝑚(𝑦, 𝜏) = �̄�𝑚(𝑦, 𝜏) exp

(

−𝜒𝑚 𝑦
)

, �̄� 𝑖1 = 𝐵 𝑖1∗ − 𝜒1,
�̄� 𝑖𝑀 = 𝐵 𝑖𝑀 ∗ − 𝜒𝑀 , 𝜙𝑚 = 𝜉𝑚 𝛿𝑚, 𝜇𝑚 = 𝜉𝑚 �̄�𝑚, 𝜑𝑚
= 𝜉𝑚

(

𝜎𝑚 − �̄�𝑚 𝜒𝑚+1
)

,
𝜂𝑚 = 𝜉𝑚

(

𝛾𝑚 + 𝜎𝑚 𝜒𝑚 − 𝛿𝑚 𝜒𝑚+1
)

, 𝜉𝑚 = exp ( 𝑙𝑚 (𝜒𝑚 − 𝜒𝑚+1)
)

,
𝛿𝑚 = 1 + �̄�𝑚 𝜒𝑚, 𝛩𝑚,0(𝑦) = 𝜃𝑚,0(𝑦) exp

(

−𝜒𝑚 𝑦
)

.

(14)

The solution of the non-homogeneous system (13)–(14) is obtained
using classical techniques for solving partial differential equations.

First, the associated homogeneous system is solved by applying the
method of separation of variables, yielding a solution of the following
form:
4 
𝛩𝐻𝑚 (𝑦, 𝜏) =
∞
∑

𝑛=1
𝑓𝑚,𝑛(𝑦)

(

𝐾𝑛 exp(−𝜆2𝑛 𝜏)
)

, (𝑦, 𝜏) ∈ (𝑙𝑚−1, 𝑙𝑚) × R+, (15)

where 𝑓𝑚,𝑛 is a sequence of functions depending solely on the dimen-
ionless spatial variable 𝑦 for each 𝑚 = 1,… , 𝑀 , the sequence 𝐾𝑛

is associated with the initial temperature distribution, and 𝜆𝑛 are the
temporal eigenvalues. Details of the solution to the associated homoge-
neous system can be found in Appendix A. The discussion regarding the
xistence of infinitely many real solutions 𝜆𝑛 to the eigenvalue equation

is presented in Appendix B. Furthermore, the orthogonality relation of
the functions 𝑓𝑚,𝑛, which will be used to solve the non-homogeneous
problem, is derived in Appendix C.

The solution of (13)–(14) is obtained using the Fourier technique,
ielding:

𝛩𝑚(𝑦, 𝜏) =
∞
∑

𝑛=1
𝑓𝑚,𝑛(𝑦) �̄�𝑚,𝑛(𝜏), (𝑦, 𝜏) ∈ [𝑙𝑚−1, 𝑙𝑚] × R+, (16)

where �̄�𝑚,𝑛(𝜏) is a sequence of functions depending on the dimension-
ess temporal variable 𝜏 for each 𝑚 = 1,… , 𝑀 . Details of its derivation
an be found in Appendix D.

Finally, substituting the expression for 𝛩𝑚 into (11), the solution to
the dimensionless problem of interest (8)–(10) is obtained as:

𝜃𝑚(𝑦, 𝜏) =
∞
∑

𝑛=1
exp

(

𝜒𝑚 𝑦
)

𝑓𝑚,𝑛(𝑦) �̄�𝑚,𝑛(𝜏), (𝑦, 𝜏) ∈ [𝑙𝑚−1, 𝑙𝑚] × R+. (17)

4. Particular case (two-layer material)

In this section, the particular case for a bilayer material is derived
from the result obtained in this work. The solution is given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜃1(𝑦, 𝜏) =
∞
∑

𝑛=1
exp

(

𝜒1 𝑦
)

�̄�1,𝑛(𝜏) 𝑓1,𝑛(𝑦), (𝑦, 𝜏) ∈ [0, 𝑙] × R+,

𝜃2(𝑦, 𝜏) =
∞
∑

𝑛=1
exp

(

𝜒2 𝑦
)

�̄�2,𝑛(𝜏) 𝑓2,𝑛(𝑦), (𝑦, 𝜏) ∈ [𝑙 , 1] × R+.
(18)

where

𝜒1 =
𝑃 𝑒1
2 �̄�

, 𝜒2 =
𝑃 𝑒2
2
, (19)

for

�̄� =
𝛼1
𝛼2
, 𝑃 𝑒1 = 𝐿

𝛼2
𝛽1, 𝑃 𝑒2 = 𝐿

𝛼2
𝛽2. (20)

The functions 𝑓1,𝑛 and 𝑓2,𝑛 of 4 are given by the following expres-
ions:

⎧

⎪

⎨

⎪

⎩

𝑓1,𝑛(𝑦) = cos(𝜔1,𝑛 𝑦) +
�̄� 𝑖1
𝜔1,𝑛

sin(𝜔𝑚,𝑛 𝑦), 𝑦 ∈ [0, 𝑙].
𝑓2,𝑛(𝑦) = 𝐴𝑛 cos(𝜔2,𝑛 𝑦) + 𝐵𝑛 sin(𝜔2,𝑛 𝑦), 𝑦 ∈ [𝑙 , 1],

(21)

where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔1,𝑛 = 𝜔1,𝑛(𝜆𝑛) =
√

𝜆2𝑛 + 𝜓1

�̄�
=

√

𝜆2𝑛 + �̄�1 − �̄� 𝜒2
1

�̄�
=

√

√

√

√𝜆2𝑛 + �̄�1 −
𝑃 𝑒21
4�̄�

�̄�
,

𝜔1,𝑛 = 𝜔𝑚,𝑛(𝜆𝑛) =
√

𝜆2𝑛 + 𝜓2 =
√

𝜆2𝑛 + �̄�2 − 𝜒
2
2 =

√

𝜆2𝑛 + �̄�2 −
𝑃 𝑒22
4

(22)

and

𝐴𝑛 =
sin(𝜔1,𝑛 𝑙)

cos(𝜔2,𝑛 𝑙)

(

𝜙
�̄� 𝑖1
𝜔1,𝑛

− 𝜇 𝜔1,𝑛

)

+
cos(𝜔1,𝑛 𝑙)

cos(𝜔2,𝑛 𝑙)
(

𝜙 + 𝜇 �̄� 𝑖1
)

− t an(𝜔2,𝑛 𝑙)𝐵𝑛

(23)

𝐵𝑛 = sin(𝜔2,𝑛 𝑙)
[

sin(𝜔1,𝑛 𝑙)
(

𝜙
�̄� 𝑖1
𝜔1,𝑛

− 𝜇 𝜔1,𝑛

)

+ cos(𝜔1,𝑛 𝑙)
(

𝜙 + 𝜇 �̄� 𝑖1
)

]

+
cos(𝜔2,𝑛 𝑙)

[

sin(𝜔1,𝑛 𝑙)
(

𝜂
�̄� 𝑖1 − 𝜑 𝜔1,𝑛

)

+ cos(𝜔1,𝑛 𝑙)
(

𝜂 + 𝜑 �̄� 𝑖1
)

]
(24)
𝜔2,𝑛 𝜔1,𝑛
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The eigenvalues 𝜆𝑛 are the infinite solutions of the transcendental
igenvalue equation given by:

t an(𝜔2,𝑛(𝜆𝑛)) =
𝜔2,𝑛(𝜆𝑛)𝐵𝑛 − �̄� 𝑖2 𝐴𝑛
�̄� 𝑖2 𝐵𝑛 + 𝜔2,𝑛(𝜆𝑛)𝐴𝑛

, (25)

where

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑙 = 𝑙
𝐿
, �̄� = 𝑅

𝐿
, �̄� 𝑖1 =

𝑃 𝑒1
�̄�

+
ℎ1 𝐿
𝜅1

− 𝜒1, 𝐵 𝑖2∗ = 𝑃 𝑒2 −
ℎ2 𝐿
𝜅2

− 𝜒2,

𝛾 = 𝑃 𝑒2 − �̄�
�̄�
− 𝑃 𝑒1, 𝜎 = �̄� + �̄� 𝑃 𝑒2, 𝜙 = 𝜉 𝛿 , 𝜇 = 𝜉 �̄�,

𝜑 = 𝜉
(

𝜎 − �̄� 𝜒2
)

,
𝛿 = 1 + �̄� 𝜒1, 𝜂 = 𝜉

(

𝛾 + 𝜎 𝜒1 − 𝛿 𝜒2
)

, 𝜉 = exp ( 𝑙 (𝜒1 − 𝜒2)
)

,

𝜓1 =
𝐿2

𝛼2
𝜈1 − �̄� 𝜒2

1 , 𝜓1 =
𝐿2

𝛼2
𝜈2 − 𝜒2

2 .

(26)

Finally, the functions �̄�1,𝑛 and �̄�2,𝑛 of 4 are given by the following
expressions:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̄�1,𝑛(𝜏) = exp
(

(𝜓1 − �̄� 𝜔2
1,𝑛) 𝜏

)

×
[

𝐾𝑛 + ∫

𝜏

0
𝑆1,𝑛(𝑠) exp

(

(�̄� 𝜔2
1,𝑛 − 𝜓1) 𝑠

)

𝑑 𝑠
]

,

�̄�2,𝑛(𝜏) = exp
(

(𝜓2 − 𝜔2
2,𝑛) 𝜏

)

×
[

𝐾𝑛 + ∫

𝜏

0
𝑆2,𝑛(𝑠) exp

(

(𝜔2
2,𝑛 − 𝜓2) 𝑠

)

𝑑 𝑠
]

,

(27)

where

𝑆1,𝑛(𝜏) =
∫

𝑙

0
�̂�1(𝑦, 𝜏) 𝑓1,𝑛(𝑦) 𝑑 𝑦

∫

𝑙

0

[

𝑓1,𝑛(𝑦)
]2 𝑑 𝑦

, 𝑆2,𝑛(𝜏) =
∫

1

𝑙
�̂�2(𝑦, 𝜏) 𝑓2,𝑛(𝑦) 𝑑 𝑦

∫

1

𝑙

[

𝑓2,𝑛(𝑦)
]2 𝑑 𝑦

, (28)

for

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̂�1(𝑦, 𝜏) =
∞
∑

𝑛=1
𝑆1,𝑛(𝜏) 𝑓1,𝑛(𝑦), (𝑦, 𝜏) ∈ [0, 𝑙] × R+,

�̂�2(𝑦, 𝜏) =
∞
∑

𝑛=1
𝑆2,𝑛(𝜏) 𝑓2,𝑛(𝑦), (𝑦, 𝜏) ∈ [𝑙 , 1] × R+

(29)

and

𝐾𝑛 =

𝜑 𝜙 − 𝜂 𝜇
�̄� ∫

𝑙

0
𝜃1,0(𝑦) 𝑓1,𝑛(𝑦) exp (−𝜒1 𝑦) 𝑑 𝑦 + ∫

1

𝑙
𝜃2,0(𝑦) 𝑓2,𝑛(𝑦) exp (−𝜒2 𝑦) 𝑑 𝑦

𝜑 𝜙 − 𝜂 𝜇
�̄� ∫

𝑙

0
[𝑓1,𝑛(𝑦)]2 exp

(

−𝜒1 𝑦
)

𝑑 𝑦 + ∫

1

𝑙
[𝑓2,𝑛(𝑦)]2 exp

(

−𝜒2 𝑦
)

𝑑 𝑦
. (30)

The solution derived in this paper proves to be robust, since for the
particular case of a bilayer body, it coincides with the solution provided
by the authors in [39].

5. Consistency validation

There are several ways to analyze the consistency of the solution
obtained with those existing in the literature. In [27], the authors
consider a situation similar to the one addressed here, but with simpler
characteristics that are of special interest for carrying out this analysis.
In this article, external heat sources are neglected and thermal contact
resistance at the interface is not considered. We are interested in seeing
that, under these assumptions, both solutions are equal.

For this particular case, since there are no external heat sources, we
have 𝑠𝑚 = 0. Furthermore, since thermal resistance at each interface is
neglected, 𝑅𝑚 = 0.

Because the external sources are null (𝑠𝑚 = 0), the problem is
reduced to considering the solution of the associated homogeneous
system given by

𝛩𝐻𝑚 (𝑦, 𝜏) =
∞
∑

𝐾𝑛
[

𝐴𝑚,𝑛 cos(𝜔𝑚,𝑛 𝑦) + 𝐵𝑚,𝑛 sin(𝜔𝑚,𝑛 𝑦)
]

exp(−𝜆2𝑛 𝜏), (31)

𝑛=1

5 
where

𝜔𝑚,𝑛 = 𝜔𝑚,𝑛(𝜆𝑛) =
√

𝜆2𝑛 + 𝜓𝑚
�̄�𝑚

=

√

𝜆2𝑛 + �̄�𝑚 − �̄�𝑚𝜒2
𝑚

�̄�𝑚
=

√

√

√

√

√

𝜆2𝑛 + �̄�𝑚 − 𝑃 𝑒2𝑚
4�̄�𝑚

�̄�𝑚
,

(32)

which 𝐴1,𝑛 = 1, 𝐵1,𝑛 =
�̄� 𝑖1
𝜔1,𝑛

and for 𝑚 = 2,… , 𝑀 − 1

𝐴𝑚+1,𝑛 =
sin(𝜔𝑚,𝑛 𝑙𝑚)

cos(𝜔𝑚+1,𝑛 𝑙𝑚)
(

𝜙𝑚 𝐵𝑚,𝑛 − 𝜇𝑚 𝜔𝑚,𝑛 𝐴𝑚,𝑛
)

+
cos(𝜔𝑚,𝑛 𝑙𝑚)

cos(𝜔𝑚+1,𝑛 𝑙𝑚)
(

𝜙𝑚 𝐴𝑚,𝑛 + 𝜇𝑚 𝜔𝑚,𝑛 𝐵𝑚,𝑛
)

− t an(𝜔𝑚+1,𝑛 𝑙𝑚)𝐵𝑚+1,𝑛

(33)

and

𝐵𝑚+1,𝑛 = sin(𝜔𝑚+1,𝑛 𝑙𝑚)
[

sin(𝜔𝑚,𝑛 𝑙𝑚)
(

𝜙𝑚 𝐵𝑚,𝑛 − 𝜇𝑚 𝜔𝑚,𝑛 𝐴𝑚,𝑛
)]

+ sin(𝜔𝑚+1,𝑛 𝑙𝑚)
[

cos(𝜔𝑚,𝑛 𝑙𝑚)
(

𝜙𝑚 𝐴𝑚,𝑛 + 𝜇𝑚 𝜔𝑚,𝑛 𝐵𝑚,𝑛
)]

+
cos(𝜔𝑚+1,𝑛 𝑙𝑚)

𝜔𝑚+1,𝑛

[

sin(𝜔𝑚,𝑛 𝑙𝑚)
(

𝜂𝑚 𝐵𝑚,𝑛 − 𝜑𝑚 𝜔𝑚,𝑛 𝐴𝑚,𝑛
)]

+
cos(𝜔𝑚+1,𝑛 𝑙𝑚)

𝜔𝑚+1,𝑛

[

cos(𝜔𝑚,𝑛 𝑙𝑚)
(

𝜂𝑚 𝐴𝑚,𝑛 + 𝜑𝑚 𝜔𝑚,𝑛 𝐵𝑚,𝑛
)]

.

(34)

The eigenvalues 𝜆𝑛 are the infinitely many solutions of the equation

t an(𝜔𝑀 ,𝑛) =
𝜔𝑀 ,𝑛 𝐵𝑀 ,𝑛 − �̄� 𝑖𝑀 𝐴𝑀 ,𝑛
�̄� 𝑖𝑀 𝐵𝑀 ,𝑛 + 𝜔𝑀 ,𝑛 𝐴𝑀 ,𝑛

, (35)

Finally, 𝐾𝑛 is determined from the initial conditions using the orthog-
onality principle discussed in Appendix C.

𝐾𝑛 =

∑𝑀
𝑚=1

𝛹𝑚
�̄�𝑚

∫ 𝑙𝑚
𝑙𝑚−1

𝛩𝑚,0(𝑦) 𝑓𝑚,𝑛(𝑦) 𝑑 𝑦
∑𝑀
𝑚=1

𝛹𝑚
�̄�𝑚

∫ 𝑙𝑚
𝑙𝑚−1

[𝑓𝑚,𝑛(𝑦)]2 𝑑 𝑦
. (36)

The only remaining step is to impose the absence of contact resistance
at the interface. To do this, it is necessary to evaluate the Eqs. (31)–(36)
at 𝑅 = 0. Then the parameters that are modified from these changes are:

𝜙𝑚 = 𝜉𝑚, 𝜇𝑚 = 0, 𝜑𝑚 = 𝜉𝑚
�̄�𝑚
�̄�𝑚+1

𝜂𝑚 = 𝜉𝑚

(

𝛾𝑚 +
�̄�𝑚
�̄�𝑚+1

𝜒𝑚 − 𝜒𝑚+1

)

.

(37)

In summary, when we examine the solution (derived in this article)
for the specific case of transient heat transfer with no thermal sources
nd neglecting contact resistance at the interface, it is found that the
olution satisfies the conditions provided by the authors in [27].

What has been presented in this section aims to demonstrate that
the more complex model is consistent with the known solutions in the
literature for simpler, specific cases.

6. Numerical modeling

The analytical solution of this type of problems has a high numerical
urden, which makes it complex to obtain temperature profiles for
pecific cases. Because of this, the problem in question is usually
odeled using some numerical method that allows graphing different

emperature profiles and obtaining information from them.
The finite difference method is often an effective tool for evolu-

tionary heat transfer problems. When dealing with multilayer bodies,
the junction of each pair of materials often poses a challenge, es-
pecially if there is no temperature continuity. Some authors have
addressed this situation by incorporating virtual or artificial layers; see,
for example, [3].
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Fig. 2. Heat source.
In this work, we propose an explicit second-order finite difference
method that employs both a forward-in-time scheme and a centered-
in-space scheme, along with specific adaptations at the boundaries
and interfaces. At the right boundary, we apply backward differences,
while at the left boundary, we utilize forward differences. For the
interface, the approach involves either forward or backward differences
depending on whether the left or right material is being considered.

To implement the numerical method, 𝑀 uniform two-dimensional
partitions are defined in the spatial variable 𝑥 and the time variable 𝑡
as a discrete set  that satisfies:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 = {(𝑥𝑖, 𝑡𝑗 )∕ 𝑖 = 1, 2,… , 𝑛𝑙1 ; 𝑗 = 1, 2,… , 𝐽 ; 𝑥𝑖 ∈ 1
𝑥 , 𝑡𝑗 ∈ 𝑡},

2 = {(𝑥𝑖, 𝑡𝑗 )∕ 𝑖 = 𝑛𝑙1 , 𝑛𝑙1+1,… , 𝑛𝑙2 ; 𝑗 = 1, 2,… , 𝐽 ; 𝑥𝑖 ∈ 2
𝑥 , 𝑡𝑗 ∈ 𝑡},

3 = {(𝑥𝑖, 𝑡𝑗 )∕ 𝑖 = 𝑛𝑙2 , 𝑛𝑙2+1,… , 𝑛𝑙3 ; 𝑗 = 1, 2,… , 𝐽 ; 𝑥𝑖 ∈ 3
𝑥 , 𝑡𝑗 ∈ 𝑡},

⋮ ⋮

𝑀 = {(𝑥𝑖, 𝑡𝑗 )∕ 𝑖 = 𝑛𝑙𝑀−1
,… , 𝑛𝑙𝑀 ; 𝑗 = 1, 2,… , 𝐽 ; 𝑥𝑖 ∈ 𝑀

𝑥 , 𝑡𝑗 ∈ 𝑡},

(38)

where

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
𝑥 = {𝑥1 < ⋯ < 𝑥𝑖 <⋯ < 𝑥𝑛𝑙1 , 𝑥𝑖 = (𝑖 − 1)𝛥𝑥, 𝑖 = 1, 2,… , 𝑛𝑙1},

2
𝑥 = {𝑥𝑛𝑙1 < ⋯ < 𝑥𝑖 <⋯ < 𝑥𝑛𝑙2 , 𝑥𝑖 = (𝑖 − 1)𝛥𝑥, 𝑖 = 𝑛𝑙1 ,… , 𝑛𝑙2},

3
𝑥 = {𝑥𝑛𝑙2 < ⋯ < 𝑥𝑖 <⋯ < 𝑥𝑛𝑙3 , 𝑥𝑖 = (𝑖 − 1)𝛥𝑥, 𝑖 = 𝑛𝑙2 ,… , 𝑛𝑙3},
⋮ ⋮

𝑀
𝑥 = {𝑥𝑛𝑙𝑀−1

<⋯ < 𝑥𝑖 <⋯ < 𝑥𝑛𝑙𝑀 , 𝑥𝑖 = (𝑖 − 1)𝛥𝑥,
𝑖 = 𝑛𝑙𝑀−1

,… , 𝑛𝑙𝑀 }

(39)

and

𝑡 = {𝑡1 < 𝑡2 <⋯ < 𝑡𝑗 <⋯ < 𝑡𝑀 , 𝑡𝑗 = (𝑗 − 1)𝛥𝑡, 𝑗 = 1, 2,… , 𝐽}. (40)

Specifically, 𝑚
𝑥 with 𝑚 = 1, 2,… , 𝑀 is the partition of the spatial

variable 𝑥 associated with 𝑇𝑚, and 𝑡 is the corresponding partition as-
sociated with the time variable 𝑡. The values of 𝛥𝑥 and 𝛥𝑡 correspond to
the spatial and temporal discretization steps, respectively. These values
are numerically determined and defined on an equidistant (uniform)
grid as 𝛥𝑥 = 𝑥𝑖 − 𝑥𝑖−1 and 𝛥𝑡 = 𝑡𝑗 − 𝑡𝑗−1.

The following temperature function is considered:

𝑇 (𝑥, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇1(𝑥, 𝑡), (𝑥, 𝑡) ∈ [0, 𝑙1] × [0, 𝑡∞],
𝑇2(𝑥, 𝑡), (𝑥, 𝑡) ∈ [𝑙1, 𝑙2] × [0, 𝑡∞],

⋮ ⋮

𝑇𝑀 (𝑥, 𝑡), (𝑥, 𝑡) ∈ [𝑙𝑀−1, 𝐿] × [0, 𝑡∞],

(41)

In order to find the numerical solution of the heat transfer problem
studied, Eqs. (1)–(6) are discretized under this scheme. Hence, the
following algebraic system can be deduced:
6 
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑇 𝑚𝑖,𝑗+1 = 𝜁𝑚,1 𝑇 𝑚𝑖+1,𝑗 + 𝜁𝑚,2 𝑇
𝑚
𝑖,𝑗

+ 𝜁𝑚,3 𝑇 𝑚𝑖−1,𝑗 + 𝑃
𝑚
𝑖,𝑗 , 𝑖 = 𝑛𝑙𝑚−1+1,… , 𝑛𝑙𝑚−1, 𝑗 = 2,… , 𝐽 ,

𝑇 𝑚𝑖,𝑗 = 𝑇 𝑚𝑖 , 𝑖 = 𝑛𝑙𝑚−1 ,… , 𝑛𝑙𝑚 , 𝑗 = 1,
𝑇 1
𝑖,𝑗 = 𝜖1 𝑇 1

𝑖+1,𝑗 , 𝑖 = 1, 𝑗 = 2,… , 𝐽 ,
𝑇𝑀𝑖,𝑗 = 𝜖𝑀 𝑇𝑀𝑖−1,𝑗 , 𝑖 = 𝑛𝑙𝑀 , 𝑗 = 2,… , 𝐽 ,
𝑇 𝑚𝑖,𝑗 = 𝜐𝑚,1 𝑇 𝑚𝑖−1,𝑗 + 𝜐𝑚,2 𝑇

𝑚+1
𝑖+1,𝑗 , 𝑖 = 𝑛𝑙𝑚 , 𝑗 = 2,… , 𝐽 ,

𝑇 𝑚+1𝑖,𝑗 = 𝜄𝑚,1 𝑇 𝑚𝑖−1,𝑗 + 𝜄𝑚,2 𝑇
𝑚+1
𝑖+1,𝑗 , 𝑖 = 𝑛𝑙𝑚 , 𝑗 = 2,… , 𝐽 ,

(42)

where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜁𝑚,1 =
𝛼𝑚 𝛥𝑡
(𝛥𝑥)2

−
𝛽𝑚 𝛥𝑡
2𝛥𝑥

, 𝜁𝑚,2 = 1 − 2 𝛼𝑚 𝛥𝑡
(𝛥𝑥)2

+ 𝜈𝑚 𝛥𝑡,

𝜁𝑚,3 =
𝛼𝑚 𝛥𝑡
(𝛥𝑥)2

+
𝛽𝑚 𝛥𝑡
2𝛥𝑥

,

𝑃𝑚𝑖,𝑗 = 𝑠𝑚𝑖,𝑗 𝛥𝑡, 𝜖1 =
1

1 + 𝛥𝑥 𝛱1
, 𝜖𝑀 = 1

1 − 𝛥𝑥 𝛱𝑀
, 𝛱1 =

𝛽1
𝛼1

+
ℎ1
𝜅1
,

𝛱𝑀 =
𝛽𝑀
𝛼𝑀

−
ℎ𝑀
𝜅𝑀

, 𝛺𝑚 =
𝑅𝑚
𝛥𝑥

, 𝑍𝑚 =
𝛽𝑚
𝛼𝑚

𝛥𝑥,

𝜐𝑚,1 =
𝜅𝑚 + 𝜅𝑚+1𝛺𝑚(1 +𝑍𝑚+1)

𝛬𝑚
,

𝜐𝑚,2 =
𝜅𝑚+1
𝛬𝑚

, 𝜄𝑚,1 = (𝛺𝑚 + 1) 𝜐𝑚,1 −𝛺𝑚, 𝜄𝑚,2 = (𝛺𝑚 + 1) 𝜐𝑚,2,
𝛬𝑚 = 𝜅𝑚 (1 −𝑍𝑚) + 𝜅𝑚+1 (1 +𝑍𝑚+1) (𝛺𝑚 + 1).

(43)

The convergence and stability conditions of this method are docu-
mented in the bibliography [49], where for the problem treated here
takes the form
(

𝛽𝑚 𝛥𝑡
2𝛥𝑥

)2
< 2

𝛼𝑚 𝛥𝑡
(𝛥𝑥)2

< 1, ∀𝑚 = 1,… , 𝑀 . (44)

Under these conditions, it is guaranteed a precision of first order in
time and of second order in space for the algebraic problem (42)–(43).

7. Numerical example

A non-parallel computational scheme was implemented in MATLAB.
The simulated results are obtained within a few minutes on a machine
equipped with a 4 GHz Intel(R) Core(TM) i7-6700K processor.

This study addresses a single representative example to demonstrate
that the numerical method is both stable and convergent. As evidenced
in the literature, similar configurations are expected to yield analogous
results. Furthermore, the findings presented in this article are applica-
ble to any type of material, provided that the specified conditions and
assumptions are met. This applicability arises from the fact that both
the analytical and numerical solutions depend solely on the thermal
conductivity and diffusivity coefficients of the materials.

Heat transfer is modeled in a four-layer material composed of
nickel, aluminum, copper, and silver (Ni–Al–Cu–Ag), immersed in air
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Fig. 3. Temperature distribution for Ni–Al–Cu–Ag.
at normal pressure. The convective heat coefficients ℎ1 and ℎ4 are
determined according to [50]. The thermal parameters of the materials
are taken from Table B.1.

Example 1.
For this example the following parameters are considered: 𝑀 = 4,

𝐿 = 1 m, 𝑙1 = 0.25 m, 𝑙2 = 0.50 m, 𝑙3 = 0.75 m, 𝑡∞ = 72000 s = 20 h,
𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 0.02 m∕s, 𝜈1 = 𝜈2 = 𝜈3 = 𝜈4 = −0.0001 1∕𝑠,
𝑅1 = 𝑅2 = 𝑅3 = 0.1 m.

The initial condition is null 𝑇1,0(𝑥) = 𝑇2,0(𝑥) = 𝑇3,0(𝑥) = 𝑇4,0(𝑥) = 0
and the heat generation source 𝑠(𝑥, 𝑡) is a continuous and differentiable
function. For 𝑡 ∈ [0, 𝑡∞] and 𝑚 = 1, 2, 3, 4 it is given by:

𝑠(𝑥, 𝑡) = 𝑠𝑚(𝑥, 𝑡) =
(𝑀 + 𝑚)

◦C
𝑚2 𝑠

𝑡2∞
(𝑥− 𝑙𝑚−1) (𝑥− 𝑙𝑚) 𝑡 (𝑡− 𝑡∞), 𝑥 ∈ [𝑙𝑚−1, 𝑙𝑚],

(45)

equivalently, for 𝑡 ∈ [0, 𝑡∞]

𝑠(𝑥, 𝑡) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑠1(𝑥, 𝑡) =
5

◦C
𝑚2 𝑠
𝑡2∞

𝑥 (𝑥 − 𝑙1) 𝑡 (𝑡 − 𝑡∞), 𝑥 ∈ [0, 𝑙1],

𝑠2(𝑥, 𝑡) =
6

◦C
𝑚2 𝑠
𝑡2∞

(𝑥 − 𝑙1) (𝑥 − 𝑙2) 𝑡 (𝑡 − 𝑡∞), 𝑥 ∈ [𝑙1, 𝑙2],

𝑠3(𝑥, 𝑡) =
7

◦C
𝑚2 𝑠
𝑡2∞

(𝑥 − 𝑙2) (𝑥 − 𝑙3) 𝑡 (𝑡 − 𝑡∞), 𝑥 ∈ [𝑙2, 𝑙3],

𝑠3(𝑥, 𝑡) =
8

◦C
𝑚2 𝑠
𝑡2∞

(𝑥 − 𝑙3) (𝑥 − 𝐿) 𝑡 (𝑡 − 𝑡∞), 𝑥 ∈ [𝑙3, 𝐿].

(46)

This type of source is interesting because it models the heating from
the center of each layer to its edges, where heat generation is zero.
Similar to what happens when heat is delivered to a system through a
point thermal source. In Fig. 2 it can be seen that the maximum heating
of each layer goes from 0.020 ◦C∕𝑠 to 0.030 ◦C∕𝑠 approximately. These
maximum sources of heat generation occur at 𝑥 = 0.125 m, 𝑡 = 10 h for
the first layer, at 𝑥 = 0.375 m, 𝑡 = 10 h for the second layer, at 𝑥 =
0.625 m, 𝑡 = 10 h in the third and at 𝑥 = 0.875 m, 𝑡 = 10 h for the fourth.

In Fig. 3 the spatio-temporal temperature profile is observed. The
temperature discontinuities due to the thermal jump at 𝑙1 = 0.25 m,
𝑙2 = 0.50 m and 𝑙3 = 0.75 m are displayed. Furthermore, it can be seen
that the maximum temperature of each layer is reached at 𝑡 = 10 h
which is directly related to the nature of the thermal source.

On the other hand, it is clearly seen that the temperature reached
by the first layer is lower than that reached by the second layer, the
7 
temperature of the second layer is lower than that of the third, and the
temperature of the third layer is lower than the temperature reached by
the last layer. This is because silver is a more conductive and diffusive
material than copper, which in turn is more conductive and diffusive
than aluminum, which is more conductive and diffusive than nickel.
These results are consistent with the physics of the problem.

8. Conclusions

This paper provides a theoretical analysis of a one-dimensional heat
transfer problem in a layered body consisting of 𝑚 layers. The analysis
encompasses diffusion, advection, and internal heat generation or loss,
which varies linearly with temperature in each layer, as well as heat
generation from external sources. Additionally, the thermal resistance
at the interfaces between the different materials and general convective
boundary conditions are taken into account.

An analytical solution is derived for the problem through the ap-
plication of dimensionless variable transformations and differential
equation techniques, including separation of variables, Fourier meth-
ods, and the superposition principle. The analysis reveals that the
associated eigenvalue equation possesses infinitely many solutions, and
an orthogonality condition is established. The analytical solution is
demonstrated to be consistent with findings in previous literature for
simpler cases, thereby validating the methodology employed in this
study.

Moreover, a convergent finite difference method is introduced,
which incorporates a tailored approach at the interfaces, resulting in
a mixed finite difference scheme. This method effectively models the
problem, providing valuable insights into temperature profiles and the
behavior of materials under varying conditions. The numerical results
align with the physical expectations of the problem. Specifically, the
spatiotemporal temperature profiles exhibit a functional form similar to
that of the source, and the response of different materials corresponds
with their diffusivity and thermal conductivity: materials with higher
diffusivity show a faster increase in temperature, while those with
greater thermal conductivity achieve higher temperatures.
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Appendix A. Solution to the homogeneous system

The homogeneous system associated with (13)–(14), i.e., without
ource terms, is addressed using the method of separation of variables.

It is assumed that there exist functions 𝑓𝑚,𝑛 ∈ 𝐶2(𝑙𝑚−1, 𝑙𝑚) and
𝑔𝑛 ∈ 𝐶1(0,+∞) such that

𝛩𝐻𝑚 (𝑦, 𝜏) =
∞
∑

𝑛=1
𝑓𝑚,𝑛(𝑦) 𝑔𝑛(𝜏), (𝑦, 𝜏) ∈ (𝑙𝑚−1, 𝑙𝑚) × R+. (A.1)

By substituting (A.1) in the homogeneous system associated, it can
be shown that 𝑔𝑛(𝜏) = 𝐾𝑛 exp(−𝜆2𝑛 𝜏), where 𝜆𝑛 are the eigenvalues
and 𝐾𝑛 is a sequence associated with the initial temperature value. In
addition, the functions 𝑓𝑚,𝑛 for 𝑚 = 1, 2,… , 𝑀 − 1 satisfy

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̄�𝑚 𝑓 ′′
𝑚,𝑛(𝑦) + 𝜓𝑚 𝑓𝑚,𝑛(𝑦) = −𝜆2𝑛 𝑓𝑚,𝑛(𝑦), 𝑦 ∈ (𝑙𝑚−1, 𝑙𝑚),

𝑓 ′
1,𝑛(𝑦) = �̄� 𝑖1 𝑓1,𝑛(𝑦), 𝑦 = 0,
𝑓 ′
𝑀 ,𝑛(𝑦) = �̄� 𝑖𝑀 𝑓𝑀 ,𝑛(𝑦), 𝑦 = 1,
𝑓𝑚+1,𝑛(𝑦) = 𝜙𝑚 𝑓𝑚,𝑛(𝑦) + 𝜇𝑚 𝑓 ′

𝑚,𝑛(𝑦), 𝑦 = 𝑙𝑚,
𝑓 ′
𝑚+1,𝑛(𝑦) = 𝜂𝑚 𝑓𝑚,𝑛(𝑦) + 𝜑𝑚 𝑓 ′

𝑚,𝑛(𝑦), 𝑦 = 𝑙𝑚,

(A.2)

yielding

𝑓𝑚,𝑛(𝑦) = 𝐴𝑚,𝑛 cos(𝜔𝑚,𝑛 𝑦) + 𝐵𝑚,𝑛 sin(𝜔𝑚,𝑛 𝑦), 𝑦 ∈ [𝑙𝑚−1, 𝑙𝑚]. (A.3)

Then, the solutions of the homogeneous system are written as

𝛩𝐻𝑚 (𝑦, 𝜏) =
∞
∑

𝑛=1
𝐾𝑛

[

𝐴𝑚,𝑛 cos(𝜔𝑚,𝑛 𝑦) + 𝐵𝑚,𝑛 sin(𝜔𝑚,𝑛 𝑦)
]

exp(−𝜆2𝑛 𝜏), (A.4)

where 𝜔𝑚,𝑛 are the spatial eigenvalues, which are given by

𝜔𝑚,𝑛 = 𝜔𝑚,𝑛(𝜆𝑛) =
√

𝜆2𝑛 + 𝜓𝑚
�̄�𝑚

=

√

𝜆2𝑛 + �̄�𝑚 − �̄�𝑚𝜒2
𝑚

�̄�𝑚
=

√

√

√

√

√

𝜆2𝑛 + �̄�𝑚 − 𝑃 𝑒2𝑚
4�̄�𝑚

�̄�𝑚
.

(A.5)

Now, 𝐴𝑚,𝑛, 𝐵𝑚,𝑛 with 𝑚 = 1,… , 𝑀 − 1, and 𝜆𝑛 in (A.4)–(A.5) will be
etermined. For this, the boundary and interface conditions from (A.2)
re used. Additionally, it is assumed that the associated homogeneous
ystem has a non-trivial solution. Algebraic operations are performed
nd the following expressions are obtained 𝐴1,𝑛 = 1, 𝐵1,𝑛 =

�̄� 𝑖1
𝜔1,𝑛

and

𝐴𝑚+1,𝑛 =
sin(𝜔𝑚,𝑛 𝑙𝑚)

cos(𝜔𝑚+1,𝑛 𝑙𝑚)
(

𝜙𝑚 𝐵𝑚,𝑛 − 𝜇𝑚 𝜔𝑚,𝑛 𝐴𝑚,𝑛
)

+
cos(𝜔𝑚,𝑛 𝑙𝑚)

cos(𝜔𝑚+1,𝑛 𝑙𝑚)
(

𝜙𝑚 𝐴𝑚,𝑛 + 𝜇𝑚 𝜔𝑚,𝑛 𝐵𝑚,𝑛
)

− t an(𝜔𝑚+1,𝑛 𝑙𝑚)𝐵𝑚+1,𝑛

(A.6)

𝐵𝑚+1,𝑛 = sin(𝜔𝑚+1,𝑛 𝑙𝑚)
[

sin(𝜔𝑚,𝑛 𝑙𝑚)
(

𝜙𝑚 𝐵𝑚,𝑛 − 𝜇𝑚 𝜔𝑚,𝑛 𝐴𝑚,𝑛
)]

+ sin(𝜔𝑚+1,𝑛 𝑙𝑚)
[

cos(𝜔𝑚,𝑛 𝑙𝑚)
(

𝜙𝑚 𝐴𝑚,𝑛 + 𝜇𝑚 𝜔𝑚,𝑛 𝐵𝑚,𝑛
)]

+
cos(𝜔𝑚+1,𝑛 𝑙𝑚)

𝜔𝑚+1,𝑛

[

sin(𝜔𝑚,𝑛 𝑙𝑚)
(

𝜂𝑚 𝐵𝑚,𝑛 − 𝜑𝑚 𝜔𝑚,𝑛 𝐴𝑚,𝑛
)]

+
cos(𝜔𝑚+1,𝑛 𝑙𝑚)

𝜔𝑚+1,𝑛

[

cos(𝜔𝑚,𝑛 𝑙𝑚)
(

𝜂𝑚 𝐴𝑚,𝑛 + 𝜑𝑚 𝜔𝑚,𝑛 𝐵𝑚,𝑛
)]

.

(A.7)

The eigenvalues 𝜆𝑛 are the infinite solutions of the transcendental
igenvalue equation given by:

t an(𝜔𝑀 ,𝑛(𝜆𝑛)) =
𝜔𝑀 ,𝑛(𝜆𝑛)𝐵𝑀 ,𝑛 − �̄� 𝑖𝑀 𝐴𝑀 ,𝑛 , (A.8)

�̄� 𝑖𝑀 𝐵𝑀 ,𝑛 + 𝜔𝑀 ,𝑛(𝜆𝑛)𝐴𝑀 ,𝑛

8 
with 𝐴𝑀 ,𝑛 and 𝐵𝑀 ,𝑛 given by (A.6) and (A.7) (specializing in 𝑚+ 1 =𝑀)
respectively.

Appendix B. Study of eigenvalues

Using the principle of superposition, the solution to the problem of
interest can be expressed as an infinite series. This approach assumes
hat the set of solutions to the transcendental eigenvalue equation is
ountably infinite, meaning there are infinitely many eigenvalues 𝜆𝑛

that satisfy the equation.
In this work, only real eigenvalues will be considered since we

ssume that there is no overheating or thermal runaway in the ther-
al process under study. Imaginary eigenvalues of 𝜆𝑛 would cause

an exponential increase in temperature over prolonged times, which
orresponds to thermal runaway [27].

This section will discuss the existence of infinitely many real solu-
tions 𝜆𝑛 of the eigenvalue equation. This equation is given by:

t an(𝜔𝑀 ,𝑛(𝜆𝑛)) =
𝜔𝑀 ,𝑛(𝜆𝑛)𝐵𝑀 ,𝑛 − �̄� 𝑖𝑀 𝐴𝑀 ,𝑛
�̄� 𝑖𝑀 𝐵𝑀 ,𝑛 + 𝜔𝑀 ,𝑛(𝜆𝑛)𝐴𝑀 ,𝑛

, (B.1)

where

𝐴𝑀 ,𝑛 =
sin(𝜔𝑀−1,𝑛 𝑙𝑀−1)

cos(𝜔𝑀 ,𝑛 𝑙𝑀−1)
(

𝜙𝑀−1 𝐵𝑀−1,𝑛 − 𝜇𝑀−1 𝜔𝑀−1,𝑛 𝐴𝑀−1,𝑛
)

+
cos(𝜔𝑀−1,𝑛 𝑙𝑀−1)

cos(𝜔𝑀 ,𝑛 𝑙𝑀−1)
(

𝜙𝑀−1 𝐴𝑀−1,𝑛 + 𝜇𝑀−1 𝜔𝑀−1,𝑛 𝐵𝑀−1,𝑛
)

− t an(𝜔𝑀 ,𝑛 𝑙𝑀−1)𝐵𝑀 ,𝑛,

(B.2)

𝐵𝑀 ,𝑛 = sin(𝜔𝑀 ,𝑛 𝑙𝑀−1)
[

sin(𝜔𝑀−1,𝑛 𝑙𝑀−1)

×
(

𝜙𝑀−1 𝐵𝑀−1,𝑛 − 𝜇𝑀−1 𝜔𝑀−1,𝑛 𝐴𝑀−1,𝑛
)]

+ sin(𝜔𝑀 ,𝑛 𝑙𝑀−1)
[

cos(𝜔𝑀−1,𝑛 𝑙𝑀−1)

×
(

𝜙𝑀−1 𝐴𝑀−1,𝑛 + 𝜇𝑀−1 𝜔𝑀−1,𝑛 𝐵𝑀−1,𝑛
)]

+
cos(𝜔𝑀 ,𝑛 𝑙𝑀−1)

𝜔𝑀 ,𝑛
[

sin(𝜔𝑀−1,𝑛 𝑙𝑀−1)

×
(

𝜂𝑀−1 𝐵𝑀−1,𝑛 − 𝜑𝑀−1 𝜔𝑀−1,𝑛 𝐴𝑀−1,𝑛
)]

+
cos(𝜔𝑀 ,𝑛 𝑙𝑀−1)

𝜔𝑀 ,𝑛
[

cos(𝜔𝑀−1,𝑛 𝑙𝑀−1)

×
(

𝜂𝑀−1 𝐴𝑀−1,𝑛 + 𝜑𝑀−1 𝜔𝑀−1,𝑛 𝐵𝑀−1,𝑛
)]

.

(B.3)

with 𝐴1,𝑛 = 1, 𝐵1,𝑛 =
�̄� 𝑖1
𝜔1,𝑛

and

𝜔𝑚,𝑛 = 𝜔𝑚,𝑛(𝑥) =
√

𝑥2 + 𝜓𝑚
�̄�𝑚

=

√

𝑥2 + �̄�𝑚 − �̄�𝑚𝜒2
𝑚

�̄�𝑚
=

√

√

√

√

√

𝑥2 + �̄�𝑚 − 𝑃 𝑒2𝑚
4�̄�𝑚

�̄�𝑚

(B.4)

and

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜓𝑚 = �̄�𝑚 − �̄�𝑚 𝜒2
𝑚, �̄� 𝑖1 = 𝐵 𝑖1∗ − 𝜒1, �̄� 𝑖𝑀 = 𝐵 𝑖𝑀 ∗ − 𝜒𝑀 , 𝜙𝑚 = 𝜉𝑚 𝛿𝑚,

𝜇𝑚 = 𝜉𝑚 �̄�𝑚, 𝜑𝑚 = 𝜉𝑚
(

𝜎𝑚 − �̄�𝑚 𝜒𝑚+1
)

,

𝜂𝑚 = 𝜉𝑚
(

𝛾𝑚 + 𝜎𝑚 𝜒𝑚 − 𝛿𝑚 𝜒𝑚+1
)

,

𝜉𝑚 = exp ( 𝑙𝑚 (𝜒𝑚 − 𝜒𝑚+1)
)

, 𝛿𝑚 = 1 + �̄�𝑚 𝜒𝑚, 𝜒𝑚 =
𝑃 𝑒𝑚
2 �̄�𝑚

,

𝐵 𝑖1∗ =
𝑃 𝑒1
�̄�1

+
𝐵 𝑖1
�̄�1

,

𝐵 𝑖𝑀 ∗ = 𝑃 𝑒𝑀 − 𝐵 𝑖𝑀 , 𝛾𝑚 =
𝑃 𝑒𝑚+1
�̄�𝑚+1

−
𝑃 𝑒𝑚
�̄�𝑚

�̄�𝑚
�̄�𝑚+1

,

𝜎𝑚 =
�̄�𝑚
�̄�𝑚+1

+ �̄�𝑚
𝑃 𝑒𝑚+1
�̄�𝑚+1

,

𝑙𝑚 =
𝑙𝑚
𝐿
, �̄�𝑚 =

𝑅𝑚
𝐿
, �̄�𝑚 =

𝛼𝑚
𝛼𝑀

, 𝑃 𝑒𝑚 = 𝐿
𝛼𝑀

𝛽𝑚,

�̄�𝑚 = 𝐿2

𝛼𝑀
𝜈𝑚, �̄�𝑚 =

𝜅𝑚
𝜅𝑀

,

𝐵 𝑖1 = 𝐿 ℎ1, 𝐵 𝑖𝑀 = 𝐿 ℎ𝑀 .

(B.5)
𝜅𝑀 𝜅𝑀
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Table B.1
Thermal properties of different materials.
Materials Symbol 𝛼2

(

×104
) [

m2∕s
]

𝜅
[

W∕m◦C
]

Lead Pb 0.23673 35
Iron Fe 0.20451 73
Nickel Ni 0.22663 90
Aluminum Al 0.84010 204
Copper Cu 1.12530 386
Silver Ag 1.70140 419

Table B.2
Physical parameters of case 1.

Parameters Values

𝐿 [m] 1
𝑙1 [m] 0.2
𝑙2 [m] 0.5
𝑙3 [m] 0.8
ℎ1

[

W∕m2 ◦C
]

12
ℎ4

[

W∕m2 ◦C
]

10
𝛽1

[

m∕s
]

0.001
𝛽2

[

m∕s
]

0.002
𝛽3

[

m∕s
]

0.003
𝛽4

[

m∕s
]

0.004
𝜈1

[

1∕s
]

10
𝜈2

[

1∕s
]

15
𝜈3

[

1∕s
]

10
𝜈4

[

1∕s
]

15
𝑅1 [m] 0.04
𝑅2 [m] 0.05
𝑅3 [m] 0.06

Since the Eqs. (B.1)–(B.5) is transcendental, it is not possible to
obtain solutions. On the other hand, analytically proving that this
equation has infinite solutions for the general case is a difficult task due
to the complexity of the equation. However, this fact can be verified
numerically for each particular case of interest.

If we denote by:

𝑟(𝑥) = 𝜔𝑀 ,𝑛(𝑥)𝐵𝑀 ,𝑛(𝑥) − �̄� 𝑖𝑀 𝐴𝑀 ,𝑛(𝑥)
�̄� 𝑖𝑀 𝐵𝑀 ,𝑛(𝑥) + 𝜔𝑀 ,𝑛(𝑥)𝐴𝑀 ,𝑛(𝑥)

, 𝑞(𝑥) = t an(𝜔𝑀 ,𝑛(𝑥)), (B.6)

showing that the eigenvalue equation has infinitely many real so-
utions boils down to seeing that the functions 𝑟(𝑥) and 𝑞(𝑥) have

infinitely many intersections. As an example, we will observe this in
wo particular cases for four-layer bodies.

Case 1. The heat transfer problem in a 𝐴𝑙 − 𝐶 𝑢 − 𝐹 𝑒 − 𝑁 𝑖 four-layer
body, is considered.

Case 2. The heat transfer problem in a 𝑃 𝑏 − 𝐴𝑙 − 𝑁 𝑖 − 𝐴𝑔 four-layer
ody, is considered.

The thermal parameters of the materials are taken from [51] and
ummarized in Table B.1. The physical parameters used for the exam-
les in case 1 and case 2 are listed in Tables B.2 and B.3, respectively.

From Fig. B.4 you can see the intercessions for 𝜆𝑛 ∈ (−200, 200).
It can be inferred, for both cases, that the functions 𝑞(𝑥) and 𝑟(𝑥) will
have, effectively, infinite intersections.

Appendix C. Study of the orthogonality relationship

In this section, we will derive the orthogonality condition, or princi-
ple, for this problem. This result is necessary to determine the sequence
 𝛤
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Table B.3
Physical parameters of case 2.

Parameters Values

𝐿 [m] 2
𝑙1 [m] 0.7
𝑙2 [m] 1.2
𝑙3 [m] 1.6
ℎ1

[

W∕m2 ◦C
]

10
ℎ4

[

W∕m2 ◦C
]

12
𝛽1

[

m∕s
]

0.003
𝛽2

[

m∕s
]

0.001
𝛽3

[

m∕s
]

0.002
𝛽4

[

m∕s
]

0.004
𝜈1

[

1∕s
]

15
𝜈2

[

1∕s
]

20
𝜈3

[

1∕s
]

15
𝜈4

[

1∕s
]

20
𝑅1 [m] 0.07
𝑅2 [m] 0.06
𝑅3 [m] 0.05

𝐾𝑛 in (15). As shown in (A.2), for two numbers 𝑛 and 𝑗, the functions
𝑓𝑚,𝑛 and 𝑓𝑚,𝑗 for all 𝑚 = 1, 2,… , 𝑀 must satisfy:
{

�̄�𝑚 𝑓 ′′
𝑚,𝑛(𝑦) + 𝜓𝑚 𝑓𝑚,𝑛(𝑦) = −𝜆2𝑛 𝑓𝑚,𝑛(𝑦), 𝑦 ∈ (𝑙𝑚−1, 𝑙𝑚),

�̄�𝑚 𝑓 ′′
𝑚,𝑗 (𝑦) + 𝜓𝑚 𝑓𝑚,𝑗 (𝑦) = −𝜆2𝑗 𝑓𝑚,𝑗 (𝑦), 𝑦 ∈ (𝑙𝑚−1, 𝑙𝑚)

(C.1)

Multiply the first equation of (C.1) by 𝑓𝑚,𝑗 and the second by 𝑓𝑚,𝑛.
This gives rise to,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̄�𝑚 𝑓 ′′
𝑚,𝑛(𝑦) 𝑓𝑚,𝑗 (𝑦) + 𝜓𝑚 𝑓𝑚,𝑛(𝑦) 𝑓𝑚,𝑗 (𝑦)

= −𝜆2𝑛 𝑓𝑚,𝑛(𝑦) 𝑓𝑚,𝑗 (𝑦), 𝑦 ∈ (𝑙𝑚−1, 𝑙𝑚),
�̄�𝑚 𝑓 ′′

𝑚,𝑗 (𝑦) 𝑓𝑚,𝑛(𝑦) + 𝜓𝑚 𝑓𝑚,𝑗 (𝑦) 𝑓𝑚,𝑛(𝑦)
= −𝜆2𝑗 𝑓𝑚,𝑗 (𝑦) 𝑓𝑚,𝑛(𝑦), 𝑦 ∈ (𝑙𝑚−1, 𝑙𝑚).

(C.2)

The difference of the two expressions of (C.2) is taken,

�̄�𝑚
[

𝑓 ′′
𝑚,𝑛(𝑦) 𝑓𝑚,𝑗 (𝑦) − 𝑓 ′′

𝑚,𝑗 (𝑦) 𝑓𝑚,𝑛(𝑦)
]

= (𝜆2𝑗 − 𝜆2𝑛) 𝑓𝑚,𝑛(𝑦) 𝑓𝑚,𝑗 (𝑦), 𝑦 ∈ (𝑙𝑚−1, 𝑙𝑚). (C.3)

Letting 𝛹1 = 1 and

𝛹𝑚 = 1
∏𝑚−1

𝑖=1 𝑁𝑖

= 1
∏𝑚−1

𝑖=1 (𝜑𝑖 𝜙𝑖 − 𝜂𝑖 𝜇𝑖)
, 𝑚 = 2,… , 𝑀 , (C.4)

the expression (C.3) is conveniently rewritten as follows

𝛹𝑚
[

𝑓 ′
𝑚,𝑛(𝑦) 𝑓𝑚,𝑗 (𝑦) − 𝑓 ′

𝑚,𝑗 (𝑦) 𝑓𝑚,𝑛(𝑦)
]′

=
𝛹𝑚
�̄�𝑚

(𝜆2𝑗 − 𝜆
2
𝑛)𝑓𝑚,𝑛(𝑦)𝑓𝑚,𝑗 (𝑦). (C.5)

The equalities (C.5) are integrated over their respective intervals of
efinition and then added. This yields,

(𝜆2𝑗 − 𝜆
2
𝑛)

𝑀
∑

𝑚=1

𝛹𝑚
�̄�𝑚 ∫

𝑙𝑚

𝑙𝑚−1
𝑓𝑚,𝑛(𝑦)𝑓𝑚,𝑗 (𝑦) 𝑑 𝑦 =

𝑀
∑

𝑚=1
𝛹𝑚 𝛤𝑚,𝑗 ,𝑛(𝑦)||

|

𝑙𝑚

𝑙𝑚−1
, (C.6)

where

𝛤𝑚,𝑗 ,𝑛(𝑦) = 𝑓 ′
𝑚,𝑛(𝑦) 𝑓𝑚,𝑗 (𝑦) − 𝑓 ′

𝑚,𝑗 (𝑦) 𝑓𝑚,𝑛(𝑦). (C.7)

By operating algebraically and using the properties of the function
(Properties 1) given in expressions (C.13), we arrive at:



G.F. Umbricht et al. International Journal of Thermal Sciences 211 (2025) 109690 
Fig. B.4. Scheme of intersection of the functions 𝑞(𝑥) and 𝑟(𝑥). To the left for case 1 and to the right for case 2.
(
a

i

̂

o

(𝜆2𝑗 − 𝜆
2
𝑛)

𝑀
∑

𝑚=1

𝛹𝑚
�̄�𝑚 ∫

𝑙𝑚

𝑙𝑚−1
𝑓𝑚,𝑛(𝑦)𝑓𝑚,𝑗 (𝑦) 𝑑 𝑦

=
𝑀
∑

𝑚=1
𝛹𝑚

(

𝛤𝑚,𝑗 ,𝑛(𝑙𝑚) − 𝛤𝑚,𝑗 ,𝑛(𝑙𝑚−1)
)

=
𝑀
∑

𝑚=1
𝛹𝑚 𝛤𝑚,𝑗 ,𝑛(𝑙𝑚) −

𝑀
∑

𝑚=1
𝛹𝑚 𝛤𝑚,𝑗 ,𝑛(𝑙𝑚−1) = 𝛹𝑀 𝛤𝑀 ,𝑗 ,𝑛(1) − 𝛹1 𝛤1,𝑗 ,𝑛(0)

+
𝑀−1
∑

𝑚=1
𝛹𝑚 𝛤𝑚,𝑗 ,𝑛(𝑙𝑚) −

𝑀
∑

𝑚=2
𝛹𝑚𝑁𝑚−1 𝛤𝑚−1,𝑗 ,𝑛(𝑙𝑚−1)

=
𝑀−1
∑

𝑚=1
[𝛹𝑚 −𝑁𝑚 𝛹𝑚+1]𝛤𝑚,𝑗 ,𝑛(𝑙𝑚) = 0.

(C.8)

What is obtained in (C.8) allows us to deduce the orthogonality relation
given by
𝑀
∑

𝑚=1

𝛹𝑚
�̄�𝑚 ∫

𝑙𝑚

𝑙𝑚−1
𝑓𝑚,𝑛(𝑦)𝑓𝑚,𝑗 (𝑦) 𝑑 𝑦 = 0, ∀𝑛 ≠ 𝑗 . (C.9)

Properties 1 (Properties of the 𝛤 ).
The function 𝛤 defined in (C.7) possesses properties of particular interest

in the context of this problem. These properties are useful for deriving the
orthogonality condition (C.9), and they are obtained from the boundary and
interface conditions of (A.2).

𝛤1,𝑗 ,𝑛(0) = 𝑓 ′
1,𝑛(0) 𝑓1,𝑗 (0) − 𝑓 ′

1,𝑗 (0) 𝑓1,𝑛(0)

= �̄� 𝑖1 𝑓1,𝑛(0) 𝑓1,𝑗 (0) − �̄� 𝑖1 𝑓1,𝑗 (0) 𝑓1,𝑛(0) = 0.
(C.10)

𝛤𝑀 ,𝑗 ,𝑛(1) = 𝑓 ′
𝑀 ,𝑛(1) 𝑓𝑀 ,𝑗 (1) − 𝑓 ′

𝑀 ,𝑗 (1) 𝑓𝑀 ,𝑛(1)
= �̄� 𝑖𝑀 𝑓𝑀 ,𝑛(1) 𝑓𝑀 ,𝑗 (1) − �̄� 𝑖𝑀 𝑓𝑀 ,𝑗 (0) 𝑓𝑀 ,𝑛(0) = 0.

(C.11)

𝛤𝑚,𝑗 ,𝑛(𝑙𝑚−1) = 𝑓 ′
𝑚,𝑛(𝑙𝑚−1) 𝑓𝑚,𝑗 (𝑙𝑚−1) − 𝑓 ′

𝑚,𝑗 (𝑙𝑚−1) 𝑓𝑚,𝑛(𝑙𝑚−1)

=[𝜂𝑚−1 𝑓𝑚−1,𝑛 + 𝜑𝑚−1 𝑓 ′
𝑚−1,𝑛]

|

|

|𝑙𝑚−1
[𝜙𝑚−1 𝑓𝑚−1,𝑗 + 𝜇𝑚−1 𝑓 ′

𝑚−1,𝑗 ]
|

|

|𝑙𝑚−1

−[𝜂𝑚−1 𝑓𝑚−1,𝑗 + 𝜑𝑚−1 𝑓 ′
𝑚−1,𝑗 ]

|

|

|𝑙𝑚−1
[𝜙𝑚−1 𝑓𝑚−1,𝑛 + 𝜇𝑚−1 𝑓 ′

𝑚−1,𝑛]
|

|

|𝑙𝑚−1

=𝜂𝑚−1 𝜇𝑚−1[𝑓𝑚−1,𝑛 𝑓 ′
𝑚−1,𝑗 − 𝑓𝑚−1,𝑗 𝑓

′
𝑚−1,𝑛]

|

|

|𝑙𝑚−1

+𝜑𝑚−1 𝜙𝑚−1[𝑓𝑚−1,𝑗 𝑓 ′
𝑚−1,𝑛 − 𝑓𝑚−1,𝑛 𝑓

′
𝑚−1,𝑗 ]

|

|

|𝑙𝑚−1

=(𝜑𝑚−1 𝜙𝑚−1 − 𝜂𝑚−1 𝜇𝑚−1)[𝑓𝑚−1,𝑗 𝑓 ′
𝑚−1,𝑛 − 𝑓𝑚−1,𝑛 𝑓

′
𝑚−1,𝑗 ]

|

|

|𝑙𝑚−1

=𝑁𝑚−1 𝛤𝑚−1,𝑗 ,𝑛(𝑙𝑚−1).

(C.12)

In summary, the properties of the function 𝛤 are:

𝛤1,𝑗 ,𝑛(0) = 0, 𝛤𝑀 ,𝑗 ,𝑛(1) = 0, 𝛤𝑚,𝑗 ,𝑛(𝑙𝑚−1) = 𝑁𝑚−1 𝛤𝑚−1,𝑗 ,𝑛(𝑙𝑚−1). (C.13)
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Appendix D. Solution to the non-homogeneous system

To find the solution of the non-homogeneous system of interest
13)–(14) the Fourier method is used. That is, it is assumed that there
re countably infinite sets of time functions �̄�𝑚,𝑛(𝜏) such that

𝛩𝑚(𝑦, 𝜏) =
∞
∑

𝑛=1
�̄�𝑚,𝑛(𝜏) 𝑓𝑚,𝑛(𝑦), (𝑦, 𝜏) ∈ [𝑙𝑚−1, 𝑙𝑚] × R+. (D.1)

where 𝑓𝑚,𝑛 with 𝑚 = 1, 2,… , 𝑀 are defined in (A.3). For simplic-
ty, the source functions �̂�𝑚(𝑦, 𝜏) in (13) are developed in a series of

eigenfunctions.

𝑠𝑚(𝑦, 𝜏) =
∞
∑

𝑛=1
𝑆𝑚,𝑛(𝜏) 𝑓𝑚,𝑛(𝑦), (𝑦, 𝜏) ∈ [𝑙𝑚−1, 𝑙𝑚] × R+, (D.2)

where 𝑆𝑚,𝑛(𝜏) are defined as follows

𝑆𝑚,𝑛(𝜏) =
∫

𝑙𝑚

𝑙𝑚−1
�̂�𝑚(𝑦, 𝜏) 𝑓𝑚,𝑛(𝑦) 𝑑 𝑦

∫

𝑙𝑚

𝑙𝑚−1

[

𝑓𝑚,𝑛(𝑦)
]2 𝑑 𝑦

. (D.3)

Replacing the expressions (D.1)–(D.3) in Eq. (13), the following
countable set of homogeneous ordinary equations is obtained,
∞
∑

𝑛=1

[

�̄�′
𝑚,𝑛(𝜏) + (�̄�𝑚 𝜔2

𝑚,𝑛 − 𝜓𝑚) �̄�𝑚,𝑛(𝜏) − 𝑆𝑚,𝑛(𝜏)
]

= 0, (D.4)

since the expansions in eigenfunctions of linear system problems have
properties similar to those of Fourier series, for the series given in (D.4)
to sum to zero, it is necessary that all their terms be zero. This can be
solved by direct integration, which gives rise to:

�̄�𝑚,𝑛(𝜏) = exp
(

(𝜓𝑚 − �̄�𝑚 𝜔2
𝑚,𝑛) 𝜏

)

×
[

𝐾𝑛 + ∫

𝜏

0
𝑆𝑚,𝑛(𝑠) exp

(

(�̄�𝑚 𝜔2
𝑚,𝑛 − 𝜓𝑚) 𝑠

)

𝑑 𝑠
]

. (D.5)

Only 𝐾𝑛 remains to be determined. This sequence can be found
by imposing the initial conditions of (13) and using the orthogonality
condition, which will be detailed in Appendix C. In this way, it is
btained:

𝐾𝑛 =

∑𝑀
𝑚=1

𝛹𝑚
�̄�𝑚

∫ 𝑙𝑚
𝑙𝑚−1

𝛩𝑚,0(𝑦) 𝑓𝑚,𝑛(𝑦) 𝑑 𝑦
∑𝑀
𝑚=1

𝛹𝑚
�̄�𝑚

∫ 𝑙𝑚
𝑙𝑚−1

[𝑓𝑚,𝑛(𝑦)]2 𝑑 𝑦
. (D.6)

Data availability

No data was used for the research described in the article.
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