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D A TARZIA AND C V TURNER
The one-phase supercooled Stefan problem

Abstract: We consider the supercooled one-phase Stefan problem with convective
boundary condition at the fixed face. We analyse the relation between the heat
transfer coefficient and the possibility of continuing the solution for arbitrarily large
time intervals.

1. Introduction.

The classical one-dimensional Stefan problem has been studied since 1831(see [11});
it models conductive heat transfer on either side of a phase boundary in pure material
on the assumptions (i) that the temperature at the phase boundary is constant, say
zero, (ii) that there is a release of latent heat at the boundary on solidification, and
an uptake on melting, and (iii) that the material on the solid and liquid sides of the
phase boundary has negative and positive temperature, respectively.

With these assumptions the problem has a weak formulation and a global solution
is known to exist ([4]). If the data are such that just one phase boundary exists the
problem has also been shown to be well-posed in the classical sense [5,7].

But if the initial and/or boundary data violate the sign requirement (iii), i.e., if
the liquid is supercooled or the solid is superheated, a solution still may exist, at
least formally, but the result is generally only local in time and finite time blow-up
can easily occur ([8]).

In this paper we consider this kind of problem in the following setting:

Problem I:
Find 6(y, 7) the temperature and r(7) the free-boundary such that:
r(7) is Lipschitz continuous for 7 > 0;
7(7) is continuous for 7 > 0;
6(y, T) is continuous for 7 > 0 and 0 < y < r(7);
6-(y, ), Oyy(y, T) are continuous for 7 > 0 and 0 < y < r(7);
6, (y, 7) is continuous for 7 > 0, 0 < y < r(7);
r(7) and 6(y, T) obey the conditions:
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0 =aby, 0<y<r(r), 0<7<7g
| O(r(r),7) =0 0<7<T9
kOy(r(7),7) = —pAi(1), 0<T<Tp

k6,(0,7) = h(0(0,7) — g(7)) 0<T< 7o
0(y,0)=06o(y) 0<y<b
r(0)=b

The parameters are
k

a = -X material thermal diffusivity (m?/s)
k = material thermal conductivity (KJs°C/m)

p = material density (Kg/m3)

A = latent heat of melting (KJ/Kg)

h = fluid to material surface heat transfer coefficient (KJs°C/m?2)
g(7) = ambient fluid temperature (°C)

¢ = specific heat (KJ°C/Kg),

The melting front at time 7 is r(7) while 8(y, 7) is the temperature at position y
and time 7.

It is known that a solutlon to Problem I exists [1], for suitable 7o 'sufficiently
small’. This problem is often referred to as a mathematical scheme for the freezing
of a supercooled liquid (although this simple scheme for such a non—equ111br1um
phenomenon is far from being satisfactory)[10].

The freezing of a supercooled liquid is due to convective heat transfer from a fluid
with ambient temperature g(7) flowing across the face z = 0.

This problem has been studied in [2],{3],[6] and [12].

The adimensional problem is obtained by the following transforms

@)= S0,r) o) ="

Then the variables (T, s, z) satisfy the problem:

Problem II:
(1.1) 2zg = 2, in Dr;
(1.2) s(0) = 1;

(1.3) 2(s(t),t) =0,0< t < T}
(1.4) 25(s(t),t) = —3(t),0< t < T}
(1.5) 2(z,0) = p(z),0 <z < 1;



(1.6) 2-(0,t) = B2(0,t) — G(t)],0<t < T.
where 8 = % is an adimensional parameter, and

Dr = {(z,t)|[0 < z < s(t),0 < t < T}

G(t) = ;g (bzzct) :

2. The one-phase supercooled Stefan problem

In this section we consider the following hypotheses

p(z) <0,0<z<1l and G(t) <0, t>0

and the compatibility condition

¢'(0) = Ble(0) - G(0)].

The first simple properties of the solution of (1.1)-(1.6) are summarized in the
following proposition :

Proposition 2.1. If (T, s, z) is a solution of Problem II, then
z) V4 S 0 in DT.
i1) 8(t) < 0,t > 0.
i) G(t) < 0, p(z) > G(0) = max;>o G(t), then z > G(t) in Dr.
w) ¢’ > 0, then z, > 0 in Dr.
v) G > 0, ¢" >0 then z, > 0 in D;.
vt)

1 t
(2.1) s(t) [1 + gs(t)] =1+ g -|-/0 (1+ Bz)p(z) dz +/0 BG(T)dT

a(t)
- / (1+ Bx)z(z,t) dz
0

~

Proof.
The proof is obtained by using the maximum principle and Green’s identity.

Remark 1: In the following sections we denote

= s 1 z)¢(z) dr t T)dT
(22) Q=145+ [[0+e@ ds+ [ p6(r)d

If p(1) = 0, p(z) is Holder continuous for z = 1 and G(t) is a piecewise continuous
on every interval (0,¢), ¢t > 0, this problem possess one solution for suitable T
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“sufficiently small” (see [1], [5], [6] where uniqueness and continuous dependence are
also discussed).

Moreover, if a solution exists, then three cases can occur (see [6], Theorem 8 and
2).

(A) The problem has a solution with arbitrarily large T.

(B) There exists a constant Tg > 0 such that lime_, 1, s(t) = 0.

(C) There exists a constant Tc > 0 such that inf s(t) > 0and lim $(¢) = —oo
te(0,T¢) t—-Tc
We shall investigate the occurrence of these cases in conection with the behavior

of the initial data ¢, the adimensional temperature G of the external fluid and the
adimensional coefficient 3, (see [12]).

Our next aim will be to look for some conditions on 2 G and 3 giving an a priori
caracterization of cases (A), (B) and (C).

Proposition 2.2. If G < 0, ¢(z) > G(0) and the solution (T, s, z) of Problem II
is case (B), then Q(Tg) = 0.

Proof. Setting t — Tp in (2.3) and using the boundedness of z obtained in Propo-
sition 2.1 we conclude the result. [

Proposition 2.3. If (T,s,z) is a solution of problem P II, and the initial and
boundary data satisfy the following hypotheses:

i) o(x) > M(z-1), 0<z<1 O0<M<I;

i) G(t) > —M

and it exists a time Tg such that Q(Tg) = 0 then the solution (T, s, z) is case
(B).
Proof. First we prove that z(z,t) > M(z — 1). This is easily followed from the
maximum principle applied to w = 2z — M(z — 1).

We replace this inequality in (2.1) for ¢ = Tg, then s(Tg) satisfies the following
inequality

s(Tg) [(1 — M) + s(Tp) [ﬂ(l - "g) ks M] + 532(1*3)%] < 0.

The quadratic form in brackets has coefficients 1 — M > 0 and 9—(1;};9"'—1“ > 0,
then s(Tg) =0. O

Proposition 2.4. Suppose that, to < T and lim;;, s(t) > 0. ¢ satisfies the
hypotheses iv) of Proposition 2.1. Moreover Q(t) > 0 for alt < to. Then if we
define a function

max{z € [0,s(t)]|z2(z,t) < -1}
() = { 0 if 2(z,t) > -1, z € [0, s(t)]
then it follows
Jim n(t) < lim s(t)
Proof. The proof is similar that of Proposition 2.3 in [2].
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Proposition 2.5. Let (T,s,z) be a solution of Problem II such that
St = infye(o,r) 8(t) > 0. If there exist two constants d € (0,Sr), z0 € (0,1)
such that Md > 2z, and

z(s(t) d,t) > —z, 0<t<T,

then

Proof. It is the same that of the Lemma 2.4 in [2] (See also [6]). O

Proposition 2.6. Let be (T, s, z) a solution of Problem II and ¢ satisfies the hy-
potheses of Proposition 2.1 iv), then if the solution is case (C), then Q(T¢) < 0.

Proof. Suppose Q(T¢) > 0, then from the Proposition 2.5 the isotherm z = —1 is
separated from the free-boundary. Using the Proposition 2.5 s has a lower bound,
which contradicts the case (C). O

Corollary 2.7. If (T, s, z) is a solution of Problem II and ¢, G satisfy the following
hypotheses:

i) px) 2 M(z—1), 0<z<1;

i) G(t) > -M, 0<M<I1.

i) () >0, 0<z <1

And the solution is case (C), then Q(T¢) < 0.

Proof. 1t follows from Propositions 2.3 and 2.6. O

Proposition 2.8. Let (T,s,z) be a solution of Problem II, ¢ and G satisfy the
following hypotheses:

) p(z) > M(z-1), M>0, 0<z<1

it) G € L(0,00).

If the solution is case (A), then Q(t) > 0,t > 0. Moreover, if G(t) > —M,(M >
0), Vt > 0, then case (A) implies that Q(t) >0, Vt > 0.

Proof. This proof can be seen in [12].
)
3. Asymptotic behavior of the solution

Proposition 3.1. Let (T, s, z) be a solution of Problem II of case (A) under the
hypotheses of Proposition 2.9 and (iii) of Proposition 2.1. Moreover, we assume
that the limit of G(t) when t — oo exists. If we denote Qo = limy_,oo Q(t) and
Seo = limy_, o, 8(t), then s, is given by

3.1) s VI+28Q
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Proof. The existence of the limit of G(t) when ¢ = oo and G € L1(0,00) assure
that lim¢00 G(t) =0

We denote 2z, the limit of z when ¢ tends to infinity. The existence of lim¢_,o 2(z, t)
is due to Proposition 2.1 and [6,Chapter 6 ]. The function 2., satisfies: 2z, =0 in
(0, 800)s Z00(800) =0, 2.,(0) = B2z00(0), then zoo(z) =0, 0 < Z < So.

Taking limit when ¢t — o0 in (2.3), then

soo[1+ﬂs%°]— o =0

That means that so, € (0,1) is the root of the above equation, that is 3.1.
Moreover, we have s, < 1 since

S0 <142 1420Q00 < (14+8)2 <= 2Qx —2- < 0.

By taking limit when ¢ — oo in (2.3) the last inequality holds always due to the
following expresion

1
2Qe —2- B =2 [ (1+ Bo)p(x) dz — 28Gll < 0
where ||G||; = — [;° G(r)dr O

4 The oxygen-comsumption problem

As in [8] we are interested in the dependence on the heat transfer coefficient A or its
adimensional coefficient 8.If, in Problem II we perform the classical transformation

s(t) s(t)
u(z,t) = / {/ 1+ z(a,t)] da} dry
z v

then we obtain the following oxygen-comsumption problem.

Problem III:
Ugz —ug = 1, in Dy;
s(0) =1;

u(s(t), t) = uz(s(t),t) =0, t>0;

u(z,0)=H(z), 0< =z 5 1;

w0, = H'0) = 60,0) = HO) + Gl ¢> 0,
where

1 pl
H@) = [ [ 1+ o(@) dady
z Jy
From now on, in this section, we consider the following hypotheses for ¢

-1<p(z) £0, 0<z< 1.
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then
Hz)>0,0<zrz<1L;H(@Z)<0,0<z<1;H'(z)>0,0< z < 1.

We now address the question of how the solution to Problem III depends upon

G(t).

Proposition 4.1. The solution (T, s,u) of Problem III depends monotonically on
G. In particular if (T, 8;,u;), 1 = 1,2 are the solutions for G, and G, respectively,
and if G1(t) < Ga(t), then s1(t) < s2(t) and uy(z,t) < ua(z,t) whatever they are
both defined.

Proof. This is seen by considering the difference
v(z,t) = uz(z,t) — ui(z, t) -

at the points where they are both defined.

Let t* = sup{t > 0|u2(0,t) > u1(0,t)} and t** = sup{t > O|s2(t) > s1(t)}. Let
us suppose that both t* and t** are finite. By definition v satisfies the following
problem

Vzz = v, T € (0,51(2)),t € (0,**);
v(z,0) =
v(s1(t), t) = uz(s1(t),t) > 0;

vz(0,2) = B[v(0,2) + ([IG2ll1,e — [|G1ll1,e)] -

Claim 1 :t* # t**.

In order to prove that t* and t** are different, let us suppose that they are equal,
then

a) Sl(t*) = Sz(t*)

b) $1(t*) > $2(t*)

c) v(s1(t*),t*) = ua(s1(t*), t*) = uaz(s2(t*),t*) =

Morever u2(0,t) > u1(0,t) for ¢t < t*, then

v(0,t) >0, t<t*

and
v(s1(t),t) = u2(s1(t),t) > 0.
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Since v has the minimum value zero at (s;(¢*),¢*),the minimum principle to v in
D}., we get v (s1(t*),t*) < 0 which is a contradiction by (a) to

vz (81(t%), ) = uzz(81(27),17) = upx(82(27),27) =0
Then t* # t**.
Claim 2 : t* < t** is impossible:
On [0, t*], s1(t) < s2(t), whence v(s1(t),t) > 0. By definition v(0,¢) > 0 for t < ¢*

and v(0,t*) = 0. That implies v(0,¢*) is a minimum value up to time t* whence
vz(0,t*) > 0, which contradicts

vz(0,%) = B[v(0,%") + ([IG2ll1,e» — |IG1ll1e-)] = BUIG2l1,e — [|IG1]l1,e-] <O
Claim 3 : t** < t* is impossible since: \
Let be t** < t*, and since v(0,t) > 0, v(s1(t),t) = ua2(s1(t),t) > 0, for t <
t**, the point (s1(¢**),t**) is a minimum point for v because v(sy(t**),t**) =

u2(81(t**),t**) = uy(s1(¢**),t**) = 0.
By the corner minimum principle

v (81(2"), ") <0
which contradicts
vz (81(t*), ™) = ug (s2(t**),t**) = 0.

Thus the proposition is proved. [
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