UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA

I.S.S.N. 03260690

CUADERNOS

DEL

INSTITUTO DE MATEMATICA "BEPPO LEVI"

V SEMINARIO SOBRE PROBLEMAS DE FRONTERA LIBRE Y SUS APLICACIONES

D. A. Tarzia (Editor)

Rosario, 19 al 21 de Diciembre de 1994

25

Rosario - República Argentina 1995

EL COMPORTAMIENTO ASINTÓTICO PARA UN PROBLEMA DE STEFAN A UNA FASE CON UNA CONDICIÓN DE CONTORNO CONVECTIVO

DOMINGO A. TARZIA CRISTINA V. TURNER

I. Introducción

En este trabajo se estudia el comportamiento asintótico para $t \to \infty$ del sigiuente problema de frontera libre parabólico (Problema de Stefan a una fase con una condición de contorno convectiva sobre la frontera fija x = 0):

Problema P:

- $(1) z_{xx} = z_t, \text{ en } D_T;$
- (2) s(0) = 1;
- (3) z(s(t),t) = 0, 0 < t < T;
- (4) $z_x(s(t),t) = -\dot{s}(t), 0 < t < T;$
- (5) $z(x,0) = \varphi(x), 0 < x < 1;$
- (6) $z_x(0,t) = \beta[z(0,t) G(t)], 0 < t < T.$

donde

$$D_T = \{(x,t)|0 < x < s(t), 0 < t < T\},\$$

$$\beta > 0$$
, $\varphi(x) \ge 0$, $0 < x < 1$ y $G(t) \ge 0$, $t > 0$

y las condiciones de compatibilidad

$$\varphi'(0) = \beta[\varphi(0) - G(0)] \quad \mathbf{y} \quad \varphi(1) = 0.$$

Se analizará el comportamiento asintótico de la frontera libre s(t) en el Problema P. Otros análisis sobre comportamiento asintótico para problemas de Stefan se pueden ver en [1] y [2]. La existencia y unicidad para la solución del Problema P se puede ver en [3]. Aquí las condiciones sobre los datos serán tales que garantizan la existencia y unicidad de solución para T arbitrario en el Problema P. En [6] y [7] se puede ver el comportamiento asintótico de la solución de la inecuación variacional para el problema a dos fases de Stefan en n dimensiones, con G(t) = cte. > 0. En [5] se analiza la dependencia de la solución respecto de β y el comportamiento asintótico de la frontera libre para $G(t) = T_L > 0$. En ambos trabajos el comportamiento asintótico es independiente de β . En este trabajo analizamos el caso en que G(t) no es constante para el Problema P.

II. Resultados preliminares.

A continuación resumiremos los resultados obtenidos en [9]

Proposición 1. Si (T, s, z) es solución de P, luego

- (i) $z(x,t) \geq 0$ en D_T .
- $(ii) \dot{s}(t) > 0, t > 0.$
- $(iii) \dot{G}(t) \geq 0, \varphi(x) \leq G(0) = \min_{t>0} G(t), luego z(x,t) \leq G(t) en D_T.$
- $(iv) \varphi' \leq 0, \dot{G}(t) \geq 0 \text{ luego } z_x \leq 0 \text{ en } D_T.$
- (v) $\dot{G} \geq 0$, $\varphi'' > 0$ luego $z_t(x,t) \geq 0$ en D_t .
- (vi) las siguientes representaciones integrales son satisfechas:

$$s(t) = 1 + \int_0^1 \varphi(x) \, dx - \int_0^t z_x(0,\tau) \, d\tau - \int_0^{s(t)} z(x,t) \, dx \tag{7}$$

$$\frac{s^2(t)}{2} = \frac{1}{2} + \int_0^1 x \varphi(x) \, dx + \int_0^t z(0,\tau) \, d\tau - \int_0^{s(t)} x z(x,t) \, dx \tag{8}$$

$$s(t)\left[1+\frac{\beta}{2}s(t)\right]=Q(t)-\int_0^{s(t)}(1+\beta x)z(x,t)\,dx\tag{9}$$

$$\frac{\beta s^{4}(t)}{24} + \frac{s^{3}(t)}{6} = \frac{\beta}{24} + \frac{1}{6} + \int_{0}^{1} (\frac{\beta x^{3}}{6} + \frac{x^{2}}{2}) \varphi(x) dx$$
$$- \int_{0}^{s(t)} (\frac{\beta x^{3}}{6} + \frac{x^{2}}{2}) z(x, t) dx + \iint_{D_{t}} z(x, t) (\beta x + 1) dx d\tau \tag{10}$$

donde

$$Q(t) = 1 + \frac{\beta}{2} + \int_0^1 (1 + \beta x) \varphi(x) \, dx + \int_0^t \beta G(\tau) \, d\tau. \tag{11}$$

Demostración. Para (i)-(v) usamos el principio de máximo[4].

(vi) sale usando la identidad de Green.

Observación 1 la relación (9) entre la frontera libre, la temperatura y la expresión Q(t) definida en (11) ha sido usada en [8].

Proposición 2. La solución del Problema P depende monótonamente de G. En particular si $(z_1(x,t),s_1(t))$ y $(z_2(x,t),s_2(t))$ son soluciones del Problema P para G_1 y G_2 respectivamente y $G_1 < G_2$, entonces $s_1(t) < s_2(t)$ para t > 0 y $z_1(x,t) < z_2(x,t)$ en donde ambas estén definidas.

Demostración. La demostración consiste en suponer que existe un primer t_0 en donde $s_1(t_0) = s_2(t_0)$ y $\dot{s}_1(t_0) > \dot{s}_2(t_0)$, con $s_1(t) < s_2(t)$ para $0 < t < t_0$ y $z_1(x,t) < z_2(x,t)$ para $0 < x < s_1(t)$, $0 < t < t_0$.

Ahora consideremos el problema que satisface $v(x,t) = z_1(x,t) - z_2(x,t)$

- (i) $v_{xx} = v_t$ $D = \{(x,t)|0 < x < s_1(t), t < t_0\};$
- (ii) $v(x,0) = 0, \quad 0 < x < 1;$
- (iii) $v(s_1(t),t) = -z_2(s_1(t),t) < 0;$
- (iv) $v_x(0,t) = \beta [v(0,t) (G_1(t) G_2(t))].$

Supongamos ahora que existe $t_1 < t_0$ tal que $v(0, t_1) = 0$. Luego $(0, t_1)$ es un punto de máximo para v(x, t) en D, con lo cual $v_x(0, t_1) < 0$. Si reemplazamos la última desigualdad en (iv)

$$v(0,t_1) < G_1(t_1) - G_2(t_1) < 0.$$

Lo cual es una contradicción. Luego $v(0,t) < 0, \forall t > 0$.

Usando el principio de máximo para v concluimos v(x,t) < 0 en D.

Pero $v(s_1(t_0), t_0) = 0$, con lo cual $(s_1(t_0), t_0)$ es un máximo para v en D, y por lo tanto

$$v_x(s_1(t_0),t_0)>0.$$

Calculemos ahora

$$v_x(s_1(t_0),t_0)=z_{1x}(s_1(t_0),t_0)-z_{2x}(s_1(t_0),t_0)=\dot{s}_2(t_0)-\dot{s}_1(t_0)<0,$$

lo cual es una contradicción. Con lo cual $s_1(t) < s_2(t)$ y $z_1 < z_2$ en D. \square

Observación 2. Para cada β fijo la solución (s,z) de P se llamará (s_{β}, z_{β}) de P_{β} y P_{∞} al problema en donde la condición (6) fue reemplazada por $z_{\infty}(0,t) = G(t)$, 0 < t < T, y su solución (s_{∞}, z_{∞}) .

Teorema 3. Si $(T, s_{\beta}, z_{\beta})$ es una solución de P_{β} con las siguientes hipótesis sobre φ y G

 $(H1) \varphi'(x) \leq 0 \text{ para } 0 \leq x \leq 1.$

(H2) $\dot{G}(t) \geq 0$, para t > 0.

(H3) $\max_{[0,1]} \varphi(x) \leq G(0)$, luego

$$(a) z_{\beta}(x,t) \leq z_{\infty}(x,t) \text{ en } D_{T}, \qquad s_{\beta}(t) \leq s_{\infty}(t) \ \forall \beta > 0, \ t > 0.$$

(b) Dependencia monótona:

$$\beta_1 \leq \beta_2$$
, luego $z_{\beta_1}(x,t) \leq z_{\beta_2}(x,t)$ en D_T y $s_{\beta_1}(t) \leq s_{\beta_2}(t)$.

Demostración. La demostración se puede ver en [9].

III. Comportamiento asintótico.

Aquí presentamos resultados similares a los de [1], [2].

Teorema 4.

(a) Si $\int_0^\infty G(\tau) d\tau < \infty$, luego $\lim_{t\to\infty} s(t) = s_\infty$ donde s_∞ es la única solución de la ecuación

$$x\left(1+\frac{\beta}{2}x\right)=A(\beta,\varphi,G),x>1$$
(12)

donde

$$A(\beta,\varphi,G) = 1 + \frac{\beta}{2} + \int_0^1 (1+\beta\xi)\varphi(\xi)d\xi + \beta \int_0^\infty G(\tau)\,d\tau.$$

(b) Sea (s,z) una solución del Problema P con $\int_0^\infty G(\tau) d\tau = \infty$. Para cada $t_0 \geq 0$, sea (σ,v) la solución del siguiente problema

(i) $v_{xx} = v_t, 0 < x < \sigma(t), t \geq t_0;$

(ii)
$$v_x(0,t) = \beta[v(0,t) - G(t)], t \geq t_0;$$

(iii) $v(\sigma(t),t)=0,t\geq t_0;$

 $(iv) \quad \sigma(t_0)=0;$

 $(v) \quad \dot{\sigma}(t) = -v_x(\sigma(t), t), t \geq t_0.$

Luego

$$1 \leq \left(\frac{s(t)}{\sigma(t)}\right)^2 \leq 1 + \frac{C(t_0)}{\sigma^2(t)}, t > t_0, \tag{13}$$

donde

$$C(t_0) = s^2(t_0) + \frac{2s(t_0)}{\beta} + \frac{2\int_0^{s(t_0)} (1+\beta x)z(x,t_0) dx}{\beta}.$$
 (14)

y

$$\lim_{t\to\infty}\frac{s(t)}{\sigma(t)}=1.$$

Demostración. (a) Usando (9), la acotación de z(x,t)>0 en D_T y la hipótesis $\int_0^\infty G(\tau) d\tau < \infty$ resulta:

$$s(t)\left(1+\frac{\beta}{2}s(t)\right) \leq A(\beta,\varphi,G).$$

Luego se obtiene:

$$s(t) \leq s_{\infty} \quad \text{para } t \geq 0 \tag{16}$$

donde $s_{\infty} = \frac{\sqrt{1+2\beta A}-1}{\beta}$ es la única solución de la ecuación (12). (b) ver [9].

Teorema 5. Si $(T, s_{\beta}, z_{\beta})$ es la solución del Problema P con la hipótesis (H3), $\int_0^t G(\tau) d\tau = \infty$, $\int_{t_0}^t G(\tau) d\tau < \infty$, para todo t y t_0 , y además se cumple $\lim_{t_0 \to \infty} \max_{[t_0, \infty)} G(\tau) = \lim_{t_0 \to \infty} \|G\|_{[t_0, \infty)} = 0$, entonces se obtiene

$$\lim_{t\to\infty}\frac{s_{\beta}(t)}{\sqrt{2\int_0^t G(\tau)\,d\tau}}=1$$

Demostración. Usando la función auxiliar v(x,t) del Teorema 4 (b), y la representación integral (9) para $(\sigma_{\beta}, v_{\beta})$, se obtiene

$$\frac{\beta \int_{t_0}^t G(\tau) d\tau}{1 + \|G\|_{[t_0,t]}} \le \sigma_{\beta}(t) \left(1 + \frac{\beta}{2} \sigma_{\beta}(t)\right). \tag{19}$$

Ahora usamos (9) para (s_{β}, z_{β}) y el hecho que $\sigma_{\beta}(t) < s_{\beta}(t)$ con lo cual:

$$\frac{\beta \int_{t_0}^t G(\tau) d\tau}{(1 + \|G\|_{[t_0,t]})\beta \int_0^t G(\tau) d\tau} \le \frac{s_{\beta}(t) \left(1 + \frac{\beta}{2} s_{\beta}(t)\right)}{\beta \int_0^t G(\tau) d\tau} \le 1 + \frac{D(\beta,\varphi)}{\int_0^t G(\tau) d\tau}. \quad (20)$$

Luego tomamos límite $t \longrightarrow \infty$ y después $t_0 \longrightarrow \infty$ y obtenemos

$$\lim_{t\to\infty}\frac{s_{\beta}(t)}{\sqrt{2\int_0^t G(\tau)\,d\tau}}=1 \text{ for all } \beta \quad \Box$$

Lema 6. Si $(T, s_{\beta}, z_{\beta})$ es una solución del Problema P, y los datos satisfacen las hipótesis (H1),(H2) y (H3) entonces

$$\int_0^t [G(\tau) - z_{\beta}(0,\tau)] d\tau \leq \frac{s_{\infty}(t)}{\beta} (1 + ||G||_t), \forall \beta > 0.$$

Demostración. Sale de usar (9) y aplicar el Teorema 3.

Teorema 7. Si $(T, s_{\beta}, z_{\beta})$ es una solución del Problema P y los datos satisfacen (H1), (H2) y (H3), luego (s_{β}, z_{β}) y (s_{∞}, z_{∞}) satisfacen las siguientes inecuaciones

$$0 \leq \frac{s_{\infty}^{2}(t) - s_{\beta}^{2}(t)}{2} + \int_{0}^{s_{\beta}(t)} x(z_{\infty}(x, t) - z_{\beta}(x, t)) dx$$

$$\leq \int_{0}^{t} (G(\tau) - z_{\beta}(0, \tau)) d\tau \leq \frac{s_{\infty}(t)}{\beta} (1 + ||G||_{t}), \forall \beta > 0.$$

Demostración. Se obtienen las representaciones integrales para ambos pares usando (8), luego se sustraen y se aplica el Lema 6.

Corolario 8. (Convergencia $\beta \longrightarrow \infty$) Si (s_{β}, z_{β}) es una solución del Problema P $y(s_{\infty}, z_{\infty})$ lo es de P_{∞} , bajo las hipótesis (H1),(H2) y (H3), luego:

- (i) $\lim_{\beta\to\infty} s_{\beta}(t) = s_{\infty}(t)$ para cada t>0
- (ii) $\lim_{\beta \to \infty} z_{\beta}(x,t) = z_{\infty}(x,t)$ para cada $0 \le x < s_{\infty}(t)$, para cada t > 0.

Proof. Usando el Teorema y el hecho que $s_{\beta}(t) \leq s_{\infty}(t)$ y $z_{\beta} \leq z_{\infty}$ para todo β , resulta

$$0 \leq \frac{s_{\infty}^{2}(t) - s_{\beta}^{2}(t)}{2} \leq \frac{s_{\infty}(t)}{\beta} (1 + ||G||_{t})$$

para todo β , luego

$$\lim_{\beta \to \infty} s_{\beta}(t) = s_{\infty}(t)$$
$$\lim_{\beta \to \infty} z_{\beta}(t) = z_{\infty}(t)$$

para cada $0 \le x < s_{\infty}(t)$, para cada t > 0. \square

Corolario 9. Si (s_{β}, z_{β}) es solución del Problema P, luego

$$(i) s_{\beta}(t) \leq \sqrt{\frac{2}{\beta}Q(t)}, t > 0$$

$$(ii) s_{\beta}(t) \geq \frac{-1+\sqrt{1+\frac{2\beta Q(t)}{1+G(t)}}}{\beta}, t > 0.$$

Demostración. Sale de (9) y Proposición 1.

REFERENCIAS

- 1. J. R. CANNON, C. D. HILL, Remarks on a Stefan problem, J. Math. Mech. 17 (1967), 433-441.
- 2. J.R.CANNON, M.P. PRIMICERIO, Remarks on the one-phase Stefan problem for the heat equation with the flux prescribed on the fixed boundary, J. Math. Anal. Appl. 35 (1971), 361-373.
- 3. A. FASANO, M. PRIMICERIO, General free-boundary problems for the heat equation, J. Math. Anal Appl. I; II: 58 (1977), 202-231 57 (1977), 694-723.
- 4. A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, N J, 1984..
- 5. A.D. SOLOMON, V. ALEXIADES, D.G. WILSON., The Stefan problem with a convective boundary condition, Quart. of Appl. Math. 40 (1982), 203-217.
- 6. D.A. TARZIA., Etude de l'inéquation variationnelle proposée par DUVAUT puor le probleme de Stefan à deux phases II, Boll. Un. Mat. Italiana. 2 B (1983), 589-603.
- 7. D.A.TARZIA., Sur le probleme de Stefan à deux phases, C.R. Acad. Sci. Paris. 288 A (1979), 941-944.
- 8. D.A. TARZIA, C.V. TURNER., The one-phase supercooled Stefan problem with a convective boundary condition, to appear in Quart. of Appl. Math..
- 9. D.A. TARZIA, C.V. TURNER., The asymptotic behavior for the one-phase Stefan Problem with a convective boundary condition., Preprint 1995.

Domingo A. TARZIA
- Dpto. Matemática, FCE
Univ. Austral
Paraguay 1950
(2000) Rosario
- Promer (CONICET-UNR

- Promar (CONICET-UNR)

Inst. Mat. "B. Levi"

Av. Pellegrini 250

(2000) Rosario

ARGENTINA.

e-mail: tarziaQuaufce.edu.ar

Cristina V. TURNER
FaMAF, U.N.C
Ciudad Universitaria
Universidad Nacional Córdoba
(5000) Córdoba
ARGENTINA.

e-mail: turner@mate.uncor.edu