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Abstract. We consider a slab, represented by the interval 0 < x < X, at the initial
temperature 6, = 0,(x) > 0 (or ¢, = ¢,(x) > 0) having a heat flux g = q(¢) > 0
(or convective boundary condition with a heat transfer coefficient #) on the left face
x = 0 and a temperature condition b(f) > 0 on the right face x = x, (x, could
be also +o0o, i.e.,, a semi-infinite material). We consider the corresponding heat
conduction problem and assume that the phase-change temperature is 0°C.

We prove that certain conditions on the data are necessary or sufficient in order
to obtain the existence of a waiting-time at which a phase-change begins.

1. Introduction. We consider the following heat conduction problems (0 < x, <

+00) :
(i) pcb,-ko,, =0, O0<x<xy, t>0;
(i) O(x, 0) = 6,(x) >0, 0<x< x5 ()
(iii) k0,(0, 1) =q(1), t>0;
(iv) O(x,y, t) = b(1), t>0;
and

(i) pcp,—ko, =0, O0<x<x,, t>0;
(i) &(x,0)=¢p(x)>0,  0<x<x;
(i) k¢ (0,0 =h(D+¢0,1), t>0;
(iv) &(xy, ) =b(1), t>0,
where p is the density, k is the thermal conductivity, ¢ is the specific heat, 4 is the
convective heat transfer coefficient from a fluid with ambient temperature —D < 0
flowing across the face x = 0. The function b(¢) represents the temperature at the
face x = x, >0, and 6, and ¢, are the initial temperatures for problems (1) and
(1) respectively.
We take, without loss of generality, the phase-change temperature as 0°C and
replace condition (1)(iv) by 6(+oc, ) = 6,(+00) > 0, ¢ > 0 for the case x, = +oo.

(1)
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(idem for Problem (1')). We assume that the data satisfy the hypotheses that ensure
the existence and uniqueness property of the solution of (1) and (1').

We consider the following possibilities:

(a) the heat conduction problem is defined for all ¢ > 0 (waiting-time t* = +00);

(b) there exists a time ¢* < +oo such that another phase (i.e., the solid phase)
appears for ¢ > t* (waiting-time 0 < t* < +o00) and then we have a two-phase Stefan
problem for ¢t > ¢*. In this case, there exists a free boundary x = s(¢), which
separates the liquid and solid phases with s(¢*) =0

We will separate the cases waiting-time ¢* = 0 (i.e., there exists an instantaneous
change of phase) and 0 < t* < 400. These possibilities depend on the data 0,, 4,
b for Problem (1) and the data ¢,, h, b for Problem (1'). We try to clarify this
dependence by finding necessary or sufficient conditions on 6,, ¢, b and ¢,, A
b in order to have the different possibilities.

In [5, 8, 9] the one-phase Stefan problem with prescribed flux or convective bound-
ary condition at x = 0 is studied.

This paper was motivated by [10, 12, 13] (see also [14]) and the term waiting-
time was motivated by its correspondence to the term as used in the porous medium
equation (see, for instance [1]).

In Sec. II we analyse problem (1) with a flux boundary condition at x = 0 and in
Sec. III we study the problem (1’) with a convective boundary condition at x =0.

b

I1I. On some conduction problems with a flux boundary condition. We consider the
following properties for the problem (1).

THEOREM 1. If the data g = ¢(t), 6, = 6,(x), and b = b(¢) verify conditions
(i) 0<q(t)<gqy, O<t<t,witht,>0;
(i) 65(x)>0 and B, >6y(x)> B, >0, O<x<x,withB<B; (2
(iii) b(f)> B, and b(t)>0, t>0;

then there exists a waiting-time ¢* > 0 for problem (1), (i.e., another phase could
appear at t > t*), where ¢* verifies the following inequality:

t > Min(z,, t;), where t(; = nkpcﬂ§/4q§. (3)

Proof. Tt is sufficient to prove that 6(x, ?) >0 for 0 <x < x, and 0<t<¢,.
For the semi-infinite material x > 0, with the same thermal coefficients, we consider
the following two problems:

pcT,— kT =0, x>0, 0<t<ty;
kT, (0,1) =q(t), t>0; (4)
T(x,0)=Ty(x), x>0,
with
0,(x), 0<x<x,,
0,(xp) s x> Xy, .

Ty = { (5)
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and
pcV,—kV, =0, x>0, t>0;
kv, (0,1 =g,>0, t>0; | (6)
V(ix,0)=8,>0, x>0,
whose solutions are given respectively by [3, 4]

+00 2

T 0= [N s 0@ de- [ Ko 0, 00@dr, ()

and

Vix,t)=p,— 2qT°a\/fierfc (2axﬁ) : (8)

where

N2 ANE , _exp(—(x —&)?/4d’(t - 1))
a-(;)z> ; K(x,t;&,1)= 2a\/7z(t_—t) ;

Nx,t;E,0)=K(x,t;¢, 1)+ K(—x,t;&,1); erf(x) = \/if/:exp(—tz)a’t;

: 2
erfc(x) = 1 — erf(x); ierfc(x) = 9%{—) — x erfc(x).
(9)
By the maximum principle [6, 7] we obtain
Vix,t)<T(x,1), x>0, 0<t<y,, (10)
T(x,t)<0(x,1), 0<x<x,, 0<t<yy,

because T(x,,?) < B, <b(t) for 0<t<1¢,.
Let W be the function W = 6 _, which satisfies the following heat conduction
problem:

pcW,— kW _ =0, O<x<x,, t>0;

W(x,0)=60y(x), 0<x<xy; (11)
t C;

W(O,t)=%), Wx(xo,t)=%b(t), t>0.

By the maximum principle we have W =6, >0 for 0 < x < x,, ¢t > 0. Then,
we deduce that
2q0a At x
% 520 for0<t<1¢,, (12)
where tg is defined by (3) proving our assertion.

REMARK 1. When the data verify conditions (2), problem (1) represents a heat

conduction problem for the initial phase (in our case, the liquid phase) for ¢ < ¢*.
REMARK 2. We can see that ta does not depend on the length of the slab x, > 0.

6(x,1)>6(0,t)>V(0,1t)=B,—

CorOLLARY 2. Under the hypotheses (2)(ii),(iii), a necessary condition in order to
have an instantaneous change of phase (i.e., t* = 0) for problem (1) is given by

g(0") = +00. (13)
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REMARK 3. If we consider the case
Xy = +00, 0y(x) > B, >0, V¥x2>0,

Bok

(14,
q(t) < g5(1) = T vi>0,

then problem (1) is a heat conduction problem for the liquid phase for all ¢ > 0
i.e., there is not a phase-change process for any ¢ > 0 because we have

O(x, 1) >0qy(x, 1), x>0, t>0, (15

where 6gq,, is the solution of (1) with data: heat flux g,(¢) at x =0, x; = +o0, anc
initial temperature S, . It is given by [12]

0q,(x, t)—/?oerf(2 \/_) , x>0, t>0. (16
Moreover, the particular case
,Bok
1) = = q.(1), t>0, 17
q(?) T dy(?) (

shows us that condition (13) is not sufficient in order to have an instantaneous change
of phase for problem (1).

REMARK 4. If x, = +oo and 6y(x) > B, > 0 for x > 0, then a necessary
condition for problem (1) to have an instantaneous change of phase (i.e., the waiting:
time is ¢* = 0) is for there to exist a 7, > 0 such that

Bok

3\
q(t,) > ay/m (18}
THEOREM 3. If the data verify the conditions
Xy = +00; 0<6y(x)< B, forx>0,
a(t) > -‘t’—g, O<t<1, withg>0and L < B <1, (19)

then an instantaneous phase-change occurs, that is, the waiting-time is " = 0.
Proof. Let U = U(x, t) be the solution of the following heat conduction problem:

pcU —-kU_ =0, x>0, t>0;
U(x,0) =8, x>0;

(20)
kU 0,n=% 50,
t
which is given by [3]
2 t .
Ux, 1) =B, - “‘10 K(x’téo’r)dr. (21)
0 4 .
By using the maximum pr1n01ple we have that G(x H<U(x,t) for x>0, t>0.
Therefore, we obtain
t
60,0< U0, n<p - D [ L (22)

kvr Jo P 1=7
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and, for O<e=t/2<t<1,

‘dt ¢ dt ‘d 2\/-172
[———ﬂ 2/ o +/ =, (—) . (23)
0 T°VI—1 0o e°Vi—-1 e T'f—¢ t

Moreover, the temperature on the fixed face x = 0 verifies the inequality

aq, ANAE

for all ¢ < min(1, tﬂ) , where

ag, 1/(B=1/2)
w=2(ggz%) >0
C, = ___I.E[z‘"” C142(1-B)(V2-1)] >0,

that is, the thesis is achieved.
REMARK 5. If we consider the density jump under the phase of change, that is,

p, # P, and the data verify the conditions

Xy = +00; 0<6,x)< B, forx>0,
Bk, (26)
a,Vn’

where k;, c;, p;, a; = (k;/ pici)l/ 2 are the corresponding thermal coefficients for the
phase i (i = 2: liquid phase, i = 1: solid phase), then the temperature 6 = 6 4,6,
solution of problem (1), verifies the inequality Oq,oo(x, 1) < qu’ 8, (x,t), x >0,
t >0, where qu’ 8, is the solution of (1) with initial constant temperature B, and

(25)

4, .
q(t) > /i for ¢t > 0 with g, >

a flux condition of type ¢,/ Vvt on x = 0. Therefore, we obtain [2]

dya,V/ T
0,60, 0T, ,(0,0)=p — okz2 <0, >0, (27)

that is, the waiting-time is ¢* = 0 (i.e., we have an instantaneous two-phase Stefan
problem) for data ¢ and 6,. Moreover, its free boundary x = S, Go(t) verifies

sq’oo(O) = 0 and it is characterized by 0q’00(sq,00(t), t)=0 forall t >0.
The free boundary x = Sa0. B, (t) corresponding to the temperature qu, 8, is given
by [2]

Se,. 8, = 20V1, (28)
where w is the unique solution of the equation
Fy(x)=x, x>0 (29)

with

(—xz) k,B, exp(—xz/az) (30)

=% _
Folx) = hp, exp al hp,a,v/n erfc(x/a,) ’

where h > 0 is the latent heat. Owing to
aa,ﬂo(sao,ﬂ.(t)’ t) < Tao,ﬂ.(sao,ﬂl(t)’ t)=0, forallt>0, (31)
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it follows that
Sg.6,(0) 28, (1) = 20Vt t>0. H (32)

From now on we consider the particular case of constant temperature b(t) = b >
0, £ >0 at x = x;, and constant heat flux g(t) = ¢ >0, ¢t >0 at x = 0 for
problem (1). The steady-state solution is given by

0_(x) = %(x—xo)+b, (33)

and a necessary and sufficient condition in order to have a two-phase steady-state
Stefan problem is given by
q>kb/x,, (34)

where k is the thermal conductivity of the liquid phase [11]. (See [13, 14] for the
general steady-state case for an n-dimensional domain).

Using the fact that 8 = 6(x, t), the solution of problem (1) with data ¢ > 0 and
b >0, convergesto 6 _ = 6_ (x) when ¢ goes to +oo [6], for any initial temperature
6, = 6,(x), we can formulate the following problem: Find the relation between the
heat flux ¢ > 0 on x = 0 and a time ¢, such that another phase appears for ¢ > ¢,
and then we can reformulate problem (1) in a two-phase Stefan problem for ¢ > ¢, .

We obtain the following result.

THEOREM 4. Suppose the initial temperature verifies the conditions b > 6, > 0 in
[0, x,] and 6,y(x,) = b. If the time ¢, > 0 and the constant heat flux g > 0 verify

the inequality bk .
q > 5 5= a=—, (35)
xo(1 — exp(—an’t, [4xy)) pc
then another phase (the solid phase) appears for ¢ > ¢, . Moreover, 6(0, t) <0 for
all ¢ > ¢, and the free boundary x = s(¢) begins at a point (0, ') with 0< ¢ < t .
Proof. The temperature 6(x, t) is given by

B(x, 1) = 6,,(x) +_ C,cos(y/4,x) exp(—ati,), (36)
n=0
where
1\2 n?
A”=(n+§) ;;)2—, n=0,1,2,..., (37)
2 [
-2 /0 [60(x) = 6, (x)] cos(y/2,x) dx (38)
0
Therefore, the temperature at x = 0 is given by
00, 1)=b— %(1 + S(8)) + S,y(0) (39)
with
2 & exp(—ati
S(t) = o Z exp(—atl,) / (x — x4) cos(y/4, *—(——1—5—) (40)
0 =0 n=0 (n + 7)
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and
Sy(t) = %Zexp(—atln) /0 x°(00(x) - b)cos(@x)dx. (41)
n=0

We get that 5,(¢) = v(0, £) <0 for all ¢ > 0 because of the maximum principle,
where the function v = v(x, t) < 0 is the solution of the problem

pcv, — kv =0, O<x<xy, t>0;
v (0,t)=0, t>0;
(0, 1) (42)
v(x,,t) =0, t>0;
v(x,0)=0,(x)-b<0, 0<x<x,.
By some manipulations, it follows that
a7t2t
0<|S(t)=-S(t) <exp [———2—} <1 forallt>¢,. (43)
4x,
Therefore, if ¢ and ¢, verify (35), we obtain
o(o,t)gb—%(usu))w forall t > ¢, , (44)

i.e., the thesis is achieved.

REMARK 6. If 6,(x) = b in [0, x;], we deduce Sy(t) =0 for t > 0. We re-
mark that inequality (35) was obtained for this particular initial temperature because
Sp(x) <0 in (0, 400) for 6,(x) < b in [0, x,].

COROLLARY 5. If we consider the ¢, g plane and define the following set

Q={t,q)g>f@t), t>0}, f(t)= bk

xo[1 — exp(-—anzt/4x§)]

; (43)

then we have a two-phase problem for all (¢, q) € Q.

III. On some conduction problems with a convective boundary condition. Now we
consider the same kind of techniques used in Sec. 2 for problem (1') corresponding
to a heat conduction problem with a convective boundary condition at x = 0.

THEOREM 6. If the data ¢, = ¢,(x), b= b(t), and D verify the conditions

(i) ¢p(x)>0 and B, >¢,(x)>B,>0, 0<x<x,;

(i) b(t)>p, and H>0, t>0; (46)
(iii) D >0,
then there exists a waiting-time ¢* > 0 for problem (1'), where ¢* verifies the
inequality
t">1t;, where t*—k—ce(F_‘ 1+£g )2 (47)
= "1» 1 - h2 D 9
where F~' is the inverse function of
2
F(x) = 22X x>0, (48)

erfc(x) ’
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Proof. By using the maximum principle we get that
¢ .(x, 1) >0, 0<x<x,, t>0,

d(x,t)>z(x, t), 0<x<x,, t>0, (49)
where z = z(x, t) is the solution of the following heat conduction problem:

(1) pecz,~kz, =0, x>0, t>0;

(i) z(x,0)= ,Bo, x>0; (50)

(iii) kz, (0, ) =h(D+z(0, 1)), t>0,
which is given by (a2 =k/pc):

z(x, t)= (B, + D) [erfc(2 \/_)+exp (szi+'72>] el’fc(zj\/;'*‘ﬂ) ) (51)

x>0, t>0,

where

__havt
=—-
Taking into account (47) and (49) we get

(52)

$(x, 1) 2 $(0, 1) > 2(0, 1) = =D + (B, + D) exp(nerfe(n) 20,  t<¢;, (53)
because the function F(x) verifies the conditions
F(0)=1, F(+o0)=400, F >0 inR". (54)

REMARK 7. We can see that tI does not depend on the length of the slab x, > 0.
[

From now on we consider the particular case of constant temperature b(¢) = b >
0, t >0 at x = x, for problem (1'). The corresponding steady-state solution is
given by
h(D + b)

PoolX) = b= 3y o0

and a necessary and sufficient condition, in order to have a two-phase steady-state
Stefan problem is given by

(Xg — %), 0<x<x,, (55)

kb
h > D—xo (56)
We consider the following problem related to problem (1'): Find the relation
between the heat transfer coefficient 4 and a time ¢, such that another phase appears
for ¢t > ¢,, and then we can reformulate problem ( 1') in a two-phase Stefan problem
for ¢ > t,. We obtain the following result.

THEOREM 7. Suppose the initial temperature verifies the conditions b > 6, > 0 in
[0, x,] and 6,(x,) = b. If the time ¢, > 0 and the constant heat transfer coefficient
h > 0 verify the inequality

h> g(t,), (57)
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then another phase (the solid phase) appears for ¢ > ¢, , where the function g = g(¢)
is defined implicitly by the equation

w(t, g(t))=0, t>0, (58)
with
. k(D+b)  2k(D+b)
w(t,h)=-D+ k ¥ hx, Fxg y(1), t>0, h>0, (59)
0o 2.2 2
y(t) =Y exp [—(2"_1)2”“ ’], t>0. (60)
n=1 X0 '

Proof. The solution of problem (1') is given by

$(x, 1) = ¢ _(x)+Y_ B, exp(—u.a't) [Sin(unx) + k;l‘" Cos(unx)] ,

n=1

(61)
0<x<x,, t>0,

where
2 [ . ku,
B, =+ [ "160(x) = 6,o(¥)]|Sin(u,x) + 5 Cos(u, )| dx,  (62)
0
and u, = w,/x,, where w, is the nth root of the eigenvalue equation
k
Moreover, we get that
2n-1)2 <w,<nm, neN, (64)

After some manipulation, we deduce that the temperature at x = 0 is bounded
by

#(0, 1) < w(t, h), t>0, (65)
where the function y has been defined before.

We notice that the function g = g(¢) is well defined since the functions y = y()
and w = y(t, h) satisfy the properties

p(0") =400,  p(+)=0, (1) <0, Vt>0, (66)
(@) w(t,0")=+o0, w(t, 40)=-D<0, t>0;
(b) g—';l’(t,h)<0, %—"t/(t,h)<0, >0, h>0. (67)
Therefore, the function g = g(¢) satisfies the conditions
g0") =400,  g(+)= LUN g(t)<0, vt>0. (68)

on

By using the inequality (65) we get the thesis.
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CoroLLARY 8. We consider in the plane ¢, 4 the following set:
Ry={(t,h) | h> g(t), t>0}; (69)

then we have a two-phase problem for all (¢, &) € R, .
REMARK 8. If the initial temperature is given by ¢,(x) = b >0 in [0, x;], then
we have a heat conduction problem for the initial phase for all (¢, &) € R, , where

_ kb -1 b\ [kpc
Rl_{(t’h)|0<h<Max(f)_x_o’,F <1+5) —t—),t>0}. (70)
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