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A TWO-PHASE STEFAN PROBLEM IN A SEMI-INFINITE
DOMAIN WITH A CONVECTIVE
BOUNDARY CONDITION AT THE FIXED FACE

DOMINGO ALBERTO TARZIA AND CRISTINA ViLMA TURNER

Abstract We studied a two-phase Stefan problem in a semi-infinite material. when a
convective condition is assigned on the fixed face z = 0.

We demonstrate the monotone dependence of the solution with respect to the data
and with respect to the thermal transfer coefficient H. We also studied the asyvmptotic
behavior of the solution when H — 0.

1. INTRODUCTION

In this paper we consider the two-phase Stefan problem for a semi-infinite material with
a convective boundary condition at the fixed boundary, z = 0.

Specifically the mathematical problem consists of determining two functions, u?(z,t)
and v¥(z,1), a function £ = s7(t), called the free-boundary, and the time T such that
(uf,v#, s# T) satisfy the following equations, boundary and initial conditions. For each
positive H we consider:

Problem Py : (H > 0)

(1.1) pegull —kpufl =0, Dy ={(z.t):0<z<s?(t),0<t < T}
(1.2) perv — kil =0, Dy ={(z,t):z>s71),0<t< T}
(1.3) u?(z,0) = 2(z) 20. 0<z<s70)=0b"

(1.4) v¥(2,0) = w(z) <0, z>bv7(c0.t)=1v(0),t>0

(1.5) _ kouf(0.t) = H(uf(0.8) - f(t)), 0<t<T
(1.6) v (s (t),t) = u¥(s¥(t),t) =0, 0<t< T
(1.7) kol (sH(t),t) = ku (s (2),t) = pls®(t), 0<t<T.

where the phase-change temperature is zero and H is the thermal transfer coefficient
(H > 0).

Very general results about the existence of classical solutions to the two-phase Stefan
problem have been obtained in {4],;5].{7],{9]. The asvmptotic behavior for the one-phase
Stefan problem with temperature and flux conditions on the fixed boundary z = 0 are
considered in [2]and (3] respectively.
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In [12] the behavior of the solution with respect to the heat transfer coefficient A and the
asymptotic behavior of the free boundary are studied for the constant case f(¢t) = T > 0.
In {13] we generalized this result for the case when f(t) is not constant. There it was
considered the one-phase Stefan problem with a convective boundary condition at the fixed
face, given by the temperature of the external fluid (f(t)) depending on time. We study
the aymptotic behavior of the corresponding free boundary sy (t) when the time goes to
infinity. In [1] and [10] a two phase Stefan problem with very general boundary condition
at z = 0 is studied. In [8] is considered a one-phase Stefan problem for the supercooled
liquid with a zero flux at the fixed face. In [6] this problem is studied for a general flux
g(t). In [11] and [15] is analyzed the two-phase Stefan problem for the supercooled liquid
with flux and temperature boundary conditions at the fixed faces z = 0 and z = 1.

In this paper we show monotone dependence of the solution with respect to the data
and some asymptotic properties of the free boundary.

A complete version of this paper with all the proofs and the behavior of the free bound-
ary when ¢ — oo and the corresponding study when the liquid phase is overcooled and
the solid phase is overheated will appear in [14].

In order to have existence and uniqueness of the solution we require the following
assumptions upon the initial and boundary data:

i) Let ¢ = ¢(z) and ¥ = P(z) be positive and negative respectively piecewise
bounded continuous functions .
i1) Let f = f(t) be a positive bounded piecewise continuous function.
il1) Compatibility conditions: f(0) > o(z) in (0, 8), k2’ (0) = H((0) — £(0)), ©(b) =
p(b).

Now we will show some preliminary results, the reformulation of the free boundary
problem and the monotone dependence of the solution with respect to the data (@, ¢, f,d)
and with respect to the thermal transfer coefficient H.

Lemma 1. Under the above hypothese on the data, the temperatures u”(z,t) and v¥(z,t),
satisfy the inequalities: v < 0 and u” > 0.

Moreover ufl(z,t) < f(t) in D, and v¥(z,t) > ¥(z) in Dy when f(&) >0, ¥'(z) <
0,¥"(z) 2 0.

Lemma 2. If (v¥,u,s¥#.T) is a solution of Problem Py, and v,z € L'(b,o0) then,
setting s = s, we have the following equality:

(1.8)
H s(t) Hb b(k, +zH) |
1 — — — —-— —— ————————
ps(t)( -+-k.2 5 ) plb(l ‘ kg?.) ./‘; = o(z)dz
4—/ (m-—m:z: > w(z)d::-%-/sz(T)d-
0
s(t) oo H
—/ Mu”(r,t)d:—/ <k1 I—::E-kl) v (z.t) dz
0 Q9 ) s(t) kg aq
where a; fg,z =1,2
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Lemma 3. If (v, ufl,sf, T),i = 1,2, are solutions of the Stefan problem Py corre-
sponding to the data f;, p;, ; and b;, and if fi < f2, 21 < Y2, ¥y < W and by < ba, then
si(t) < si(t) and uf! < ull, v¥ < v¥ in their corresponding common domains.

Theorem 1. If (ufs, v s T, i = 1.2, are solutions of the Stefan problem (1.1)-{1.7)
corresponding to the data Hy and H, with Hy < Ha, and f > 0 then
vift < vy < 2 sfi(t) < s"1(t) in the common domains where they are defined.

2. THE CASE WHERE THE THERMAL TRANSFER COEFFICIENT APPROACHES TO
INFINITY

We consider the following two-phase Stefan problem for a semi-infinite material with a
temperature boundary condition on the fixed face z = 0. We call this problem:

Problem P,

(2.1) pCatty — kourz =0, 0 <z <s(t)
(2.2) pcrvy — kyvee = 0, st) <z <
(2.3) u(z,0) = o(z) 20, 0<z<b
(2.4) v(z,0) = ¥(z) L0, b<z <o
(2.5) v(oco.t) = ¥(o0),t > 0

(2.6) u(0,t) = f(t) 20, 0<t<T
(2.7) u(s(t), t) = v(s(t),t) = 0<t<T
(2.8) kvvz(s(t),t) ~ kauz(s(t),t) = pls(t) 0<t<T.

Theorem 2. The solution (u,v,s,T) of Problem P, and the solution (u,v", s" T) of
Problem Py satisfy the following inequalities,
i) s4(t) < s(t), t >0,
i) v <u, 0<z<sf(t), 0<t<T,
i) v < v, s(t) <z <00, 0<t<T.

if f>0, by < b, and H > 0 are provided.
Proof. The proof is obtained by using the maximun principle to the functions W, = u—ugy

and W) = v — vy in the corresponding domains.

a

3. ASYMPTOTIC BEHAVIOR OF THE FREE BOUNDARY

We will study the asymptotic behavior of the free boundary sf(t) when t — 20 or
H — oo. In [1] is consider the global existence in a general Stefan-like problem.

Theorem 3. [f(uH, v”,s”,T) is the solution of Problem Py, and w,zvw € L'{b. ) then
we have the following properties:

i) If 5° f(r)dT < 20 and lim f(t) =0, then lim sH(t) = s,
where s satisfies the equation of second order given by
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) / (ke + yH) =L (y)
+ [ (kl-é-ka‘) 'f’( )dy+/o°° Hf(r)dr

H
plz ( + ml‘) = plby <1 ]

by ko ay

o\ e roo sf(1)
i) If foo f(T)dT = oo,. then lim

=00 a-()

= 1, where o(t) is the free-boundary of the
following problem:
For each to 2 0, let (o, Wy, V) be the solution to the following proolem P,

pc2(Va)zz = ka(V2)e, 0<z<o(t)t2t
ky(V1)e,s x> o(t),t 2t
Vi(z,0)=0, 0<z<s"(to)
Vi(z,0) = v¥(z,t0), z2>3%(to)
Vi(oo,t) = v¥(00,t), t2>to
k2(Va)a(0,8) = H(Va(0,8) — f(t))  t =t
Va(o(t),t) = W(a(t),t) =0, t2to
a(te) =0
kl(Vl):(a'(t)a t) - k?(V'z)::(a'(t)'t) = Pl&(t)v | t > to.
Proof.

i) First we obtain the following bounds for the functions u# and v#:
(a) uf(z,t) < U(z,t),in 0 < z < s7(¢), t > 0.
(b) V(z,t) < vH(z,t)in s¥(t) <z < 20, t > 0.
where U and V are defined by the following problems:

pcaUy — ko Uz = 0. 0<z<0o0,t>0,
kU:(0,t) = H(U(0,¢) — f(t)), t>0,
oy (=), 0<z <Y,
Ul=,0) = {o. b< z.

and

paV,—k V. =0, 0<z< oo, t>0,
V(O,t) =0, t>0,
Vieco,t) = wico),t > 0,

! <z <b.
V(z.0) = v(b), 0 <z <b,
¥(z), b< z.
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Using the integral representation (1.8), the bounds for uf and v¥
and taking limit when ¢t — oc we obtain the thesis.

i1) The sketch of proof is the following:
Using the ma.ximurn principle we can prove that o(t) < s7(t), t > to and
Va(z.t) < uf(z,t), Vi(z,t) < v¥(z,t) in the corresponding domains. for ¢ > to.
Now, we use an integral representatxon like in Lemma 2 with the adecuate initial
condition at ¢ = to a.nd we get

H sH to
plsH(t) (l + 9—Hk—s (t)) = plsH(to) (1 + i_g%H_) +f0 ( )(kg + zH)uf(z,t0) dz

.../ (kl :z:—H) (:r, to) dz + ‘Hf(-r)d-r
H(to) to
o ki) 0 H
_/; (kl +:r.-l;> u'(z,t)dz - /’”(t)(kg + zH)v(z.t)dz
H
< Cita) + plo(t) (1 + 5-0(1).

where

H s (2o
C(to) = pis™ (to) (1 + f—,()t-gl-li) +/ y )(k‘z + zH)ufl(z, to) dz.
2k, 0

Then we have k
o*(t) S sip(t) S o*(t) + Clto) -

Taking the limit when ¢t — oo in the above mequa.ht.les and using the fact that

tllr.g a(t) = oo (since [;° f(7)dr = oo), then 1_1_12 :((tt)) 1. O

We state two preliminary lemmas in order to prove the convergency when H — oo

Lemma 4. If (u¥,v¥ 55, T) is a solution of Problem Py, with f >0 and H > 0 then

/;t(uﬁ(o' T) —_— f(‘l’)) dr S [s(t)(Pl + a,f"{f"(o_g))) + C] ,

whereC = — [;° f"-t,b(:r) dz > 0 and s(t) is the free boundary of the pfoblcm Py.
a

Lemma 5. If {uf v# s7.T) is a solution of Problem Py and the data satisfy f > 0 then
(uf,vH sH T) and (u v,s.T) satisfy the following inequality

0<

dz+

pl(s* (t — s§(t)) _,_/’”W zko(u(z, t) — ufl(z, 1))
; 8]

Q2

o

et ki( W3- 'H( . t .
[T 2 v ) gy ¢ [Pkyif(e) - (0.7 dr
. JsH(t) (84 0
Theorem 4. (Convergency when H — o) . If (u, v, s, T) is a solution of the prob-
lem Py, (u,v,s.T) is a solution of Problem P, and the data satisfies f > 0 then



458

1) limy—ses?(t) = s(t)
i) limpy oo uf(z,t) = u(r,t) and limyg_o v(z,t) = v(z,t) for all compact sets in-
cluded in their corresponding domains.

Proof.
Using the Lemmas 5 and 5. Theorem 2 we have the following inequality:

pl(s*(t) = s3(2)) [s(t)(pl + 'E‘;' 1/l 0.eny) + C)

<k i

0< 5
for all H. ;
Then for each t > 0, limy_s™(t) = s(t). We can do the same with the difference

u — ufl and v - vA. :

G

4. DISAPPEARANCE OF A PHASE

In this section we will discuss the relation between the disappearance of a phase and
the total energy supplied to the media.
We will use the following definitions:

(k2+Hr)%-£)- 0 <z < by,
o(z) = 2
(kl-rﬂH:I:) (2), by < z < o0,
kg an

Ts = inf{t",t* > 0.57(t") = § or s¥(t") = ; -}

H—0
To= sup {Ti}
0<S<by
| q vy
Theorem 5. [0 < b (1+ =) + [ ~ 8(z) dz */ Hf(r)dr = Q(t) < > for all

t > 0, then Ty = oo, which means that neither phase disappears in a finite time period.

Proof. Suppose Tp < oo, then there exists a sequence {6;} with lims,—o Ts, = To, such
that s(T%,) — 0 or s(T5,) — o0 as 6; — 0 or §; — bF.

We consider the case s(T5,) — 0 as 6; — 0 then, using the integral representation of
Lemma 2, we obtain

pls(T5,) (1 + —s(Tg,)) = pib? (1 ~ -fkig) + /:° ®(z)dz + Ani Hf(r)dr

s(T, H o0 A
_/ 5) “Cz-—IH) (:r t) d:z:—/ <k1+zk1H) v (:r,t)dx

kz 54}

Q2

since v < 0. Therefore, as 5(T5;) — 0, as ; — 0, then 0 > Q(To), which contradicts the
assumption of the theorem.
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The case 3(Ts,) — o>c, as §; — b is similar to the previous case.

a

REFERENCES

. Aiki, Two phase Stefan problems with dynamic boundary conditions, Advances in Math Sci and

Appl, 22 1993, 253-270.

. J. R. Cannon, C. D. Hill, Remarks on a Stefan problem, J. Math. Mech. 17 (1967), 433-441.
. J. R. Cannon, M. Primicerio, Remarks on the one-phase Stefan problem for the heat equation with

the fluz prescribed on the fized boundary, J. Math. Anal. Appl. 35 (1971), 361-373.

. J.R.Cannon-M. Primicerio A two phase Stefan problem with boundary conditions Ann Mat. Pura Y

Appl 88, (1971), 177-192.

. J.R.Cannon-M. Primicerio A Stefan problem involving the appearence of a phase, Journal Math

Anal,4 (1973), 141-149.

Comparini, Ricci, D.A.Tarzia,, Remarks on a one dimensional Stefan probiem related to the
diffusaion-Comsumption model , Z. Angerev Math. Mech. 64 (1984) 12 543-550.

A. Fasano, M. Primicerio, General free-boundary problems for the heat equation, J. Math. Anal. Appl.
LII 57 (1977), 694-723; 58 (1977), 202-231;III 57 (1977) ,1-14.

. A. Fasano, M. Primicerio, New results in some classical parabolic free boundary problems,Quarterly

Appl. Mathe,38 (1980), 439-460.

A. Friedman, Partial Differential Equations of Parabolic Type., Prentice Hall, Englewood Clifs,
(1964).

Knaber Global existence in general Stefan like problems, J.Anal Math.Appl. (1986) 543-559.
Marangunic, C.V. Turner,The behavior of the solutions of a two-phase Stefan problem and the value
of an energy integral, Bolletino de la UMI, C , 1986, 215-227.

A.D. Solomon, D.G. Wilson, V. Alexiades, The Stefan problem with a convective boundary condition,
Quart. Appl. Math. 40, 203-217; (1982).

D.A.Tarzia, C.V.Turner,The asymptotic behavior for the one-phase Stefan problem with a convective
boundary condition. Appl. Math. Letters, 9 3,21 -24 , (1996).

D.A.Tarzia, C.V.Turner, The asymptotic behavior for the two-phase Stefan problem with a convective
boundary condition, (pre-print).

C. Turner , Remarks on a two phase Stefan problem with flux boundary conditions, Comp Math
Appl, 9, 1990, 79-86.

DEPTO MATEMATICA-CONICET, UNIV. AUSTRAL- PARAGUAY 1950, (2000) ROSARIO ARGENTINA
E-mazil: tarzia@Quafce.edu.ar

FAMM.A.F-UNC.,CIEM-CONICET, CiunaD UNIVERSITARIA, (5016) CORDOBA ARGENTINA
E-mail: turner@mate.uncor.edu

Domingo Alberto Tarzia
Depto Matematica-Conicet. Univ. Austral- Paraguay 1950.
(2000) Rosario Argentina
E-mail: tarzia@uafce.edu.ar

Cristina Vilma Turner
Fa.M.A.F-UNC..CIEM-CONICET, Ciudad Universitaria,
(5016) Cordoba Argentina

E-mail: turner@mate.uncor.edu



