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ON THE FREE BOUNDARY PROBLEM IN
THE WEN-LANGMUIR SHRINKING CORE MODEL
FOR NONCATALYTIC GAS-SOLID REACTIONS*

Domingo A. Tarzia** Luis T. Villa***

SOMMARIO. Si dimostra un risultato locale di esistenza
e unicitd della soluzione di un problema con frontiera libera
per il modello del nucleo in contrazione in reazioni gas-
solido non catalitiche. Le condizioni sulla frontiera libera
sono del tipo

u, (s(2), £) = g(u(s(t), 1)), 0<t<T,
5(0) = flu(s(t), 1)),
con funzioni f e g generali soddisfacenti le ipotesi
g0)=0,

f(0)=0.

0<t<T,

g<o
>0

g <0,
>0,

Le condizioni di Wen e di Langmuir, che sono date rispet-
tivamente da f(x) = — g(x) = x"(n > 0) e da fix) = —g(x) =
=ax" /(b + cx") (a, b, c, n > 0), rientrano entrambe
nel presente schema,

SUMMARY. We prove a local result in time for the existence
and uniqueness of the solution of the free boundary problem
in the shrinking core model for noncatalytic gas-solid reac-

tions. We impose free boundary conditions of the type
u (s(2), 1) = glu(s(s), 1), 0<t<T,
5(8) = flu(s(D), 1)), 0<t<T,

with general functions g and f which satisfy the assumptio‘ns
£<0, g'<0, g(0) = 0,
>0, >0, f0)=0.

The Wen and Langmuir conditions are given by, fix) =
=—glx)=x"(n>0)and fix) = —glx) =ax™ /(b + cx")
(a, b, ¢, n > 0) respectively, which both fulfill the above
_assumptions,

I. INTRODUCTION

In this article we shall analyze a mathematical model of
an isothermal monocatalytic diffusion-reaction process of
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a gas A with a solid slab S. The solid has a very low permeabi-
lity and semi-thickness R along the gas diffusion direction.

Since 1960, various devices and models, either phenome-
nological or structural, have been proposed and analyzed
with the purpose of interpreting gas-solid reaction process
[14,7,8,13-16, 18-25,27, 28].

In the present paper, we assume the solid is chemically
attacked from the surface y = R with a quick and irreversible
reaction of order v > 0 with respect to the gas 4 and zero
order with respect to the solid S. We also assume that the
solid has uniform and constant composition.

As a result of the chemical reaction an inert layer is
formed which is permeable to the gas and the process will
exhibit a free boundary (the reaction front) as described
in [28]. The corresponding mathematical scheme (Wen’s
model) is formulated as follows: Find the gas concentration
C‘4 = CA (¥, 7) and the free boundary y = a(7) such that

aC, acC,

— =D -— ,0(r)<y <R, 1, <7< Tis

ot oy

CR,T)=V(1), T, <7<7T,,

aC,
D . (o(r), 1) =k aCg Cy(o(7),7), 7, <7 <7,
y

0))
aC, .
-D T (o(r),r)=aCS° o (1), T, <7 <17,
Y

o(ry) =R, <R,
C,y,19)=2(), Ry <y<R,

where a, Cs,' D, ks and e are positive constants denoting the
stoichiometric coefficient, the reactant solid concentration,
the effective gas diffusion coefficient in the porous layer,
the chemical reaction velocity, and the porosity of the
inert layer, respectively. We are assuming that at the time
T, @ porous layer of nonzero thickness R — R0 is already
formed and this explains the initial conditions (1 5), (1)
The gas concentration is prescribed at the outer surface
by condition (12). On the free boundary y = o(7) (13)
expresses the equality of the rate of mass consumption of
the component 4 in the reaction (r.h.s.) and the incoming
mass flux of the same component (Lh.s.). Equation (1 4)
states the same balance in terms of the free boundary velo-
city, since — a Cs,, 6(7) is again the rate of mass consump-
tion of the gas.

In the sequel the notation (I — n) will indicate formula
(n) of Section I.

If the following dimensionless variables and parameters
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are introduced;

x=C1—_R_ ’ t=C2(T—To)’

R —o(1)
s(t) = CIT, T=Cy(r, — 7y),
2)
t
u(x, t)= C3CA(y, T), vo(t)= C3 V0 (To + -(,T) ,
2
Rx R -R,
¥Yx)=C; $|{R——]|, b=C, ,
C, R
with
¢’ a
C,=—" 6= ,
1 o1 3 ¢CA.
_kCy K @Gy
2 2v-1 2v-1 ’
Ra De
3)
Rk aCg C;‘l
¢=—° "2 (Thiele reaction modulus),
. €R K, C;. _ eCA°¢
D a CS°
where CA denotes a reference concentration of the gas,

then probloem (1) is transformed into

U, —u, =0 mDT,

u(0,1)=v,(t), 0<t<T,
u (s(0), ) =—u"(s(0),1), 0< t<T, “)
u (s(t),t)=—s5@), 0<t<T,

s(0) = b,

u(x, 0)=¥(x), 0< x<b,

where

DT={(x, N/0<x<s(t), 0<t<T}. )

From now on we shall consider b = 0 and v,(t) =v, >0
and more general free boundary conditions on x = s(¢)
are introduced. Then, the mathematical formulation of the
problem consists in finding the functions u = u(x, t) and
x = s(¢) defined in D, and (0, T) respectively, such that
they satisfy the following conditions

i) U, —u, =0 in DT,
i) u(0,1)=vy,>0,0<t<T,
iii) s(0)=0, 6)
iv) u (s(2), 1) = g(u(s(t), 1), 0<t<T,
v) $(2) = flu@s(t), 1)), 0<t<T,
where f and g are real functions which satisfy
i) />0, f'>0in R*
i) g<0, £<0 in R*

and f{0) =0,
and g(0) = 0.

(72)
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Functions f and g may be defined in IR but we are only in-
terested in positive arguments of them as it will be seen below.

Moreover, we shall assume that fand g are Lipschitz func-
tions in '[”0 /12, vol with constants f0 and g, respectively, i.e.

1) 3f0 >0 /If(uz)_f(vl)|<folu2 “vll,

Yo
Vvl,02€ —2—,00 )

. (7v)
i) 3g,>0 /|g(v,)—8W,)|<g|v,—v,|,
vy ‘J
Y, ,u, €1—, v |.
1’72 [ 2’0
We remark hefe that functions f and g, defined b};
gx)=—x"(=—flx)) x>0,v>0) w)

satisfy conditions (7ai, ii).

A different choiche of g in (6iv) is considered in [8]. It isa
Langmuir type condition: the chemical reaction rate is given
by

ax"
gx)=— ——— (=—f(x)), a, b, c = const. >0, n>0(L)
b+ cx"
which also verifies conditions (7aii) for all constants a, b,
¢, n > 0. We remark here that the (L) condition reduces
to a (W) condition when ¢ = 0.

In §II we study an auxiliary moving boundary problem
which will be used in § III. We generalize the results obtained
in [11, 12] changing the nonlinear condition on the fixed
face x = 0 by other one on the moving boundary x = s(t),
given by (6iv).

In §III we study the Wen-Langmuir free boundary model
for noncatalytic gas-solid reactions that consists in finding
T > 0,x = s(t) and u = u(x, t) such that they satisfy condi-
tions (6). We prove that there exists a unique solution for a
sufficiently small T > 0. Moreover, the solution is given
through the unique fixed point, in an adequate Banach
space, of the following contraction operator F,: For s =
= s(t) € C° ([0, T]) we define

t
Fy(s) (1) = f f(s(r), 7)) dr ®)
0

where v is the solution of problem (6i-iv).
Here we exploit some techniques recently used in
10, 17] for sorption of swelling solvents in polymers.

[6’ 9’

We remark that in general, in gas-solid system for reaction-
diffusion process, the gas surface concentration CA (o(1), 7)
is supposed to be much smaller than C, , the concentration
of the reactant solid. So that, in the right hand side of the
fourth condition in (1), the term a CA (o(7), 7)d(t) has
been considered to be negligible with respect to a C,. o(r).
The preceding consideration does not apply, in general,
to processessuch assorptionof swelling solvents in poly-
mers and this fact leads to a principal difference between
the latter problem and one we are concerned with (Wen’s
model).
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II. A HEAT CONDUCTION PROBLEM WITH A NON-
LINEAR CONDITION ON THE MOVING BOUNDARY

For each Lipschitz continuous function s = s(t), defined
in [0, T] with s(0) = b > 0, we consider the following moving
boundary problem: Find the function v = v(x, ¢) such that
it satisfies
a) (I-6i, ii, iv),
b)u(x, 0) = ¥(x),

¢))
0<x <b=s(0).

For a solution of this problem we mean a function v =
= u(x, t), continuous in 57 with the derivatives v, and
v, continuous in DT that satisfies conditions (1) for a given
T > 0. For the sake of completeness we shall prove the
following.

THEOREM II-1: Under the hypotheses
AL>0/|s(t)—s(r)|<L|t—7]|, V&, T €[0,T],

(2i)

0<a, <s()<4,, Vt€[0,T],
YECU([0,b]), W(O)=y,©), ¥>O0in [0,8], (5
V'eC[b—¢ b]) fora €>0, with¥'(h)<0,
g = g(v) is a strictly decreasing function in R* which (2iii)
verifies (I-7 bii) and g(0) =0,
v, €CY([0, T]),v, >0 in [0,T],

0 € 0 Qiv)

Max uo(t)_ = Max ¥(x)
t€[0,T] x€[0,b]
there exists a unique solution of the problem
a) (I-6i, iv), (1b), 3)

b)v(0,) =v,(t), O0<t<T.

Proof: We follow a classical fixed point argument.
a) First, we consider an a priori estimate for the solution v
of problem (3):

0 , M in D_.
<ulx, 1)< ‘E[g’);] vo(t) in DT 4

We obtain the right hand side inequality of (4) because
of the maximum principle and g < 0.

We prove v > 0 in DT by absurd. Let T, > 0 be the first .

time such that v(s(T 0 ), T o) = 0. Therefore, we have v, (s(T, 0 ),
T 0) < 0 by the maximum principle which is a contradiction
because v, (s(T), T;)) = g((s(T, ), T, ))=g(0)=0.

b) Uniqueness . It follows from the maximum principle
and from (2iii).

c) Existence. Following the methods given in [12], and
under the hypotheses (2i-iv) we have that for each given
function h = h(t) € C([0, T]) with & > 0 and g(h(0)) =
= W¥'(b), there exists a unique solution v of the associate
moving boundary problem

(161, 1b, 3b), v (s(2),#) =gh(s)) =H(t), 0<t<T.

This solution v is given by the following expression
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b t
u(x, t)=f Y(§) K(x, ¢t £,0) dE+j 9, (1) 5)
0

0

t
K, (x,t0,7)dr +f ¢, (7) K(x, t; s(r), 1) dr
0

where
KGx, 1 £,7) : bl )
X, L ET)= ————exp {— , > 6
2Vt — 1) e -1 ’

is the fundamental solution of the heat equation, and %,
and ¢, satisfy the following system of two second kind
Volterra integral equations

t
l) ¢l (’)=/ Kl2(t’ T) ¢2(T) dr +f1 (t)a
0

t t @
ii) ¢2(t)=f K21(t, T) ¢,(7) dr + / K22(t, 7)
0 0
6,(7) dr +£,(t)
where
b
) f(0=-2 vo(t)+2f w(§) K(0,¢ &,0)dE,
0
b
ii) fz(t)=2H(t)—2j W) K, (s(1), 1 €, 0)dE,
0
iii) Kn(t, 7)=2K(0, ¢ s(r),7), (8)

iv) K21 t1r)=-2 Kxx(s(t), $;0,7),
v) K22 tr)=-2 Kx(s(t), t;s(1), 7).

The kernels Ki/ = Ki/(t, 7 ) and the function f, = f, (#)
are continuous in 0 < 7 < ¢ < T and in [0, T] respectively.
The second term of the righ hand side of (8ii) has a singula-
rity of type 2 in ¢ = 0 which is transfered to ¢, = ¢, (?).
The first term of the righ hand side of (7i) is continuous in
[0, T], and consequenly so is ¢, = ®, (¢). The third term
of the righ hand side of (5) is continuous in [0, T] and
therefore, so is v = v(x, ¢) in ET (See, e.g. [12, p. 337]).
Thus, for each h € C%([0, T]) we can define i = A(t) =
= u(s(¢), t) € CO([0, T]) and therefore we have the operator
F, :C°([0,T])~>C([0, T)), defined in this way

F () (t)=h(1), t€][0,T]. ©)

Then, the fixed points of F, will be solutions of problem
(3). We can prove that F, is a contraction operator from
a classical argument, that is, there exists an increasing con-
tinuous function Q = Q(T) of the variable T, vanishing for
T = 0 and depending continuously upon the parameters
ay,A4,, L, g, such that

| Ay =hy |, <QD) | ky —hy|,, YLE[O,T], (10)
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where | f|| , is defined b,
Ifl,= Max |Ain)]. (11)

r €10,¢]

Therefore, there exists T0 = To(ao' Ao, L, go) > 0 such
that Q(T) < Q(T,) < 1 for allT < T, and then F, is a
contraction operator on C°([0, T)).

Moreover, Q(T) does not depend upon the data ¥ =
= Y¥(x) and Yy = uo(t), so that the same method can be
repeated without any change and consequently, the solu-
tion of problem (3) exists and is unique for any time T > 0.

REMARK 1. If the hypothesis (2ii) is replaced by 12)
¥ €C1([0,5]), ¥(0) = vy(0), ¥(b) =0 and ¥ >0in[0,b)
then by an integration by parts the function f,, defined
by (8ii), is given by

¥(0)

£,()=2H(@) - exp

s2(8)
$ - 13)

4t

wt
b

) f W'(F) K(s(2), ¢, £, 0) dE
0

which is a continuous function in [0, T]. Therefore, the
functions ¢, and ¢,, solution of the integral equation
system (7), and the function v, defined by (5), are also
continuous functions and then we can continue as above.
However, the condition ¥(b) = 0 is very restrictive for
our problem.

If ¥(b) # 0, then a singular term appears in (13), namely

w(b) (s(¢) — b)? {
Var 4t '

exp (14)

REMARK 2. We could use the Green function to solve
problem (3) similarly to [26].

We shall consider now the case b = 0, i.e. for a given
s € €O([0, T1) N C((0, T}) with 5(0) = 0 and s(t) > K, ¢
(X, > 0) in [0, T] we pose the moving boundary problem

(I-6i, ii, iv) with v, = const. > 0 (15)

and we obtain the following a priori estimates.

LEMMA II-2.a) If v is a solution of (15), then v verifies:

i) 0<vu(x, t)<v, in D,
. : 0 T ~ 16)

i) 8(vy)<v, (x,)<0 in D.

b) If the moving boundary s also satisfies the condition

3K, >0 /s()<K,t, VIEQ, 1),

17
—v, an
ty= —— >0,
2K, gyy)
then v verifies
. Yo -
i) 0<7 <u(x, 1)<y, in Dt° s (18)

24 (1989)

Y
i) g(vy)<u(x, t)<g(?°-) <0in D, . (18)

Proof. (a) The proof of (16i) is similar to the one of
(4). We obtain (16ii) by using ¢ <0,8'<0,v,,(0, £)=0
in (0, #,] and the maximum principle.

(b) For (x, 1) € Dt. , we have

x
)
u(x, 1) =y, + f v (y, )dy v, +8(vy) s(t) > -20- )
0

ie. (18i). We obtain (18ii) by using (18i),8’' < 0,v,,(0,#) =
=0in (0, tO] and the maximum principle.

LEMMA II-3. If g € CO(R*), s € C?([0, T]) with 5(0) =0
and v; € C°([0, T]) with vy > 0 in [0, T] then there exists
t' € (0, T) such that the equation

fr.nD=y —v, () —g(y)s()=0, y>0, t€©O,7) (19)
has at least one solution y for each ¢ € (0, t'). Moreover,
we can define y, =y, (#)> 0 in (0, #') such that

f(yo(t): t)=0 in (0) t’): ‘_l.ig].,. yo(t)=vo(0)>0. (20)

Proof. It is similar to Lemma 3 of [12].

THEOREM II4. If g verifies (I-7aii) and s € C°([0, T]) N
N C'((0, T1) with s(0) = 0 and s(t) > Kt (K, > 0) in
[0, T], then there exists a unique solution of the moving
boundary problem (15) for a suitably small T > 0.

Proof. The argument for uniqueness in Theorem Ii-1
still holds.

To prove the existence of a solution of problem (15)
we introduce a decreasing sequence (t") such that
T>E>H>t,>...>t,>..., lim ¢ =0, (1)

n=> oo
where t' is defined in Lemma II-3 (in the present case we
have v,(¢) = v, > 0 in (0, T]). We define the sequence
(vn) such that v, = U, (x, t) is the solution of the follow-
ing problem (n=1,2,...):

v —V
ng Rxx

=0in D, » ={(x, )/ 0<x<s(), 1, <t<T}
vn(O, =y, t,<t<T,

(22)
v (5(0), 1) = 8(v, (s(8), 1)), t, <t<T,
v, (x, 1))=Y (x), 0<x<s(2,),
where
¥, (x) = v, + (¥, (s(2, ) x 3)

which is justified by Lemma II-3 choosing ‘Il’l (s(r'l )= yo(r")
> 0 for each n that verifies

nlin:° \Iln(s(tn )= Yy > 0.

We define z, = v, - which satisfies the following problem
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z t—znxx =0 in Dn,T,
2,(0,0)=0, t, <t<T,

z,(x, t,)=V/(x)=0, 0<x<s(t,),

Zp (5(0), ) +5(1) 2, (s(t), ) = &'(v(1)) [5(+) g(v(1)) +

+z,(s(1), O],

(24)

t
() = j [5(r) g(x(7)) + 2, (s(7), 7)) d7 + ¥, (s(2,)).
t

n

From [6] we can see that there existsa Tl > Osufficiently
small so that

(8) - < const.
I2alp,, T, S e P $(1) lJe(‘s"’ll}%’%)lg(v)]\cons ,

te (1,,T,

(25)
where we note with || - | , the norm in the Banach space
co (D).

If we define 6" = Un (x, t) in Dn’T (T< Tl) by
t
v, (x, £)=v, +x [g(\lln (s(z,)) + f znx(O, T) d‘r] +
‘Il
(26)

x £
+f dE/ z,(y, )dy
0 0

we obtain the following properties:

iy v
"x

i) 9,(0,0) =vy, 0<t<T.

D= ﬁn‘(x, )=z2,(x,8) in D, ,

iii) T, (x, 1,) = v, +x g(¥, (5(¢,)) = ¥, (x), 0<x<s(t,).

t
iv) l‘),,x(S(t), 1) =g(¥,(s1,))) + j 2, 0,7)dr +
t

n

s(t) t
+ / z,(x, t) dx = g(¥, (s(r,))) + f g'(v(r) v(r) dr =
0 0

=g(v(t)), 0<t<T,

because, for t € (¢£,, T] we have

0= /[(z,,xx—znt)dxdr =

Dyt

f z, dx +znx dr =
aD ,,t

t s(t)
= f [z, ((r), 7) $() + }z,,x(s(‘r), 7)) dr — / z,(x, t)dx —
¢

0
t
- f znx(O, 7)dr.

‘n

d
v) - U, (s(2), 1) = 35(t) g(v(1)) + z,,(s(t), 1) = ¥(s),

90

te@,, T,

and by integration, we obtain 5;: (s(t),t)=v(t) fort € (t", 7.
Therefore, we deduce Bn =v, because of the uniqueness
of the solution of (22) and then we obtain that

IV, "Dn,T < const., | v, "Dn,T <const., Vn. 27
Let v = u(x, ) be the limit function of v, when n — co.
Then v verifies (15i,ii); hence it remains to verify the condi-

tion (15iii) on the moving boundary x = s(¢).Let t € (0, T)
and x € (0, s(¢)) be fixed and consider

u(s(0), 1) —v(x, 1) = [v(s(t), ) — v, (s(1), )] +
+ v, (@), ) —v,(x, D] + [v, (x, ) —v(x, O] =

= [u(s(8), 1) — v, (s(8), ] + [v, (x, ) — v(x, 1)] +
1
+ 8@, (s(t), 1)) (s(8) — x) — 7 Vs & 1) (s() — x)?

for some X € (x, s(¢)), so we deduce that
| v(s(), £) — v(x, £) — 8(v, (s(t), ) (s(t) — x) | <
<2|v-uv, |+ const. (s(t) — x)?

(28)

Therefore, passing to the limit # = o0 and then x —s(¢), we
obtain condition (15iii), because of (27).

III. THE WEN-LANGMUIR - LIKE FREE BOUNDARY
MODEL

The Wen-Langmuir free boundary model for noncatalytic
gas-solid reactions consists in finding (in dimensionless
variables) a time 7T >0, the free boundary s=s(t)€E
€ Cco([o, T]) N C!((0, T)) with s(0) = O and the concen-
tration u = u(x, t) € C(D,) N C*:}(D,) with u, continuous
on x = s(t), such that they satisfy conditions (I-6), where
the functions fand g verify (I-7).

Owing to f' > 0 and the a priori estimate (II-18) we have

)]
s'(t)>f(70) >0, V1€(0,1,] )

and therefore we obtain s(¢) > 0 forall # € (0, 1, 1.
From now on we suppose that T is a suitably small time;
in particular, we have

T <Min (t,, ¢, T)) ?2)

where ¢y, t', and T, are given by (II-17), Lemma II-3 and
(II-25) respectively.

We consider the following auxiliary moving boundary
problem: Given r = r(t) € C°([0, T]) N C1((0, T]) with
r(0) =0and 0 < Kl < (1) <K2 in (0, T] we define v =
= u(x, t) as the unique solution of the problem

V=V, =0 in D »={(x,)/0<x<rt), 0<t<T},
v(0,f)=v, >0, 0< ¢<T, (3)
v, (r(®), 1) = g(u(r(0), 1)),

Function v satisfies in D_’ T the estimates (II-17, 18),

0<t<T.
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ie.

Yy
? < u(x, t)<vo,

@
|v,&x, D|<G= yEliuB% 1 | 8(») | (= — &y ).

In a similar way to the proof of the theorem II<4 and
taking into account [6], we have that v, is bounded in
Dr' r by a constant z, which depends upon K, and G
for a T > 0 small enough.

Let B be the set

B={s€C[([0,T) N C'((0, T])/s(0) =0, G)
0<K, <H)<K,,

|s'(t2) —.s‘(tl)|<1(3 | t, -t |for0<¢,, ¢t, <T}

which is a closed subset of C° ([0, T]) and the coefficients
K, K , and K satisfy the conditions

M<K,
©)

Min
YEIvy [2.4]

K, >£,[G K, +2,(G, K,)).

Max

0<k, <
yElv./2. Yol

), 0<

In our case, we can choose

Y
Kl =f(70)a Kz =f(vo)a K3 =f0(G K2 +ZO(G' Kz))

(6 bis)
We define the operator
F,:B>B|F,(r)=F, )]
where F is given by
t
A1) = f f(r(r), 7)) dr, t€[0,T], ®)
0

and v = v(x, 1) is the unique solution of (3) which satisfiesthe
following estimates

v —
~29<v<v°,|v,|<G. | vy | <2y in D, . ®)

We have FE B because
| F(ey) — it | K fy | vs(ty), 1)) = wls(2y), )| <
SSfol| uls(ty), ty) —vls(ty), £)) | +| uls(e)), 1,) —vs)) ) | 1<
<f(GK, + zo)[ t, -t | <K, | t, -t |, for¢,,2,€ (0, T).
Now we define the distance between two functions in B as
d(sy. 5,) =5, =51 les o1y (10)
‘and we prove

THEOREM III-5. The mapping F, of B into itself is a con-
traction in the metric (10) for a suitably small .7 > 0. More-

over, the free boundary problem (I-6) admits a unique solu-
tion.

Proof. Let v and u be the corresponding solution of the mo-

24 (1989)

ving boundary problem (3) for the datum s€E B and 7€ B re-
spectively.
Let

8F, (t) = | i(t) - F(t)l 1 I 8F' I' = 0<S:IP<‘ 8’?’ (T),
s)=|s@)—rt)|, 160, = S 8(r), 11
O =) ~r®)], |8), =  Sup_ 8(r) an
0, (1) = Inf(s(t), r(1)),  0,(t) = Sup(s(t), n(1)).
Without loss of generality we suppose that 0, =r ando, =
= s. Then we have the following estimate

t
5;,(’)=fof | v(s(r), 7) —u(r(r), 7)| dr < (12)
0

<fo t"ull_u|rlt

where (we note with v s and v |, the restriction of v on
x = s(t) and x = r(t) respectively)

||0|, _ul’ ||'= oy'a)é' | vis(r), 7) —u(r(r),7)| <
< Max |u(s(r),7) —v(r(r),7)| + (13)
0<r <¢
+ Max |v(r(r), 1) —u(r(r), 7)| = b(t) + a(?).
0<r<t

Applying the average value theorem to the -definition of
b(t) we deduce that

bG8 ﬂ-:i. (14)
Owing to the expressions
t
u(r(e), t) = v, + f v, (x, t)dx, (15)
0
t
u(r(t), t) = Y, +f ux(x, t)dx,
(]
we obtain
| v(r(e), £) —u(r(e), ) | < K, t|v, ~uz |, =
r.t (16)

=K,t S Cl
20 0%, )

where

A1) =| v, (r(7), 7) —u, (r(7), 7) | <] p, ¢ (7), T) —y G(7),7)|+

+|8((s(r), 7)) = gu(r(r), 1)) | <z | s(r) —r(r) |+  (17)

+gy | vs(r), 7) —u(r(r),7)| <

<z, |8, +5 ||”|: _“|r||:'

Therefore, we have

a(r)<K2t[z0||8||,+go||u|,—u|,u,]. 318)

By using (14) and (18), we obtain

Jop —upl <GIS|, +K; tizy |8, + (19)
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X KPR 1S (19)
ie.
G+Kzzot 5 5 < .(20)
—_ < > t ,
'vll u|rIt< l—Kzgot" ||: °‘o|| l,
where
1 z,
t¢= — >0, a0=2G+—>0. 21
2K, g, &
From (12) and (20) we deduce that
1op, I, <o t8],, t<t% (22)

i.e. F, isa contraction operator for a suitably small T>0.1In
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