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Abstract

We shall prove that the Neumann’s mathematical model of free boundary for a one-dimensional
phase-change process with negligible latent heat can be understood as a limit to the respective model of

the same process when latent heat tends to zero.

Firstly, we shall consider convergence in the case in which the phase-change occurs without mass
density jump and secondly, we shall generalize the above study to the case in which the convection
in the liquid phase is induced by the density jump at the solid-liquid interface.

If the temperature in i-phase (i = 1: solid phase, i = 2: liquid phase) with latent heat ¢ > 0 (with
negligible latent heat) is called T; = T; (x, 1, Q) (T; = T; (x, 1)) and the free boundary for € > 0 (for
negligible ) is called so = s¢ (t) (s5¢ = 5o (#)), then we obtain the following estimates (valid for the two

cases):
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5o (1) — 55 (1)

<C, 4, )

VT

IT2 (x, t) - T2 (X, t, Q)l <C2 2,

iIT, (x, ) =T, (x, 1, D < Cy R

(i)
(i)

' where C,, C, and C, are appropiate constants independt of €.

Introduction

The present paper was motivated by the recent
one by Guzmin (1982), who considered a one-di-
mensional solidification case with negligible latent
heat. It we bear in mind that Sherman (1971), studied
convergence when £ — 0 for a one-dimensional one-
phase Stefan problem and that Tarzia (1979, 1983)
studied convergence when £ = O in the variational
inequality corresponding to the multidimensional
two-phase Stefan problem, this paper justifies, from
a mathematical point of view, the hypotheses carried
out by Guzmdn (1982), by using Newmann’s solution.

In the first part, we shall consider convergence in
the case in which the phase-change occurs without

mass density jump in a two phase one-dimensional
fusion problem, and in the second part, such study
will be generalized to the case in which the convec-
tion in the liquid phase is induced by the mass density
jump at the solid-liquid interface through a two-phase
one-dimensional solidification. Closed formulas for
the two-phase Stefan problem can be found in Banco-
ra-Tarzia (1985) and Carslaw-Jaeger (1959).

I. Phase-change with negligible jump mass density

We shall consider the case of fusion of a two-phase
Stefan problem for a one-dimensional semi-infinite
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material with constant thermal properties and negligi-
ble jump mass density, that is p; =p,.

Without loss of generality, we shall take null the
phase-change temperature. We shall find the function
s¢ = Sg (#) > 0 (free boundary), defined for t >0,
and the temperature

T, t9Q =
Ty (x,1,2)>0 if 0<x<so(8),t>0
0 if x=s59(8), t>0 (L1

T, (x t, <0 if x>sg(f), >0

defined for x > 0, t > 0, so that they satisfy the
following conditions:

@ Tyixx -Tir=0 , x>5() , t>0 (I-2)

(1-3)
Ty(se (0, .9)=T, (52(£), ,9)=0,t>0 (I1-4)

B Tyxx —Tyr=0,0<x<s, (), t>0

ki Tix (sg (1.1, 9) -

Ky Tax (e (). t, D =p % (1) , t>0 (I-5)
T, (x.0,0)=T; (=1,2=-C<0,x>0, >0
(I-6)

T, 0.6,9=B>0 , t>0 (-7
52(0)=0, (1-8)

where p is the common mass density to both phases.
The solution of problem (I-2)(I-8) is given by:

(

C x
Ty (.0, = -C + —— F(?a\/t_)
F_ 1
()

a

-

T, (x,1,9) =B - @9)

f(isz> f(zazx\/t_)

a

\ Se (=209 Vt , 090 >0,
where gg is the unique solution of the equation
Cx)=x , x>0 ; (1-10)

with
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Bkz X
Gx)y=—"—7F, [—) - F, (X
( ) pa; \/; : (az) pay \/;r (a,)
—x2 32
F, () _exp(—x ), F, ) _exp(—x?)
- flx fx)
, (I-11)

fix)= ﬁ | o exp(—u?) du (= erf (x)) ,

|

F(x) = 1 - f(x) (Eerfc (x)).
Function G satisfies the following properties:
G0N =4+ , G+ )=—e | G’<0. (I12)

Moreover, the solution of problem (I1-2){I-8)
with negligible latent heat, that is, =0, is given by:

F(Zalx\/T)

( T, (x,)=-C+ .
0
Fl22)

< x
T, (x, )=B~ f 1-13
o i) e
dr
a
\ s (=200t , 0,>0

where oy is the unique solution of the equation

G(x)=0, x>0. (I-14)

Property I-1

Function o¢ = 0 (2) > 0, defined in (0, +<),
satisfies the following properties:

i) og = 0(Q) is a decreasing function with ¢ which
verifies:

0(0N=0y , 0(+*)=0 (I1-15)

ii) There exists a constant a; > O (independent of
2), so that we have:

0<0g-0gsay 2, ¥ 2¢(0,%),
Lo =const. >0, (I-16)

that is, lim og = 0y
2—0

Proof: i) arises from properties (I-12).
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ii) Using elementary considerations, we have

209 ,
0o — O¢ f)=-tanf=-G¢ 117)

for some & € (0, &) (see Fig. 1).

VAP

= tan (7 -

< d
X
Fig. 1
From (1-17) we deduce
0< 0 — 0p =——— 2 0g.< R=a, 2, (I-18
0~ 0= O Sag0gl=ay 2, -18)
G 0 0o 1 (I-18)
where
) 1 _
Qg = max -
telog.00] (G (O]

Qo (20’00’ OQO’B’k2,p' a2’C’kln al)»
ay =g 09 , (]-19)

where we have considered 2 € (0, 2,) for some given
data 2, > 0, because we are only interested in taking
2-0.

Remark I-1
Taking into account the expressions of so () and
sg (2), given by (I-13) and (I-9), respectively, we de-
duce the following property:
So (1) — 50 (1)
<
Vi

where a; =2 a, is a constant independent of £,

=2(0g — 0g)Sa; £ (1-20)

Property I-2

The temperatures of the solid and liquid phases
concerning cases £ > 0 and £ = 0 satisfy the following
inequalities:

DO<T: (x,)—-T, (x,t, V< ay 2

0<x<s(), t>0 (1-21)
H)0<T, (x, )~ T, (% t, 2)<m 2,
x>5 (), t>0, (122

where a3 and a4 are two positive constants indepen-
dent of £

Proof: 1) Taking into account the expressiones
given by (1-9) and (I-13), the monotony of function f
and the inequality (I-16), we deduce that:

0K<T, (e, ) -T, (x,t,9 =

/- o
/(2)72)

Bf (za,xﬁ) <

B 2 09 —0Op ( OQ) < Q
exp ay
\/77 az az
where
Ogo
28a, 2 (?) )
Qg3 (l"'3)
()
a

2) Similarly to what was done in 1), we deduce
0<T| (xr t)— Tl (xv L 2) =

Oo -
x )f (Tl)

/(@)
=CF(20. v

)

2C exp(-o¢/a})(oo — o

<

“VTORE) R
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where
Oo
A(=)
2C'a1 a
0y = —— (1-29)
wEE)
a,
Remark I-2

The convergence obtained in 1) and 2) for the
Property I-2 is uniform in variables x and ¢ in all the
closed sets included in the domam given by (I-21)
and (I-22), respectively.

Remark I-3

From Property 2 it is clear that the model con-
sidered by Guzmdn (1982), may be obtained as the
limit of Neumann’s model; for'a two-phase one-
dimensional Stefan: problem when latent heat tends
to zero.

Next, we shall generalize the previous properties
to the case in which a solidification problem for a
semi-infinite material with a mass-density jump at
the free boundary, that is p; #* p, is considered.

II. Phase change with density jump at the free
boundary
If we consider a process of sohdlﬁcauon of a

semi-infinite material which takes into account the
density jump, that is p; # p,, at the free boundary,

then the problem could be formulated through the

following two-phase Stefan problem: We shall find
function sp = sp (f) > 0 (free boundary), defined for
t >0, and the temperature

( Ty (x,1,9)<0 if
0<x<s(t), t>0
0 if
T(xt8 = ¢ :

x=s00, t>0 (D

T2 06,1, 9>0 if

\ x>s0(t), t>0

defined for x > 0 and ¢t > 0, so that they satisfy the
following conditions:
a2Tyxx —T1,=0, 0<x<s(®), t>0 (I1-2)

pr— P,
Se () T2x — T2, =0,

2
a3 Taxx +
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x>s(), t>0 (11-3)

Ty (5 (0,1, ) =T (54 (1), 2, ) =0,
t>0 (11-4)

ky Ty (50 (D, 1, 2) — kg Tay (59 (1), 1,0) =

P RS (), t>0 (11-5)

T2 (x,0,2)=T, (+,1, )=E>0,
x>0, t>0 (11-6)
T,(0,£,9)=-D<0, t>0 (11-7)
50 (0)=0, (11-8)

The solution of problem (I1-2)(1 8) is given by
Bancora-Tarzia, 1985:

T (it Q=-D+—2 f( X )
1 X, 1 =-
Yo
lG) eVt
T, (x, 1, ) =—Z
e
F{—=
: (=)
’ (11-9)
x Ye
flog + ———)-F(—
[ ( 2a, \/?) (ao
L se(M=21 V1, 1>0,
where
€=Pl - P2 ’ Q=7Q |d’ 2 = a, ’ (11-10)
[} a; 1+ el
and 7y is the unique solution of the equation
H(x)=8x, x>0, (11-11)
with
k,
Hx)ys————F, [—] —
14 al\/— ( )
emnt)
PraxVm  \ay (11-12)
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that satisfies the following properties:
H(") =+, H(+®)=—o, H'<0. (II-13)

Moreover, the solution of problem (II-2)<(11-8)
with negligible latent heat, that is 2 = 0, is given by:

r
T, x,)=-D +

f(Dlo_ f( ZaT\/T)

a,

E

Tz (x, I) =

) -
(7 (50 + 2 12

Yo lel
a ’

(11-149)

So (=27 VI, 1%>0, 8=

—

where 7, is the unique solution of the equation

H(x)=0, x>0. (11-15)

Property II-1

A) Funciton 7, = v (®) > 0, defined in (0,
+90), satisfies the following properties:
) 7 =7 (9 is a decreasing function with £ that
verifies:

YO0 =7, (11-16)

ii) There exists a constant A; > 0 (mdependent of
) so that we have

Y (+%°)=0

0<7 -1 <A, ¢, (11-17)

that is, lim v, = 7,
20

iii) There exists a constant A, > O (independent of
2), so that the free boundaries sq and sg arerelated
through the following expresion

So (£) — 5¢.(f)
vt
B) The temperatures of the solid and liquid phases

concerning cases £ > 0 and £ = 0 satisfy the following
inequalities:

<A, Q. (11-18)

)O<T, (x, t,)-T) (x, ) < A; 2

0<x<sq(t), t>0 (11-19)
B) 1T (6,0 — T, (x, 1) | A4
x>s0(f), t>0 (11-20)

where 4; and A4 are two positive constants inde-
pendent of 2.

Proof

(A i, ii, iii) and (B i) are analogous to what was
done in part 1 and we have

Ay=Po% ., A3=24, 1121

Po= Mix ———=

belvQ,7,) 'H'(E)’

Bo (%0.70:7,. D, E. ks, ky, ay, py, a3, a0)
2DA, F.

A, = A4, F, (7!20 /ay) (1122

a,\_/; f(.‘y_o)

a,

(B ii) Using elementary considerations, we have

Tz (x, t, 2) - Tz (.x, t)'——

E
=FG§) -F (5“ ¥ Za:\/t_)_
Flg)
) -l )
FR)
=F(5o +——*2a:\/?)_ F(5Q +__2a.: \/?_)+
F(Z)
F (5,, + ﬁa" ) N
e - 27:/; F(E) -F 1')
Fla) Fla) L = =
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and then we obtain
|T2 (xl t, 2) - T2 (xv t)l <
2E i€l
< TN l:——'(‘Yo ()] +
ﬁ F (K) az
exp(— 74, /33) (Yo - n)]
Yo
F (E;) %o
that is (11-20) with
4 2EA,
@ ST
a, \/;F (R)
(1+ 1€l
lel + —= % exp(—nz, /aoz) (11-23)
(32)
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Nomenclature
. _k .
a® =— thermal diffusivity
pc
B>0 temperature in the fixed face x =0

_ initial temperature
c specific heat
temperature in the fixed face x =0
initial temperature
function defined in (I-11)
f function defined in (1-11)

function defined in (1-11)
function defined in' (1-11)
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G function defined in (I-11)

H function defined in (11-12)

k thermal conductivity

L latent heat

s(t) position of the solid-liquid interface
(free boundary) at time ¢ >0

r temperature

t>0 time

x>0 space coordinate variable

Greek letters

Y coefficient which characterizes the free
boundary s in paragraph Il

5 coefficient defined in (11-10)

€ coefficient defined in (11-10)

(1] coefficient which characterizes the free
boundary s in paragraph |

p mass density

‘Subscripts

1 solid phase

2 liquid phase

2 when we take the latent heat as variable

0 when we take £=0
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