
International Journal of Thermal Sciences 208 (2025) 109471 

1

Contents lists available at ScienceDirect

International Journal of Thermal Sciences

journal homepage: www.elsevier.com/locate/ijts

Bilayer one-dimensional Convection–Diffusion–Reaction-Source problem:
Analytical and numerical solution
Guillermo Federico Umbricht a,b,∗, Diana Rubio c, Domingo Alberto Tarzia a,b

a Departamento de Matemática, Facultad de Ciencias Empresariales, Universidad Austral, Paraguay 1950, Rosario, S2000FZF, Santa Fe, Argentina
b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Buenos Aires, Argentina
c Instituto de Tecnologías Emergentes y Ciencias Aplicadas (UNSAM-CONICET), Centro de Matemática Aplicada, Escuela de Ciencia y Tecnología, Universidad
Nacional de General San Martín, 25 de mayo y Francia, San Martín, B1650, Buenos Aires, Argentina

A R T I C L E I N F O

Keywords:
Heat transfer
Multilayer
Composite materials
Interfacial thermal resistance

A B S T R A C T

This article presents a theoretical analysis of a one-dimensional heat transfer problem in two layers involving
diffusion, advection, internal heat generation or loss linearly dependent on temperature in each layer, and
heat generation due to external sources. Additionally, the thermal resistance at the interface between the
materials is considered. The situation of interest is modeled mathematically, explicit analytical solutions are
found using Fourier techniques, and a convergent finite difference scheme is formulated to simulate specific
cases. The solution is consistent with previous results. A numerical example is included that shows coherence
between the obtained results and the physics of the problem. The conclusions drawn in this work expand the
theoretical understanding of two-layer heat transfer and may also contribute to improving the thermal design
of multilayer engineering systems.
1. Introduction

The mathematical modeling of heat and mass transfer problems in
multilayer materials has been extensively studied recently [1–4] due to
the numerous applications [5] in various fields of science, engineering,
and industry. The variety of applications is evident from the numer-
ous articles found in the literature across different disciplines. For
instance, wool cleaning techniques [6], pollution in porous media [7,8],
skin permeability [9], drug release analysis in stents [10], greenhouse
gas emissions [11], moisture in composite tissues [12], thermal con-
duction in composite materials [13], brain tumor growth [14], heat
conduction through the skin [15], analysis of lithium-ion cells [16],
microelectronics [17], among others.

A relevant and up-to-date state of the art in multilayer material
transfer and the mathematical techniques used can be found in [13,
18,19]. These problems have been analytically addressed by different
methods, among them a recursive images method [20], the method of
separation of variables [3,5,13,18,21,22], the solution using integral
functions such as Laplace and Fourier transform [23–26]. Numerical
techniques have also been used, such as the method of fundamental
solutions [27], finite differences, and finite elements [1,5,22].

Although the bibliography is extensive, it lacks generality because
the models presented are not complete. Most of the articles cited
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consider only diffusion, neglecting dissipative terms and sources of
the complete parabolic equation. Additionally, most of them do not
account for the resistance offered by the interface. For instance, in [19],
the authors provide a thorough analysis of heat transfer in multilayer
materials but omit the effects of external sources and thermal contact
resistance. Other articles consider heat transfer problems in multilayer
materials but only take into account the steady state [28–32].

It is important to analyze the influence of external heat generation
sources, dissipative terms, and thermal contact resistance, as these are
key physical processes in multilayer mass and heat transfer problems.
These processes include diffusion, advection, internal heat generation
or consumption, and heat generation due to external sources. The
rate of internal heat generation or consumption is often considered
proportional to the local temperature. Some processes modeled this
way include a chemical reaction with first-order kinetics [33,34], the
perfusion term in the Pennes bioheat transfer equation [35], and the fin
equation used for the analysis of a multilayer segmented fin [36]. The
advective term plays an important role in several transfer processes,
such as in a flow battery [37]. Furthermore, the source term is useful
for modeling different processes where external heat is delivered to the
system [38].
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Nomenclature
Subscripts and Superscripts
0 –Initial value
𝑚 (1, 2)–Layer number
𝑛 –Eigenvalue number
𝐻 –Homogeneous system
∞ –Stationary state
𝑖 –Spatial grid position (numerical method)
𝑗 –Time grid position (numerical method)
Capital Letters
𝐴 –Auxiliary dimensionless parameter
𝐵 –Auxiliary dimensionless parameter
�̄� –Auxiliary temporal function
�̄� –Auxiliary temporal function
𝐵 𝑖 –Biot number
𝐵 𝑖∗ –Auxiliary dimensionless parameter
�̄� 𝑖 –Auxiliary dimensionless parameter
𝐶 –The specific heat at constant pressure [J (k g ◦C)−1]
𝐷 –Differential operator [◦C s−1]
�̄� –Dimensionless differential operator
𝐿 –body length [m]
𝐾 –Auxiliary dimensionless parameter
𝑃 𝑒 –Péclet number
𝑃 –Auxiliary function (numerical method) [◦C]
 –Partition (numerical method)
𝑅 –Thermal resistance [m]
�̄� –Dimensionless thermal resistance
𝑆 –Auxiliary dimensionless heat source
𝑇 –Temperature field relative to ambient [◦C]
𝑇𝑟 –Reference temperature [◦C]
𝑍 –Auxiliary parameter (numerical method)
Lowercase Letters
𝑓 –Dimensionless auxiliary spatial function
𝑔 –Dimensionless auxiliary temporal function
𝑙 –Interface location [m]
𝑙 –Dimensionless interface location
𝑞 –Auxiliary function
𝑟 –Auxiliary function
𝑠 –Heat source [◦C s−1]
�̄� –Dimensionless auxiliary heat source
�̂� –Dimensionless heat source
ℎ –Convection heat transfer coefficient [W m−2 (◦C)−1]
𝑡 –Temporary variable [s]
𝑥 –Spatial variable [m]
𝑦 –Dimensionless spatial variable
Greek Letters
𝛼 –Thermal diffusivity coefficient [m2 s−1]
�̄� –Dimensionless thermal diffusivity coefficient
𝛽 –Fluid velocity [m s−1]
𝜈 –Generation/consumption coefficient [s−1]
�̄� –Dimensionless generation/consumption coefficient
𝜅 –Thermal conductivity coefficient [W (m ◦C)−1]
�̄� –Dimensionless thermal conductivity coefficient
𝜌 –Density [k g m−3]
𝜏 –Dimensionless temporary variable
𝜃 –Dimensionless temperature
𝜃 –Dimensionless auxiliary temperature function
𝜒 –Auxiliary dimensionless parameter
𝛥𝑡 –Time discretization step (numerical method) [s]
𝛥𝑥 –Spatial discretization step (numerical method) [m]
𝛾 –Auxiliary dimensionless parameter
𝜎 –Auxiliary dimensionless parameter
𝜖 –Auxiliary parameter (numerical method)
𝜑 –Auxiliary dimensionless parameter
𝜓 –Auxiliary dimensionless parameter
2 
𝜇 –Auxiliary dimensionless parameter
𝜙 –Auxiliary dimensionless parameter
𝜉 –Auxiliary dimensionless parameter
𝜂 –Auxiliary dimensionless parameter
𝛿 –Auxiliary dimensionless parameter
𝜆 –Dimensionless temporal eigenvalue
𝜔 –Dimensionless spatial eigenvalue
𝛺 –Auxiliary parameter (numerical method)
𝛬 –Auxiliary parameter (numerical method) [W (m ◦C)−1]
𝜐 –Auxiliary parameter (numerical method)
𝛱–Auxiliary parameter (numerical method) [m−1]
𝜁 –Auxiliary parameter (numerical method)

Fig. 1. General scheme of the problem of interest.

This work proposes a mathematical study of transient heat transfer
in a bilayer body governed by a Convection–Diffusion–Reaction-Source
(CDRS) equation. Diffusion, advection, internal heat generation or loss,
heat generation from external sources, and thermal resistance by con-
tact offered by the interface are considered. An analytical expression for
the solution to the studied problem is obtained, which is consistent with
previous results. Additionally, the proposed numerical approach aims
to simulate solutions for specific case studies using finite difference
methods.

2. Mathematical modeling

The problem of interest focuses on the transport or transient transfer
of heat in a one-dimensional bilayer body. The material in each layer is
assumed to be homogeneous and isotropic. Additionally, heat gain or
loss within each layer at a rate proportional to the local temperature
and advection driven by a one-dimensional fluid flow are taken into ac-
count. Furthermore, heat generation from external sources is included.
The phenomena of thermal runaway and heat transfer by radiation are
ignored.

The length of the bilayer body is denoted as 𝐿. The interface,
which represents the junction between the two materials or layers, is
positioned at 𝑙, where 𝐿 > 𝑙. In Fig. 1, the reference diagram is shown,
where the arrow indicates the direction of heat flow.

A transient energy conservation equation, representing a balance
between diffusion, advection, internal heat gain or loss, and heat
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generation from external sources in a one-dimensional bilayer body,
an be written as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕 𝑇1
𝜕 𝑡 (𝑥, 𝑡) = 𝐷1𝑇1(𝑥, 𝑡) + 𝑠1(𝑥, 𝑡), (𝑥, 𝑡) ∈ (0, 𝑙) × R+,

𝜕 𝑇2
𝜕 𝑡 (𝑥, 𝑡) = 𝐷2𝑇2(𝑥, 𝑡) + 𝑠2(𝑥, 𝑡), (𝑥, 𝑡) ∈ (𝑙 , 𝐿) × R+,

(1)

where 𝐷𝑚 is a parabolic differential operator that has already been used
in other works [39] and is defined by

𝐷𝑚𝑇𝑚(𝑥, 𝑡) ∶= 𝛼𝑚
𝜕2𝑇𝑚
𝜕 𝑥2 (𝑥, 𝑡) − 𝛽𝑚

𝜕 𝑇𝑚
𝜕 𝑥 (𝑥, 𝑡) + 𝜈𝑚 𝑇𝑚(𝑥, 𝑡), 𝑚 = 1, 2. (2)

In Eqs. (1)–(2), often referred to as the CDRS equation, the sub-
scripts refer to the first and second layers of the material, where 𝑥 and 𝑡
represent the spatial and temporal variables, respectively. The functions
𝑇1(𝑥, 𝑡) and 𝑇2(𝑥, 𝑡), which satisfy 𝑇1(𝑥, 𝑡) ∈ 𝐶2(0, 𝑙) × 𝐶1(0,+∞) and
2(𝑥, 𝑡) ∈ 𝐶2(𝑙 , 𝐿) × 𝐶1(0,+∞), represent the temperature field, relative
o ambient temperature, of the first and second layers, respectively, at
osition 𝑥 at time 𝑡.

The first two terms on the right-hand side of Eq. (2) represent
heat transfer due to diffusion and advection, respectively, while the
third term accounts for internal heat gain or loss proportional to the
local temperature. The coefficient 𝛼𝑚 denotes the thermal diffusivity
of the material in each layer, 𝛽𝑚 represents the flow velocity, and 𝜈𝑚
orresponds to the coefficient that relates the rate of internal heat gain
r loss to the local temperature. Finally, the differentiable functions
𝑖 given in (1) model an external source that delivers heat to the

body. All properties are assumed to be temperature-independent. An
nalogous equation can be used to model the concentration field in a
ne-dimensional mass transfer problem [38].

Heat is generated due to the presence of external sources. Addi-
tionally, heat is either lost or generated within each layer at a rate
roportional to the local temperature. Heat transfer within the body

occurs due to diffusion and advection driven by an imposed one-
dimensional fluid flow from left to right in each layer. Each layer has
distinct thermal properties, flow velocity, and heat generation rate.

General convective boundary conditions are assumed on the left and
ight boundaries, respectively. These conditions represent a balance

between two factors: convective heat transfer between the body and
the surroundings, and the diffusion and advection into and out of the
body. Note that while advection transfers energy from the environment
to the first layer, it also removes energy from the second layer to the
environment.
⎧

⎪

⎨

⎪

⎩

𝜅1
𝜕 𝑇1
𝜕 𝑥 (𝑥, 𝑡) = ℎ1 𝑇1(𝑥, 𝑡) + 𝜌1𝐶1𝛽1 𝑇1(𝑥, 𝑡), 𝑥 = 0, 𝑡 ∈ R+,

𝜅2
𝜕 𝑇2
𝜕 𝑥 (𝑥, 𝑡) = −ℎ2 𝑇2(𝑥, 𝑡) + 𝜌2𝐶2𝛽2 𝑇2(𝑥, 𝑡), 𝑥 = 𝐿, 𝑡 ∈ R+,

(3)

where 𝜅𝑚, ℎ𝑚, 𝜌𝑚 and 𝐶𝑚 denote: the thermal conductivity coefficient,
he convection heat transfer coefficient, the density and the specific
eat at constant pressure for each layer, respectively.

Additionally, temperature discontinuity at the interface due to ther-
al contact resistance at the material junction is considered. Typically,

his discontinuity is modeled such that the temperature difference
etween the layers is proportional to the heat flux at the interface [40];

this type of thermal jump is accounted for in the first equation of
(4). Regarding the heat flux at the interface, the principle of energy
conservation is applied, leading to the thermal flux equality stated in
the second equation of (4).
⎧

⎪

⎪

⎨

⎪

⎪

𝑇2(𝑥, 𝑡) = 𝑇1(𝑥, 𝑡) + 𝑅
𝜕 𝑇1
𝜕 𝑥 (𝑥, 𝑡), 𝑥 = 𝑙 , 𝑡 ∈ R+,

𝜅2
𝜕 𝑇2
𝜕 𝑥 (𝑥, 𝑡) − 𝜌2𝐶2𝛽2𝑇2(𝑥, 𝑡) = 𝜅1

𝜕 𝑇1
𝜕 𝑥 (𝑥, 𝑡)

−𝜌 𝐶 𝛽 𝑇 (𝑥, 𝑡), 𝑥 = 𝑙 , 𝑡 ∈ R+,

(4)
⎩

1 1 1 1 s

3 
where 𝑅 denotes the value of the thermal contact resistance at the
nterface between the materials. Finally, an initial spatial distribution

of temperature is assumed for each layer. That is to say,
{

𝑇1(𝑥, 𝑡) = 𝑇1,0(𝑥), 𝑥 ∈ [0, 𝑙] , 𝑡 = 0,
𝑇2(𝑥, 𝑡) = 𝑇2,0(𝑥), 𝑥 ∈ [𝑙 , 𝐿] , 𝑡 = 0. (5)

Note 1. The problem defined by Eqs. (1)–(5) is studied at a macro-
scopic scale, as results obtained may not be valid at other scales.
This is primarily because the thermophysical properties of the in-
erface between materials and their effects can change significantly
t different scales. For instance, at the nanometric scale, the one-

dimensional heat transfer problem between two layers cannot be ef-
fectively solved using the techniques presented in this work. At this
scale, it is necessary to use other methods such as non-equilibrium
molecular dynamics simulations or non-equilibrium Green’s function
calculations based on interatomic potentials. This nanometric-scale
problem is relevant in the study of interface nanodevices and has been
recently addressed by various authors [41–44] for different types of
materials, including graphene-silver, graphene-gold, graphene-silicon,
and graphene-copper.

In the next section, we obtain an explicit analytical solution to the
roblem described by the Eqs. (1)–(5).

3. Analytical solution

The transient heat transfer problem to be solved is defined by
Eqs. (1)–(5). To simplify the problem, the equations are made dimen-
sionless by introducing the following parameters for 𝑚 = 1, 2
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦 = 𝑥
𝐿
, 𝑙 = 𝑙

𝐿
, �̄� = 𝑅

𝐿
, 𝜏 =

𝛼2
𝐿2

𝑡, 𝜃𝑚 =
𝑇𝑚
𝑇𝑟
, �̄� =

𝛼1
𝛼2
,

𝑃 𝑒𝑚 = 𝐿
𝛼2
𝛽𝑚,

�̄�𝑚 = 𝐿2

𝛼2
𝜈𝑚, �̄�𝑚 = 𝐿2

𝑇𝑟 𝛼2
𝑠𝑚, �̄� =

𝜅1
𝜅2
, 𝐵 𝑖𝑚 = 𝐿

𝜅2
ℎ𝑚,

(6)

where 𝑃 𝑒𝑚, 𝐵 𝑖𝑚 denote the dimensionless Péclet and Biot numbers,
respectively, and the parameter 𝑇𝑟 represents a reference temperature.
This change of variables is applied to Eqs. (1)–(5), resulting in the
ollowing dimensionless system:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕 𝜃1
𝜕 𝜏 (𝑦, 𝜏) = �̄�1𝜃1(𝑦, 𝜏) + �̄�1(𝑦, 𝜏), (𝑦, 𝜏) ∈ (0, 𝑙) × R+,

𝜕 𝜃2
𝜕 𝜏 (𝑦, 𝜏) = �̄�2𝜃2(𝑦, 𝜏) + �̄�2(𝑦, 𝜏), (𝑦, 𝜏) ∈ (𝑙 , 1) × R+,

𝜕 𝜃1
𝜕 𝑦 (𝑦, 𝜏) = 𝐵 𝑖1∗ 𝜃1(𝑦, 𝜏), 𝑦 = 0, 𝜏 ∈ R+,

𝜕 𝜃2
𝜕 𝑦 (𝑦, 𝜏) = 𝐵 𝑖2∗ 𝜃2(𝑦, 𝜏), 𝑦 = 1, 𝜏 ∈ R+,

𝜃2(𝑦, 𝜏) = 𝜃1(𝑦, 𝜏) + �̄�
𝜕 𝜃1
𝜕 𝑦 (𝑦, 𝜏), 𝑦 = 𝑙 , 𝜏 ∈ R+,

𝜕 𝜃2
𝜕 𝑦 (𝑦, 𝜏) = 𝛾 𝜃1(𝑦, 𝜏) + 𝜎

𝜕 𝜃1
𝜕 𝑦 (𝑦, 𝜏), 𝑦 = 𝑙 , 𝜏 ∈ R+,

𝜃1(𝑦, 𝜏) = 𝜃1,0(𝑦), 𝑦 ∈
[

0, 𝑙
]

, 𝜏 = 0,
𝜃2(𝑦, 𝜏) = 𝜃2,0(𝑦), 𝑦 ∈

[

𝑙 , 1] , 𝜏 = 0,

(7)

where
⎧

⎪

⎨

⎪

⎩

�̄�1𝜃1(𝑦, 𝜏) = �̄�
𝜕2𝜃1
𝜕 𝑦2 (𝑦, 𝜏) − 𝑃 𝑒1

𝜕 𝜃1
𝜕 𝑦 (𝑦, 𝜏) + �̄�1 𝜃1(𝑦, 𝜏),

�̄�2𝜃2(𝑦, 𝜏) =
𝜕2𝜃2
𝜕 𝑦2 (𝑦, 𝜏) − 𝑃 𝑒2

𝜕 𝜃2
𝜕 𝑦 (𝑦, 𝜏) + �̄�2 𝜃2(𝑦, 𝜏)

(8)

and

𝐵 𝑖1∗ =
𝑃 𝑒1
�̄�

+
𝐵 𝑖1
�̄�
, 𝐵 𝑖2∗ = 𝑃 𝑒2−𝐵 𝑖2, 𝛾 = 𝑃 𝑒2−𝑃 𝑒1 �̄��̄� , 𝜎 = �̄�+�̄� 𝑃 𝑒2.

(9)

Then, the advective term is removed from Eq. (8) by applying a sub-
titution that can be interpreted as a change in the coordinate system.
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This transformation effectively shifts the system into a reference frame
moving with the fluid velocity. Similar coordinate system changes have
been used in the literature to address various situations. For instance,
see [45–48]. The proposed substitution in this case is:
{

𝜃1(𝑦, 𝜏) = exp (𝜒1 𝑦
)

𝛩1(𝑦, 𝜏), (𝑦, 𝜏) ∈ [0, 𝑙] × R+,
𝜃2(𝑦, 𝜏) = exp (𝜒2 𝑦

)

𝛩2(𝑦, 𝜏), (𝑦, 𝜏) ∈ [𝑙 , 1] × R+,
(10)

where

𝜒1 =
𝑃 𝑒1
2 �̄�

, 𝜒2 =
𝑃 𝑒2
2
. (11)

The change of variables (10)–(11) is applied to Eqs. (7)–(9) leading to
he following system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕 𝛩1
𝜕 𝜏 (𝑦, 𝜏) = �̄�

𝜕2𝛩1

𝜕 𝑦2 (𝑦, 𝜏) + 𝜓1 𝛩1(𝑦, 𝜏) + �̂�1(𝑦, 𝜏), (𝑦, 𝜏) ∈ (0, 𝑙) × R+,

𝜕 𝛩2
𝜕 𝑡 (𝑦, 𝜏) = 𝜕2𝛩2

𝜕 𝑦2 (𝑦, 𝜏) + 𝜓2 𝛩2(𝑦, 𝜏) + �̂�2(𝑦, 𝜏), (𝑦, 𝜏) ∈ (𝑙 , 1) × R+,

𝜕 𝛩1
𝜕 𝑦 (𝑦, 𝜏) = �̄� 𝑖1 𝛩1(𝑦, 𝜏), 𝑦 = 0, 𝜏 ∈ R+,

𝜕 𝛩2
𝜕 𝑦 (𝑦, 𝜏) = �̄� 𝑖2 𝛩2(𝑦, 𝜏), 𝑦 = 1, 𝜏 ∈ R+,

𝛩2(𝑦, 𝜏) = 𝜙 𝛩1(𝑦, 𝜏) + 𝜇
𝜕 𝛩1
𝜕 𝑦 (𝑦, 𝜏), 𝑦 = 𝑙 , 𝜏 ∈ R+,

𝜕 𝛩2
𝜕 𝑦 (𝑦, 𝜏) = 𝜂 𝛩1(𝑦, 𝜏) + 𝜑

𝜕 𝛩1
𝜕 𝑦 (𝑦, 𝜏), 𝑦 = 𝑙 , 𝜏 ∈ R+,

𝛩1(𝑦, 𝜏) = 𝛩1,0(𝑦), 𝑦 ∈
[

0, 𝑙
]

, 𝜏 = 0,
𝛩2(𝑦, 𝜏) = 𝛩2,0(𝑦), 𝑦 ∈

[

𝑙 , 1] , 𝜏 = 0,

(12)

where

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜓1 = �̄�1 − �̄� 𝜒2
1 , 𝜓2 = �̄�2 − 𝜒2

2 , �̂�1(𝑦, 𝜏) = �̄�1(𝑦, 𝜏) exp
(

−𝜒1 𝑦
)

,
�̂�2(𝑦, 𝜏) = �̄�2(𝑦, 𝜏) exp

(

−𝜒2 𝑦
)

, �̄� 𝑖1 = 𝐵 𝑖1∗ − 𝜒1, �̄� 𝑖2 = 𝐵 𝑖2∗ − 𝜒2,
𝜙 = 𝜉 𝛿 , 𝜇 = 𝜉 �̄�, 𝜂 = 𝜉

(

𝛾 + 𝜎 𝜒1 − 𝛿 𝜒2
)

, 𝜑 = 𝜉
(

𝜎 − �̄� 𝜒2
)

,
𝜉 = exp ( 𝑙 (𝜒1 − 𝜒2)

)

, 𝛿 = 1 + �̄� 𝜒1, 𝛩1,0(𝑦) = 𝜃1,0(𝑦) exp
(

−𝜒1 𝑦
)

,
𝛩2,0(𝑦) = 𝜃2,0(𝑦) exp

(

−𝜒2 𝑦
)

.

(13)

The homogeneous system associated with (12)–(13) is considered,
.e., the source terms �̂�1(𝑦, 𝜏) and �̂�2(𝑦, 𝜏) are excluded. This homoge-
eous system is addressed using the method of separation of variables.
t is assumed that there exist functions 𝑓1,𝑛 ∈ 𝐶2(0, 𝑙), 𝑓2,𝑛 ∈ 𝐶2(𝑙 , 1) and
𝑛 ∈ 𝐶1(0,+∞) such that
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛩𝐻1 (𝑦, 𝜏) =
∞
∑

𝑛=1
𝑓1,𝑛(𝑦) 𝑔𝑛(𝜏), (𝑦, 𝜏) ∈ (0, 𝑙) × R+,

𝛩𝐻2 (𝑦, 𝜏) =
∞
∑

𝑛=1
𝑓2,𝑛(𝑦) 𝑔𝑛(𝜏), (𝑦, 𝜏) ∈ (𝑙 , 1) × R+.

(14)

By substituting (14) into the homogeneous system associated with
12)–(13), it can be shown that 𝑔𝑛(𝜏) = 𝐾𝑛 exp(−𝜆2𝑛 𝜏), where 𝜆𝑛
re the eigenvalues and 𝐾𝑛 is a sequence associated with the initial
emperature value. In addition, the functions 𝑓𝑚,𝑛 for 𝑚 = 1, 2 satisfy
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�̄� 𝑓 ′′
1,𝑛(𝑦) + 𝜓1 𝑓1,𝑛(𝑦) = −𝜆2𝑛 𝑓1,𝑛(𝑦), 𝑦 ∈ (0, 𝑙),

𝑓 ′′
2,𝑛(𝑦) + 𝜓2 𝑓2,𝑛(𝑦) = −𝜆2𝑛 𝑓2,𝑛(𝑦), 𝑦 ∈ (𝑙 , 1),
𝑓 ′
1,𝑛(𝑦) = �̄� 𝑖1 𝑓1,𝑛(𝑦), 𝑦 = 0,
𝑓 ′
2,𝑛(𝑦) = �̄� 𝑖2 𝑓2,𝑛(𝑦), 𝑦 = 1,
𝑓2,𝑛(𝑦) = 𝜙 𝑓1,𝑛(𝑦) + 𝜇 𝑓 ′

1,𝑛(𝑦), 𝑦 = 𝑙 ,
𝑓 ′
2,𝑛(𝑦) = 𝜂 𝑓1,𝑛(𝑦) + 𝜑 𝑓 ′

1,𝑛(𝑦), 𝑦 = 𝑙 ,

(15)

yielding
{

𝑓1,𝑛(𝑦) = 𝐴1,𝑛 cos(𝜔1,𝑛 𝑦) + 𝐵1,𝑛 sin(𝜔1,𝑛 𝑦), 𝑦 ∈ [0, 𝑙],
(16)
𝑓2,𝑛(𝑦) = 𝐴2,𝑛 cos(𝜔2,𝑛 𝑦) + 𝐵2,𝑛 sin(𝜔2,𝑛 𝑦), 𝑦 ∈ [𝑙 , 1].

4 
Then, the solutions of the homogeneous system associated with (12)–
13) are written as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛩𝐻1 (𝑦, 𝜏) =
∞
∑

𝑛=1
𝐾𝑛

[

𝐴1,𝑛 cos(𝜔1,𝑛 𝑦) + 𝐵1,𝑛 sin(𝜔1,𝑛 𝑦)
]

exp(−𝜆2𝑛 𝜏),

𝛩𝐻2 (𝑦, 𝜏) =
∞
∑

𝑛=1
𝐾𝑛

[

𝐴2,𝑛 cos(𝜔2,𝑛 𝑦) + 𝐵2,𝑛 sin(𝜔2,𝑛 𝑦)
]

exp(−𝜆2𝑛 𝜏),

(17)

where 𝜔𝑚,𝑛 with 𝑚 = 1, 2 are the spatial eigenvalues, which are given
by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔1,𝑛 = 𝜔1,𝑛(𝜆𝑛) =
√

𝜆2𝑛 + 𝜓1

�̄�
=

√

𝜆2𝑛 + �̄�1 − �̄� 𝜒2
1

�̄�
=

√

√

√

√𝜆2𝑛 + �̄�1 −
𝑃 𝑒21
4�̄�

�̄�
,

𝜔2,𝑛 = 𝜔2,𝑛(𝜆𝑛) =
√

𝜆2𝑛 + 𝜓2 =
√

𝜆2𝑛 + �̄�2 − 𝜒
2
2 =

√

𝜆2𝑛 + �̄�2 −
𝑃 𝑒22
4 .

(18)

Now, 𝐴𝑚,𝑛, 𝐵𝑚,𝑛 with 𝑚 = 1, 2, and 𝜆𝑛 in (17)–(18) are determined
sing the boundary and interface conditions from (15). Additionally,

it is assumed that the associated homogeneous system has a non-
rivial solution. Algebraic operations are performed and the following
xpressions are obtained 𝐴1,𝑛 = 1, 𝐵1,𝑛 = �̄� 𝑖1

𝜔1,𝑛
, 𝐴2,𝑛 = 𝐴𝑛 and 𝐵2,𝑛 = 𝐵𝑛

here

𝐴𝑛 =
sin(𝜔1,𝑛 𝑙)

cos(𝜔2,𝑛 𝑙)

(

𝜙
�̄� 𝑖1
𝜔1,𝑛

− 𝜇 𝜔1,𝑛

)

+
cos(𝜔1,𝑛 𝑙)

cos(𝜔2,𝑛 𝑙)
(

𝜙 + 𝜇 �̄� 𝑖1
)

− t an(𝜔2,𝑛 𝑙)𝐵𝑛

(19)

and

𝐵𝑛 = sin(𝜔2,𝑛 𝑙)
[

sin(𝜔1,𝑛 𝑙)
(

𝜙
�̄� 𝑖1
𝜔1,𝑛

− 𝜇 𝜔1,𝑛

)

+ cos(𝜔1,𝑛 𝑙)
(

𝜙 + 𝜇 �̄� 𝑖1
)

]

+
cos(𝜔2,𝑛 𝑙)
𝜔2,𝑛

[

sin(𝜔1,𝑛 𝑙)
(

𝜂
�̄� 𝑖1
𝜔1,𝑛

− 𝜑 𝜔1,𝑛

)

+ cos(𝜔1,𝑛 𝑙)
(

𝜂 + 𝜑 �̄� 𝑖1
)

]

.

(20)

The eigenvalues 𝜆𝑛 which are discussed in more detail in Section 4, are
the solutions of the transcendental equation given by:

t an(𝜔2,𝑛) =
𝜔2,𝑛 𝐵𝑛 − �̄� 𝑖2 𝐴𝑛
�̄� 𝑖2 𝐵𝑛 + 𝜔2,𝑛 𝐴𝑛

, (21)

with 𝐴𝑛 and 𝐵𝑛 given by (19) and (20) respectively.
The Fourier method is used to solve the non-homogeneous sys-

tem (12)–(13). It is assumed that two countably infinite sets of time
functions, denoted by 𝐴𝑛(𝜏) and 𝐵𝑛(𝜏) satisfy
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛩1(𝑦, 𝜏) =
∞
∑

𝑛=1
𝐴𝑛(𝜏) 𝑓1,𝑛(𝑦), (𝑦, 𝜏) ∈ [0, 𝑙] × R+,

𝛩2(𝑦, 𝜏) =
∞
∑

𝑛=1
𝐵𝑛(𝜏) 𝑓2,𝑛(𝑦), (𝑦, 𝜏) ∈ [𝑙 , 1] × R+.

(22)

where 𝑓𝑚,𝑛 with 𝑚 = 1, 2 are defined in (16). The source functions
𝑠1(𝑦, 𝜏) and �̂�2(𝑦, 𝜏) in (12) are developed in a series of eigenfunctions.
⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̂�1(𝑦, 𝜏) =
∞
∑

𝑛=1
𝑆1,𝑛(𝜏) 𝑓1,𝑛(𝑦), (𝑦, 𝜏) ∈ [0, 𝑙] × R+,

�̂�2(𝑦, 𝜏) =
∞
∑

𝑛=1
𝑆2,𝑛(𝜏) 𝑓2,𝑛(𝑦), (𝑦, 𝜏) ∈ [𝑙 , 1] × R+,

(23)

where 𝑆1,𝑛(𝜏) and 𝑆2,𝑛(𝜏) are defined as follows

𝑆1,𝑛(𝜏) =
∫

𝑙

0
�̂�1(𝑦, 𝜏) 𝑓1,𝑛(𝑦) 𝑑 𝑦

∫

𝑙

0
𝑓 2
1,𝑛(𝑦) 𝑑 𝑦

, 𝑆2,𝑛(𝜏) =
∫

1

𝑙
�̂�2(𝑦, 𝜏) 𝑓2,𝑛(𝑦) 𝑑 𝑦

∫

1

𝑙
𝑓 2
2,𝑛(𝑦) 𝑑 𝑦

. (24)



G.F. Umbricht et al.

p
z
i

i
c

e

International Journal of Thermal Sciences 208 (2025) 109471 
Fig. 2. Scheme of intersection of the functions 𝑞(𝑥) and 𝑟(𝑥). On the left, for Case 1, and on the right, for Case 2.
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By substituting the expressions (22)–(24) into Eq. (12), we ob-
tain the following countable set of homogeneous ordinary differential
equations:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∞
∑

𝑛=1

[

𝐴𝑛
′(𝜏) + (�̄� 𝜔2

1,𝑛 − 𝜓1)𝐴𝑛(𝜏) − 𝑆1,𝑛(𝜏)
]

= 0,
∞
∑

𝑛=1

[

𝐵𝑛
′(𝜏) + (𝜔2

2,𝑛 − 𝜓2)𝐵𝑛(𝜏) − 𝑆2,𝑛(𝜏)
]

= 0,
(25)

since expansions in eigenfunctions for linear system problems share
roperties with Fourier series, for the series given in (25) to sum to
ero, each term must be zero. This can be addressed through direct
ntegration, leading to:

⎧

⎪

⎨

⎪

⎩

𝐴𝑛(𝜏) = exp
(

(𝜓1 − �̄� 𝜔2
1,𝑛) 𝜏

)

[

𝐾𝑛 + ∫

𝜏

0
𝑆1,𝑛(𝑠) exp

(

(�̄� 𝜔2
1,𝑛 − 𝜓1) 𝑠

)

𝑑 𝑠
]

,

𝐵𝑛(𝜏) = exp
(

(𝜓2 − 𝜔2
2,𝑛) 𝜏

)

[

𝐾𝑛 + ∫

𝜏

0
𝑆2,𝑛(𝑠) exp

(

(𝜔2
2,𝑛 − 𝜓2) 𝑠

)

𝑑 𝑠
]

,

(26)

Only 𝐾𝑛 remains to be determined. This sequence can be found by
mposing the initial conditions of (12) and using the orthogonality
ondition, which will be detailed in Section 5. Thus, we obtain:

𝐾𝑛 =

𝜑 𝜙 − 𝜂 𝜇
�̄� ∫

𝑙

0
𝛩1,0(𝑦) 𝑓1,𝑛(𝑦) 𝑑 𝑦 + ∫

1

𝑙
𝛩2,0(𝑦) 𝑓2,𝑛(𝑦) 𝑑 𝑦

𝜑 𝜙 − 𝜂 𝜇
�̄� ∫

𝑙

0
[𝑓1,𝑛(𝑦)]2 𝑑 𝑦 + ∫

1

𝑙
[𝑓2,𝑛(𝑦)]2 𝑑 𝑦

. (27)

4. Study of eigenvalues

The spatial eigenvalues 𝜔1,𝑛 and 𝜔2,𝑛 directly depend on the tem-
poral eigenvalues 𝜆𝑛. The solution to the problem of interest can be
xpressed as an infinite series based on the principle of superposition.

This principle assumes that the solution set of the transcendental eigen-
value equation is countably infinite, meaning there are infinitely many
solutions 𝜆𝑛 that satisfy the eigenvalue equation.

In this work, only real eigenvalues will be considered, as we assume
that neither overheating nor thermal runaway occurs in the process
under study. In the case of thermal runaway, imaginary eigenvalues
may appear, as discussed in [19].

This section discusses the existence of infinitely many real solutions
𝜆𝑛 to the eigenvalue equation, which is given by:

t an(𝜔2,𝑛) =
𝜔2,𝑛 𝐵𝑛 − �̄� 𝑖2 𝐴𝑛
�̄� 𝑖2 𝐵𝑛 + 𝜔2,𝑛 𝐴𝑛

, (28)

where

𝐴𝑛 =
sin(𝜔1,𝑛 𝑙)

cos(𝜔2,𝑛 𝑙)

(

𝜙
�̄� 𝑖1
𝜔1,𝑛

− 𝜇 𝜔1,𝑛

)

+
cos(𝜔1,𝑛 𝑙)

cos(𝜔2,𝑛 𝑙)
(

𝜙 + 𝜇 �̄� 𝑖1
)

(29)

− t an(𝜔2,𝑛 𝑙)𝐵𝑛,

5 
𝐵𝑛 = sin(𝜔2,𝑛 𝑙)
[

sin(𝜔1,𝑛 𝑙)
(

𝜙
�̄� 𝑖1
𝜔1,𝑛

− 𝜇 𝜔1,𝑛

)

+ cos(𝜔1,𝑛 𝑙)
(

𝜙 + 𝜇 �̄� 𝑖1
)

]

+
cos(𝜔2,𝑛 𝑙)
𝜔2,𝑛

[

sin(𝜔1,𝑛 𝑙)
(

𝜂
�̄� 𝑖1
𝜔1,𝑛

− 𝜑 𝜔1,𝑛

)

+ cos(𝜔1,𝑛 𝑙)
(

𝜂 + 𝜑 �̄� 𝑖1
)

]

,

(30)

with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔1,𝑛 = 𝜔1,𝑛(𝑥) =
√

𝑥2 + 𝜓1
�̄�

=

√

𝑥2 + �̄�1 − �̄� 𝜒2
1

�̄�
=

√

√

√

√𝑥2 + �̄�1 −
𝑃 𝑒21
4�̄�

�̄�
,

𝜔2,𝑛 = 𝜔2,𝑛(𝑥) =
√

𝑥2 + 𝜓2 =
√

𝑥2 + �̄�2 − 𝜒2
2 =

√

𝑥2 + �̄�2 −
𝑃 𝑒22
4

(31)

and

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜓1 = �̄�1 − �̄� 𝜒2
1 , 𝜓2 = �̄�2 − 𝜒2

2 , �̄� 𝑖1 = 𝐵 𝑖1∗ − 𝜒1, �̄� 𝑖2 = 𝐵 𝑖2∗ − 𝜒2,
𝜙 = 𝜉 𝛿 , 𝜇 = 𝜉 �̄�, 𝜂 = 𝜉

(

𝛾 + 𝜎 𝜒1 − 𝛿 𝜒2
)

, 𝜑 = 𝜉
(

𝜎 − �̄� 𝜒2
)

,

𝜉 = exp ( 𝑙 (𝜒1 − 𝜒2)
)

, 𝛿 = 1 + �̄� 𝜒1, 𝜒1 =
𝑃 𝑒1
2 �̄�

, 𝜒2 =
𝑃 𝑒2
2
,

𝐵 𝑖1∗ =
𝑃 𝑒2
�̄�

+
𝐵 𝑖1
�̄�
, 𝐵 𝑖2∗ = 𝑃 𝑒2 − 𝐵 𝑖2, 𝛾 = 𝑃 𝑒2 − 𝑃 𝑒1 �̄��̄� ,

𝜎 = �̄� + �̄� 𝑃 𝑒2, 𝑙 = 𝑙
𝐿
, �̄� = 𝑅

𝐿
, �̄� =

𝛼1
𝛼2
, 𝑃 𝑒𝑚 = 𝐿

𝛼2
𝛽𝑚,

�̄�𝑚 = 𝐿2

𝛼2
𝜈𝑚, �̄� =

𝜅1
𝜅2
, 𝐵 𝑖𝑚 = 𝐿

𝜅2
ℎ𝑚.

(32)

Since the Eqs. (28)–(32) is transcendental, it is not possible to obtain
explicit solutions. Additionally, analytically proving that this equation
has infinitely many solutions in the general case is a difficult task due to
its complexity. However, the existence of such solutions can be verified
numerically for each specific case.

If we denote by:

𝑟(𝑥) = 𝜔2,𝑛(𝑥)𝐵𝑛(𝑥) − �̄� 𝑖2 𝐴𝑛(𝑥)
�̄� 𝑖2 𝐵𝑛(𝑥) + 𝜔2,𝑛(𝑥)𝐴𝑛(𝑥)

, 𝑞(𝑥) = t an(𝜔2,𝑛(𝑥)), (33)

showing that the eigenvalue equation has infinitely many real solutions
reduces to seeing that the functions 𝑟(𝑥) and 𝑞(𝑥) intersect infinitely

any times. As an example, we will observe this in two specific
ases, where the thermal parameters were taken from [49], and the
ther physical parameters are selected to ensure that the heat transfer

problem is meaningful.

Case 1. The heat transfer problem in a Fe–Al bilayer body, is
considered. The parameters used are listed in the following Table 1:

Case 2. The heat transfer problem in a Cu–Pb bilayer body, is
onsidered. The parameters used are listed in the following Table 2:
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Table 1
Physical parameters of case 1.

Parameters Values

𝛼1
(

×104
) [

m2∕s
]

0.20451

𝛼2
(

×104
) [

m2∕s
]

0.84010

𝜅1
[

W∕m ◦C
]

73

𝜅2
[

W∕m ◦C
]

204

𝐿 [m] 1

𝑙 [m] 0.4

ℎ1
[

W∕m2 ◦C
]

12

ℎ2
[

W∕m2 ◦C
]

10

𝛽1
[

m∕s
]

0.001

𝛽2
[

m∕s
]

0.002

𝜈1
[

1∕s
]

10

𝜈2
[

1∕s
]

20
𝑅 [m] 0.05

Table 2
Physical parameters of case 2.

Parameters Values

𝛼1
(

×104
) [

m2∕s
]

1.12530

𝛼2
(

×104
) [

m2∕s
]

0.23673

𝜅1
[

W∕m ◦C
]

386

𝜅2
[

W∕m ◦C
]

35

𝐿 [m] 2

𝑙 [m] 0.8

ℎ1
[

W∕m2 ◦C
]

10

ℎ2
[

W∕m2 ◦C
]

12

𝛽1
[

m∕s
]

0.002

𝛽2
[

m∕s
]

0.001

𝜈1
[

1∕s
]

1

𝜈2
[

1∕s
]

2
𝑅 [m] 0.07

From Fig. 2 the intercessions for 𝜆𝑛 ∈ (−200, 200), can be observed. It
can be inferred, for both cases, that the functions 𝑞(𝑥) and 𝑟(𝑥) intersect
infinitely many times.

5. Study of the orthogonality relationship

In this section, we will derive the orthogonality condition, or princi-
ple, for this problem. This result is necessary to determine the sequence
𝐾𝑛 in (27). As shown in (15) for two indices 𝑛 and 𝑗 the functions 𝑓1,𝑛,
1,𝑗 , 𝑓2,𝑛 and 𝑓2,𝑗 must satisfy the following:
{

�̄� 𝑓 ′′
1,𝑛(𝑦) + 𝜓1 𝑓1,𝑛(𝑦) = −𝜆2𝑛 𝑓1,𝑛(𝑦), 𝑦 ∈ (0, 𝑙),

�̄� 𝑓 ′′
1,𝑗 (𝑦) + 𝜓1 𝑓1,𝑗 (𝑦) = −𝜆2𝑗 𝑓1,𝑗 (𝑦), 𝑦 ∈ (0, 𝑙) (34)

and
{

𝑓 ′′
2,𝑛(𝑦) + 𝜓2 𝑓2,𝑛(𝑦) = −𝜆2𝑛 𝑓2,𝑛(𝑦), 𝑦 ∈ (𝑙 , 1),
𝑓 ′′
2,𝑗 (𝑦) + 𝜓2 𝑓2,𝑗 (𝑦) = −𝜆2𝑗 𝑓2,𝑗 (𝑦), 𝑦 ∈ (𝑙 , 1). (35)

Multiply the first equation of (34) by 𝑓1,𝑗 and the second by 𝑓1,𝑛.
imilarly, multiply the first equation of (35) by 𝑓2,𝑗 and the second by
𝑓2,𝑛. This gives rise to the following expressions:
{

�̄� 𝑓 ′′
1,𝑛(𝑦) 𝑓1,𝑗 (𝑦) + 𝜓1 𝑓1,𝑛(𝑦) 𝑓1,𝑗 (𝑦) = −𝜆2𝑛 𝑓1,𝑛(𝑦) 𝑓1,𝑗 (𝑦), 𝑦 ∈ (0, 𝑙),

�̄� 𝑓 ′′
1,𝑗 (𝑦) 𝑓1,𝑛(𝑦) + 𝜓1 𝑓1,𝑗 (𝑦) 𝑓1,𝑛(𝑦) = −𝜆2𝑗 𝑓1,𝑗 (𝑦) 𝑓1,𝑛(𝑦) 𝑦 ∈ (0, 𝑙),

(36)
𝑅

6 
and
{

𝑓 ′′
2,𝑛(𝑦) 𝑓2,𝑗 (𝑦) + 𝜓2 𝑓2,𝑛(𝑦) 𝑓2,𝑗 (𝑦) = −𝜆2𝑛 𝑓2,𝑛(𝑦) 𝑓2,𝑗 (𝑦), 𝑦 ∈ (𝑙 , 1),
𝑓 ′′
2,𝑗 (𝑦) 𝑓2,𝑛(𝑦) + 𝜓2 𝑓2,𝑗 (𝑦) 𝑓2,𝑛(𝑦) = −𝜆2𝑗 𝑓2,𝑗 (𝑦) 𝑓2,𝑛(𝑦), 𝑦 ∈ (𝑙 , 1). (37)

Subtract the two expressions in (36), and similarly, do the same for
(37), to obtain

⎧

⎪

⎨

⎪

⎩

�̄�
[

𝑓 ′′
1,𝑛(𝑦) 𝑓1,𝑗 (𝑦) − 𝑓 ′′

1,𝑗 (𝑦) 𝑓1,𝑛(𝑦)
]

= (𝜆2𝑗 − 𝜆2𝑛) 𝑓1,𝑛(𝑦) 𝑓1,𝑗 (𝑦), 𝑦 ∈ (0, 𝑙),
𝑓 ′′
2,𝑛(𝑦) 𝑓2,𝑗 (𝑦) − 𝑓 ′′

2,𝑗 (𝑦) 𝑓2,𝑛(𝑦) = (𝜆2𝑗 − 𝜆2𝑛) 𝑓2,𝑛(𝑦) 𝑓2,𝑗 (𝑦), 𝑦 ∈ (𝑙 , 1),

(38)
the equations in (38) are conveniently rewritten, and the first equation
is then multiplied by 𝜑 𝜙 − 𝜂 𝜇

�̄�
.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝜑 𝜙 − 𝜂 𝜇)
[

𝑓 ′
1,𝑛(𝑦) 𝑓1,𝑗 (𝑦) − 𝑓 ′

1,𝑗 (𝑦) 𝑓1,𝑛(𝑦)
]′

=
𝜑 𝜙 − 𝜂 𝜇

�̄�
(𝜆2𝑗 − 𝜆

2
𝑛)

× 𝑓1,𝑛(𝑦)𝑓1,𝑗 (𝑦),
[

𝑓 ′
2,𝑛(𝑦) 𝑓2,𝑗 (𝑦) − 𝑓 ′

2,𝑗 (𝑦) 𝑓2,𝑛(𝑦)
]′

= (𝜆2𝑗 − 𝜆2𝑛) 𝑓2,𝑛(𝑦) 𝑓2,𝑗 (𝑦),

(39)
the equalities are integrated over their respective intervals of definition
and then added. This yields,

(𝜆2𝑗 − 𝜆
2
𝑛)

{

𝜑 𝜙 − 𝜂 𝜇
�̄� ∫

𝑙

0
𝑓1,𝑛(𝑦)𝑓1,𝑗 (𝑦) 𝑑 𝑦 + ∫

1

𝑙
𝑓2,𝑛(𝑦)𝑓2,𝑗 (𝑦) 𝑑 𝑦

}

=(𝜑 𝜙 − 𝜂 𝜇)
[

𝑓 ′
1,𝑛(𝑦) 𝑓1,𝑗 (𝑦) − 𝑓 ′

1,𝑗 (𝑦) 𝑓1,𝑛(𝑦)
]

|

|

|

𝑙

0

+
[

𝑓 ′
2,𝑛(𝑦) 𝑓2,𝑗 (𝑦) − 𝑓 ′

2,𝑗 (𝑦) 𝑓2,𝑛(𝑦)
]

|

|

|

1

𝑙
,

(40)

after performing operations on the term on the right-hand side and
applying the boundary conditions from (15), we obtain:

(𝜆2𝑗 − 𝜆
2
𝑛)

{

𝜑 𝜙 − 𝜂 𝜇
�̄� ∫

𝑙

0
𝑓1,𝑛(𝑦)𝑓1,𝑗 (𝑦) 𝑑 𝑦 + ∫

1

𝑙
𝑓2,𝑛(𝑦)𝑓2,𝑗 (𝑦) 𝑑 𝑦

}

=(𝜑 𝜙 − 𝜂 𝜇)
[

𝑓 ′
1,𝑛(𝑙) 𝑓1,𝑗 (𝑙) − 𝑓 ′

1,𝑗 (𝑙) 𝑓1,𝑛(𝑙)
]

+
[

𝑓 ′
2,𝑗 (𝑙) 𝑓2,𝑛(𝑙) − 𝑓 ′

2,𝑛(𝑙) 𝑓2,𝑗 (𝑙)
]

,

(41)
From the interface conditions of (15), it follows

(𝜆2𝑗 − 𝜆
2
𝑛)

{

𝜑 𝜙 − 𝜂 𝜇
�̄� ∫

𝑙

0
𝑓1,𝑛(𝑦)𝑓1,𝑗 (𝑦) 𝑑 𝑦 + ∫

1

𝑙
𝑓2,𝑛(𝑦)𝑓2,𝑗 (𝑦) 𝑑 𝑦

}

=(𝜑 𝜙 − 𝜂 𝜇)
[

𝑓 ′
1,𝑛(𝑙) 𝑓1,𝑗 (𝑙) − 𝑓 ′

1,𝑗 (𝑙) 𝑓1,𝑛(𝑙)
]

−
[

(𝜂 𝑓1,𝑛(𝑙) + 𝜑 𝑓 ′
1,𝑛(𝑙)) (𝜙 𝑓1,𝑗 (𝑙) + 𝜇 𝑓 ′

1,𝑗 (𝑙))
]

(𝜂 𝑓1,𝑗 (𝑙) + 𝜑 𝑓 ′
1,𝑗 (𝑙)) (𝜙 𝑓1,𝑛(𝑙) + 𝜇 𝑓 ′

1,𝑛(𝑙)).

(42)

By performing algebraic operations, the orthogonality condition is
obtained. For 𝑛 ≠ 𝑗 it holds that

(𝜆2𝑗 − 𝜆
2
𝑛)

{

𝜑 𝜙 − 𝜂 𝜇
�̄� ∫

𝑙

0
𝑓1,𝑛(𝑦)𝑓1,𝑗 (𝑦) 𝑑 𝑦 + ∫

1

𝑙
𝑓2,𝑛(𝑦)𝑓2,𝑗 (𝑦) 𝑑 𝑦

}

= 0.

(43)

6. Consistency of the solution

There are several ways to analyze the consistency of the solution
obtained with those found in the literature. In [19] the authors consider
 situation similar to the one addressed here, but with simpler char-
cteristics that are of special interest for this analysis. In that article,
xternal heat sources are neglected, and thermal contact resistance
t the interface is not considered. We aim to verify that under these
ssumptions, both solutions are equivalent.

In this case, with no external heat sources, we have 𝑠1 = 𝑠2 = 0.
urthermore, since the thermal resistance at the interface is neglected,
= 0.
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Given that the external sources are zero (𝑠1 = 𝑠2 = 0), the problem
reduces to solving the associated homogeneous system given by:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛩𝐻1 (𝑦, 𝜏) =
∞
∑

𝑛=1
𝐾𝑛

[

𝐴1,𝑛 cos(𝜔1,𝑛 𝑦) + 𝐵1,𝑛 sin(𝜔1,𝑛 𝑦)
]

exp(−𝜆2𝑛 𝜏),

𝛩𝐻2 (𝑦, 𝜏) =
∞
∑

𝑛=1
𝐾𝑛

[

𝐴2,𝑛 cos(𝜔2,𝑛 𝑦) + 𝐵2,𝑛 sin(𝜔2,𝑛 𝑦)
]

exp(−𝜆2𝑛 𝜏),
(44)

where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜔1,𝑛 = 𝜔1,𝑛(𝜆𝑛) =
√

𝜆2𝑛 + 𝜓1

�̄�
=

√

𝜆2𝑛 + �̄�1 − �̄� 𝜒2
1

�̄�
=

√

√

√

√𝜆2𝑛 + �̄�1 −
𝑃 𝑒21
4�̄�

�̄�
,

𝜔2,𝑛 = 𝜔2,𝑛(𝜆𝑛) =
√

𝜆2𝑛 + 𝜓2 =
√

𝜆2𝑛 + �̄�2 − 𝜒
2
2 =

√

𝜆2𝑛 + �̄�2 −
𝑃 𝑒22
4 .

(45)
which 𝐴1,𝑛 = 1, 𝐵1,𝑛 =

�̄� 𝑖1
𝜔1,𝑛

, 𝐴2,𝑛 = 𝐴𝑛 and 𝐵2,𝑛 = 𝐵𝑛 where

𝐴𝑛 =
sin(𝜔1,𝑛 𝑙)

cos(𝜔2,𝑛 𝑙)

(

𝜙
�̄� 𝑖1
𝜔1,𝑛

− 𝜇 𝜔1,𝑛

)

+
cos(𝜔1,𝑛 𝑙)

cos(𝜔2,𝑛 𝑙)
(

𝜙 + 𝜇 �̄� 𝑖1
)

− t an(𝜔2,𝑛 𝑙)𝐵𝑛

(46)

and

𝐵𝑛 = sin(𝜔2,𝑛 𝑙)
[

sin(𝜔1,𝑛 𝑙)
(

𝜙
�̄� 𝑖1
𝜔1,𝑛

− 𝜇 𝜔1,𝑛

)

+ cos(𝜔1,𝑛 𝑙)
(

𝜙 + 𝜇 �̄� 𝑖1
)

]

+
cos(𝜔2,𝑛 𝑙)
𝜔2,𝑛

[

sin(𝜔1,𝑛 𝑙)
(

𝜂
�̄� 𝑖1
𝜔1,𝑛

− 𝜑 𝜔1,𝑛

)

+ cos(𝜔1,𝑛 𝑙)
(

𝜂 + 𝜑 �̄� 𝑖1
)

]

.

(47)
The eigenvalues 𝜆𝑛 are the infinitely many solutions to the following
equation

t an(𝜔2,𝑛) =
𝜔2,𝑛 𝐵𝑛 − �̄� 𝑖2 𝐴𝑛
�̄� 𝑖2 𝐵𝑛 + 𝜔2,𝑛 𝐴𝑛

. (48)

Finally, 𝐾𝑛 is determined from the initial conditions using the orthog-
nality principle discussed in Section 5.

𝐾𝑛 =

𝜑 𝜙 − 𝜂 𝜇
�̄� ∫

𝑙

0
𝛩1,0(𝑦) 𝑓1,𝑛(𝑦) 𝑑 𝑦 + ∫

1

𝑙
𝛩2,0(𝑦) 𝑓2,𝑛(𝑦) 𝑑 𝑦

𝜑 𝜙 − 𝜂 𝜇
�̄� ∫

𝑙

0
[𝑓1,𝑛(𝑦)]2 𝑑 𝑦 + ∫

1

𝑙
[𝑓2,𝑛(𝑦)]2 𝑑 𝑦

. (49)

The only remaining step is to impose the absence of contact resistance
t the interface. To achieve this, we need to evaluate the Eqs. (44)–(49)
ith 𝑅 = 0. The parameters affected by these changes are:

𝜙 = 𝜉 , 𝜇 = 0, 𝜑 = 𝜉 �̄� 𝜂 = 𝜉
(

𝛾 + �̄� 𝜒1 − 𝜒2
)

. (50)
In summary, when we examine the solution (derived in this article)
or the specific case of transient heat transfer with no thermal sources
nd neglecting contact resistance at the interface, it is found that the

solution satisfies the conditions provided by the authors in [19].

7. Numerical modeling

The analytical solution of such problems involves a significant
numerical burden, making it complex to obtain temperature profiles
for specific cases. Consequently, these problems are often modeled
using numerical methods that facilitate graphing different temperature
rofiles and extracting relevant information.

The finite difference method is frequently employed for evolution-
ary heat transfer problems. In the context of multilayer bodies, handling
the junction between different materials can be challenging, especially
when temperature continuity is not maintained. Some authors have
addressed this issue by introducing virtual or artificial layers; see, for
example, [1].

In this work, we propose an explicit second-order finite difference
ethod, using a forward scheme in time and a centered scheme in

pace, with specific adaptations at the boundaries and interface. At
he right boundary, we apply backward differences, while at the left
7 
boundary, we use forward differences. For the interface, the approach
involves forward or backward differences depending on whether the
material to the left or right is considered. Specifically, the first-order
discretization at the interface is given by:
𝜕 𝑇1
𝜕 𝑥 (𝑙 , 𝑡) = 1

𝛥𝑥

(

𝑇 1
𝑛𝑙 ,𝑗

− 𝑇 1
𝑛𝑙−1,𝑗

)

,
𝜕 𝑇2
𝜕 𝑥 (𝑙 , 𝑡) = 1

𝛥𝑥

(

𝑇 2
𝑛𝑙+1,𝑗

− 𝑇 2
𝑛𝑙 ,𝑗

)

.

(51)

In order to implement the numerical method, two uniform 2D partitions
are defined in the spatial variable 𝑥 and the time variable 𝑡 as a discrete
et  that satisfies:
{

1 = {(𝑥𝑖, 𝑡𝑗 )∕ 𝑖 = 1, 2,… , 𝑛𝑙; 𝑗 = 1, 2,… , 𝐽 ; 𝑥𝑖 ∈ 1
𝑥 , 𝑡𝑗 ∈ 𝑡},

2 = {(𝑥𝑖, 𝑡𝑗 )∕ 𝑖 = 𝑛𝑙 , 𝑛𝑙+1,… , 𝑛𝐿; 𝑗 = 1, 2,… , 𝐽 ; 𝑥𝑖 ∈ 2
𝑥 , 𝑡𝑗 ∈ 𝑡},

(52)

where
{

1
𝑥 = {𝑥1 < ⋯ < 𝑥𝑖 <⋯ < 𝑥𝑛𝑙 , 𝑥𝑖 = (𝑖 − 1)𝛥𝑥, 𝑖 = 1, 2,… , 𝑛𝑙}

2
𝑥 = {𝑥𝑛𝑙 <⋯ < 𝑥𝑖 <⋯ < 𝑥𝑛𝐿 , 𝑥𝑖 = (𝑖 − 1)𝛥𝑥, 𝑖 = 𝑛𝑙 , 𝑛𝑙+1,… , 𝑛𝐿}

(53)

and

𝑡 = {𝑡1 < 𝑡2 <⋯ < 𝑡𝑗 < ⋯ < 𝑡𝑀 , 𝑡𝑗 = (𝑗 − 1)𝛥𝑡, 𝑗 = 1, 2,… , 𝐽}. (54)

Specifically,  𝑖
𝑥 with 𝑖 = 1, 2 denotes the partition of the spatial

variable 𝑥 associated with 𝑇𝑖, while 𝑡 denotes the corresponding
partition associated with the time variable 𝑡. The values of 𝛥𝑥 and
𝛥𝑡 correspond to the spatial and temporal discretization steps, respec-
tively. These values are numerically determined and defined on an
equidistant (uniform) grid as 𝛥𝑥 = 𝑥𝑖 − 𝑥𝑖−1 and 𝛥𝑡 = 𝑡𝑗 − 𝑡𝑗−1.

To find the numerical solution to the heat transfer problem under
study, Eqs. (1)–(5) are discretized according to this scheme. Conse-
quently, the following algebraic system can be derived:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑇 1
𝑖,𝑗+1 = 𝜁11 𝑇 1

𝑖+1,𝑗 + 𝜁12 𝑇
1
𝑖,𝑗

+𝜁13 𝑇 1
𝑖−1,𝑗 + 𝑃

1
𝑖,𝑗 , 𝑖 = 2,… , 𝑛𝑙−1, 𝑗 = 2,… , 𝐽 ,

𝑇 2
𝑖,𝑗+1 = 𝜁21 𝑇 2

𝑖+1,𝑗 + 𝜁22 𝑇
2
𝑖,𝑗

+𝜁23 𝑇 2
𝑖−1,𝑗 + 𝑃

2
𝑖,𝑗 , 𝑖 = 𝑛𝑙+1,… , 𝑛𝐿−1, 𝑗 = 2,… , 𝐽 ,

𝑇 1
𝑖,𝑗 = 𝑇 1

𝑖 , 𝑖 = 1, 2,… , 𝑛𝑙 , 𝑗 = 1,
𝑇 2
𝑖,𝑗 = 𝑇 2

𝑖 , 𝑖 = 𝑛𝑙 ,… , 𝑛𝐿, 𝑗 = 1,
𝑇 1
𝑖,𝑗 = 𝜖1 𝑇 1

𝑖+1,𝑗 , 𝑖 = 1, 𝑗 = 2,… , 𝐽 ,
𝑇 2
𝑖,𝑗 = 𝜖2 𝑇 2

𝑖−1,𝑗 , 𝑖 = 𝑛𝐿, 𝑗 = 2,… , 𝐽 ,
𝑇 1
𝑖,𝑗 = 𝜐11𝑇 1

𝑖−1,𝑗 + 𝜐12𝑇
2
𝑖+1,𝑗 , 𝑖 = 𝑛𝑙 , 𝑗 = 2,… , 𝐽 ,

𝑇 2
𝑖,𝑗 = 𝜐21𝑇 1

𝑖−1,𝑗 + 𝜐22𝑇
2
𝑖+1,𝑗 , 𝑖 = 𝑛𝑙 , 𝑗 = 2,… , 𝐽 ,

(55)

where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜁11 =
𝛼1 𝛥𝑡
(𝛥𝑥)2

−
𝛽1 𝛥𝑡
2𝛥𝑥

, 𝜁12 = 1 − 2 𝛼1 𝛥𝑡
(𝛥𝑥)2

+ 𝜈1 𝛥𝑡, 𝜁13 =
𝛼1 𝛥𝑡
(𝛥𝑥)2

+
𝛽1 𝛥𝑡
2𝛥𝑥

,

𝜁21 =
𝛼2 𝛥𝑡
(𝛥𝑥)2

−
𝛽2 𝛥𝑡
2𝛥𝑥

, 𝜁22 = 1 − 2 𝛼2 𝛥𝑡
(𝛥𝑥)2

+ 𝜈2 𝛥𝑡, 𝜁23 =
𝛼2 𝛥𝑡
(𝛥𝑥)2

+
𝛽2 𝛥𝑡
2𝛥𝑥

,

𝑃 1
𝑖,𝑗 = 𝑠1𝑖,𝑗 𝛥𝑡, 𝑃 2

𝑖,𝑗 = 𝑠2𝑖,𝑗 𝛥𝑡, 𝜖1 =
1

1 + 𝛥𝑥 𝛱1
, 𝜖2 =

1
1 − 𝛥𝑥 𝛱2

,

𝛱1 =
𝛽1
𝛼1

+
ℎ1
𝜅1
, 𝛱2 =

𝛽2
𝛼2

−
ℎ2
𝜅2
, 𝜐11 =

𝜅1 + 𝜅2𝛺 𝑍2
𝛬

, 𝜐12 =
𝜅2
𝛬
,

𝜐21 =
𝜅1 (𝛺 + 1) − 𝜅1𝛺 𝑍1

𝛬
, 𝜐22 =

𝜅2 (𝛺 + 1)
𝛬

,

𝛬 = 𝜅1𝑍1 + 𝜅2𝑍2 (𝛺 + 1),
𝛺 = 𝑅

𝛥𝑥
, 𝑍1 = 1 − 𝛽1

𝛼1
𝛥𝑥, 𝑍2 = 1 + 𝛽2

𝛼2
𝛥𝑥.

(56)
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Fig. 3. Heat source.
Table 3
Thermal properties of different materials.

Materials Symbol 𝛼2
(

×104
) [

m2∕s
]

𝜅
[

W∕m ◦C
]

Lead Pb 0.23673 35
Iron Fe 0.20451 73
Nickel Ni 0.22663 90
Aluminium Al 0.84010 204
Copper Cu 1.12530 386
Silver Ag 1.70140 419

The convergence and stability conditions of this method are docu-
mented in the literature [50]. For the problem addressed here, these
conditions take the form:
(

𝛽1 𝛥𝑡
2𝛥𝑥

)2
< 2

𝛼1 𝛥𝑡
(𝛥𝑥)2

< 1,
(

𝛽2 𝛥𝑡
2𝛥𝑥

)2
< 2

𝛼2 𝛥𝑡
(𝛥𝑥)2

< 1. (57)

Under these conditions, it is guaranteed a precision of first order in
time and of second order in space for the algebraic problem (55)–(56).

8. Numerical example

To perform the numerical example, a non-parallel computational
scheme is implemented in MATLAB. The simulated results are obtained
within few minutes using an Intel(R) Core(TM) i7-6700K 4 GHz pro-
cessor. In all cases, it is assumed that the dissipative fluid is air at
normal pressure. The convective heat transfer coefficients ℎ1 and ℎ2
are determined according to [51], and the thermal parameters of the
materials are taken from [49] and summarized in Table 3.

Example 1. For this example, the following parameters are consid-
ered: 𝐿 = 1 m, 𝑙 = 0.4 m, 𝑡∞ = 72 000 s = 20 h, 𝛽1 = 𝛽2 = 0.02 m∕s,
𝜈1 = 𝜈2 = −0.0003 1∕s, 𝑅 = 0.05 m.

The initial conditions are 𝑇1,0(𝑥) = 𝑇2,0(𝑥) = 0 and the heat
generation source 𝑠(𝑥, 𝑡) is a continuous and differentiable function
given by:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑠1(𝑥, 𝑡) = 25
𝑙 𝑇 2

◦C
m s 𝑥 (𝑥 − 𝑙) 𝑡 (𝑡 − 𝑡∞), (𝑥, 𝑡) ∈ [0, 𝑙] × [0, 𝑡∞],

𝑠2(𝑥, 𝑡) = 25
(𝐿 − 𝑙) 𝑇 2

◦C
m s (𝑥 − 𝑙)

× (𝑥 − 𝐿) 𝑡 (𝑡 − 𝑡∞), (𝑥, 𝑡) ∈ [𝑙 , 𝐿] × [0, 𝑡∞].

(58)

The thermal source acting on the body is of fundamental importance
as it directly affects the functional form of the temperature profiles.
The source given by (58) is an interesting function because it models
heating that originates from the center of each layer and decreases
towards the edges, where heat generation is zero. In Fig. 3, it can be
observed that the maximum heating rate in the first layer is 0.5 ◦C∕s
and in the second layer, it is approximately 0.90 ◦C∕s. These maximum
8 
heat generation sources occur at 𝑥 = 0.2 m, 𝑡 = 10 h for the first layer
and at 𝑥 = 0.7 m, 𝑡 = 10 h for the second layer.

Fig. 4 shows the temperature difference at the interface due to the
thermal jump. On the left, the difference profiles for Pb −𝑀 𝑎𝑡𝑒𝑟𝑖𝑎𝑙 are
plotted, while the difference profiles for 𝑀 𝑎𝑡𝑒𝑟𝑖𝑎𝑙− Fe are shown on the
right. Different materials are considered in both cases. Note that in most
cases, this difference is positive, which results from the relationship
between the thermal diffusivities. Additionally, in all cases, it can be
observed that the maximum temperature difference occurs at 𝑡 = 10 h.

Fig. 5 shows the spatial temperature profiles for 𝑡 = 10 h, where the
temperature function is defined by:

𝑇 (𝑥, 𝑡) =
{

𝑇1(𝑥, 𝑡), (𝑥, 𝑡) ∈ [0, 𝑙] × [0, 𝑡∞],
𝑇2(𝑥, 𝑡), (𝑥, 𝑡) ∈ [𝑙 , 𝐿] × [0, 𝑡∞].

(59)

On the left, the spatial temperature profiles for Pb −𝑀 𝑎𝑡𝑒𝑟𝑖𝑎𝑙 are
plotted, while on the right, the corresponding profiles for 𝑀 𝑎𝑡𝑒𝑟𝑖𝑎𝑙 −
Fe are shown. In both situations, temperature discontinuities at the
interface are observed; these discontinuities increase as the differences
in thermal conductivity and diffusivity become larger. This observation
aligns with the physics of the problem.

As an example, Fig. 6 shows the space–time temperature function
for an Ag − Cu body. It is observed that the maximum temperature
slightly exceeds 160 ◦C and the temperature discontinuity is located at
𝑥 = 0.4 m, becoming more noticeable around 𝑡 = 10 h.

Finally, Fig. 7 shows the spatial profile of the temperature difference
at the interface for a Pb − Ag body with different values of thermal
resistance. It can be seen that the temperature difference increases as
the resistance value rises. Additionally, the difference becomes more
pronounced at 𝑡 = 10 h.

Note 2. Since a stable and convergent numerical scheme is employed
with an appropriate integration step, as demonstrated in the literature,
similar configurations will indeed yield analogous results.

Note 3. The results presented in this article are applicable to any type
of material, provided that the specified conditions and assumptions are
upheld. This applicability is due to the fact that both the analytical
and numerical solutions depend solely on the thermal conductivity and
diffusivity coefficients of the materials.

9. Conclusions

This paper presents a theoretical analysis of a one-dimensional heat
transfer problem in a two-layer body. The analysis includes diffusion,
advection, internal heat generation or loss that varies linearly with
temperature in each layer, and heat generation from external sources.
Additionally, the thermal resistance at the interface between the two
materials is considered.
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Fig. 4. Temperature difference between the layers (interface), Pb −𝑀 𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (left) and 𝑀 𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − Fe (right) for different materials.
Fig. 5. Temperature for 𝑡 = 10 h, Pb −𝑀 𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (left) and 𝑀 𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − Fe (right).
Fig. 6. Temperature distribution for Ag − Cu.
Fig. 7. Distribution of temperature differences at the interface for Pb − Ag considering different thermal resistances.
9 
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An analytical solution to the problem is derived using dimension-
ess variable transformations, differential equation techniques such as

separation of variables, Fourier methods, and the principle of super-
position. The analysis reveals that the associated eigenvalue equation
has infinitely many solutions and the orthogonality condition is estab-
lished. The analytical solution is shown to be consistent with previous
literature for simpler cases, validating the approach used in this study.

Furthermore, a convergent finite difference method is proposed,
ncorporating a specialized treatment at the interface which results in
 mixed finite difference scheme. This method effectively models the

problem, offering valuable insights into temperature profiles and mate-
rial behavior under varying conditions. The numerical results obtained
align with the physical expectations of the problem. Specifically, the
space–time temperature profiles exhibit a functional form similar to
hat of the source, and the behavior of different materials is consistent
o their diffusivity and thermal conductivity: more diffusive materials
xhibit a more rapid increase in temperature, while materials with
igher thermal conductivity achieve higher temperatures.
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