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ABSTRACT: We consider a two-phase Stefan problem in a semi-infinite material,
when a convective condition is assigned on the fixed face z = 0. We demonstrate the
monotone dependence of the solution with respect to the data and with respect to
the thermal transfer coefficient H.. We study the asymptotic behavior of the solution
when H — oo. _ '

We also study the asymptotic behavior of the free boundary when t = co and we
obtain an explicit expression with the same kind of behavior for the free boundary
as in the one-phase Stefan problem with a convective boundary condition which cor-
responds to the case with a temperature boundary condition at the fixed face. We
obtain some results for the disappearance of a phase. Finally we analyze the case’
when the liquid phase is a supercooled liquid.

AMS (MOS) Subject Classification. 35K20, 35K99

1. INTRODUCTION

In this paper we consider the two-phase unidimensional Stefan problem for a semi-
infinite material with a convective boundary condition at the fixed boundary, z = 0.

Specifically the mathematical problem consists of determining two functions,
uf(z,t) and v#(z,t), a function z = sf(t), called the free boundary, and a time
T such that (uf,v¥, s¥, T) satisfy the following equations, boundary and initial con-
ditions. For each positive H we consider:
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Problem Py :
peufl —kull =0, Dy ={(z,t):0<z<s"(t),0<t < T}, (1.1)
pavE — kvl =0, D, ={(z,t):z>s"(t),0<t < T}, (1.2)
uH(z,0) = p(z) >0, 0<z<s(0)=0", ' - (1.3)
vH(z,0) -= ¥(z) <0, z>b%, vF(c0,t) = 9(c0) <0, t>0, (1.4)
kauf(0,1) = Hw"(0,t) - f(t)), 0<t<T, (1.5)
vH(sH(t),t) = uH(sH(t),t) =0, .0< t < T, (1.6)
kioH(sH(t),t) — kauf (s (2),t) = pls¥(t), 0<t< T, (1.7)

where the phase-change temperature is assumed to be zero and H is the thermal
transfer coefficient (H > 0).

Very general results about the existence of classical solutions to the two-phase
Stefan problem have been obtained in Fasano and Primicerio (7], Friedman [9], Can-
non and Primicerio [4], Cannon and Primicerio [5). The asymptotic behavior for the
one-phase Stefan problem with temperature and flux conditions on the fixed bound-
ary z = 0 are considered in Cannon and Hill [2}, and Cannon and Primicerio (3],
respectively. .

In Solomon et al [13], the behavior of the solution with respect to the heat transfer
coefficient H and the asymptotic behavior of the free boundary in the two-phase case
are studied for the constant case f(t) = T > 0. In Tarzia and Turner [14], we
generalized this result for the one-phase problem in the case when f(t) is not a
constant. There it was considered the one-phase Stefan problem with a convective
boundary condition at the fixed face, given by the temperature of the external fluid
f(t) depending on time. It was proved that the asymptotic behavior of the free
boundary is the same that for the case where the temperature boundary condition
f(t) is giveﬁ at z = 0. Moreover, the explicit limit expression is also given. In this
paper we study the asymptotic behavior of the corresponding free boundary s(t)
when the time goes to infinity and we give an explicit expression for this behavior. In
Knaber [11], and in Aiki [1], a two-phase Stefan problem with very general boundary
condition at z = 0 are studied. In Fasano and Primicerio [8], a one-phase Stefan
problem for the supercooled liquid with a zero flux at the fixed face was considered.
In Comparini et al [6)], this problem was studied for a general flux g(¢). In Marangunic
and Turner [12], and in Turner [16], the two-phase Stefan problem for the supercooled
liquid with flux and temperature boundary conditions at the fixed faces z = 0 and
z = 1 was analyzed.

This paper is organized in five sections. In the first part of Section 1 we reformulate



The Asymptotic Behavior 315

the free boundary problem and we prove some preliminary results. In the second part
we show the monotone dependence of the solution with respect to the data and with
respect to the thermal transfer coefficient H. In the second section we consider
a two-phase Stefan problem with a temperature boundary condition on the fixed
face £ = 0 and we prove that the solution of the two-phase Stefan problem with
convective boundary condition is bounded by the solution of the two-phase Stefan
problem with temperature condition. In the third section we obtain the convergency
of the free boundary when t = co and we prove the convergency of the solution of the
problem with convective condition when H — oo to the solution of the problem with
temperature condition. For the multidimensional two-phase Stefan problem through
a variational inequality this asymptotic behavior was analized in Tarzia [15], where an
explicit expression is given. Analogously we can find a result for the unidimensional
two-phase Stefan problem, see e.g.- Friedman [10]. In this sense, this work generalizes
to two-phases the results obtained in Tarzia and Turner [14], where we prove the
asymptotic behavior of the free boundary of the one-phase Stefan problem. In Section
4 we discuss the relation between the disappearance of a phase and the total energy
supplied to the media. In the last section we consider a two-phase Stefan problem
analyzing the relation between the initial data, boundary data and the possibility of
continuing the solution for arbitrarily large time intervals.

In order to have existence and uniqueness of the solution we require the following
assumptions on the initial and boundary data:

i) Let ¢ = ¢(z) and ¥ = y(z) be positive and negative respectively piecewise
continuous functions.

ii) Let f = f(t) be a positive bounded piecewise continuous function.

ili) Compatibility conditions: f(0) > ¢(z) in (0,b), p(b¥) = ¢(b¥) = 0, k;¢'(0) =
H(p(0) — £(0)).

1.1. SOME PRELIMINARY RESULTS AND REFORMULATION
OF THE FREE BOUNDARY PROBLEM

Lemma 1. The temperatures uf(z,t) and v¥(z,t), under the above hypotheses on
the data, satisfy the following inequalities:

i) v¥ <0,
i) ufl > 0.

Proof. i) Since vH(z,0) = ¥(z) <0 for z > b¥ and v¥(s(t),t) = 0, then using
the maximum principle we obtain v¥(z,t) < 0.



316 Tarzia and Turner

ii) Since u¥(z,0) = ¢(z) > 0 and u¥(s¥(t),t) = 0, we will prove that u¥(0,t) >
0,t > 0. Therefore, let us suppose that there exists a first time tg > 0 such that
uH(0,t0) = 0, then u¥(0,¢5) = mmu"(z t), where Do = DN {t < to}. Now by

the maximum principle we obta.m that u(0,,) > 0, but this contradicts the
boundary condition

H, - H
ull(0,10) = —(u”(0,0) — f(t0)) = ——f(t0) < 0.
k, ks
Then u/(0,t) >0, ¢t > 0, and uf(z,t) > 0.
Lemma 2. If (v¥,u¥,s¥,T) is a solution of Problem Py, and v,z € L'(b¥,c0)

then, setting sH = s and b¥ = b for convenience in the notation, we have the following
equality:

pls(?) (1 + f 3(20) - lb( Z g) + /o b (—"?{{f—)go(z) dz

+/b°° (k +k.zk2) iz)d +/ Hf(r)dr (1.8)

3(t) 0 H
_/ Muu(,,t)dz_/ (k +,,k£k)"_(i_t_>d,,
0 2

a2 s(t) a)

where o; = ¥ = 1,2.
PECi
Proof. Consider the Green’s identity
// (sz - zL'w) dzdr = ) (wz: - zw:) dr + Edz ,
D, aD, a

where L denotes the heat operator Lu = u,, — lu,, a= , and L* its adjoint.

We take 2z =u” and w=1in D,, z = v¥ a.ndw—lmD—{(zt) s(t)<z <
¢, t >0}, with ¢ > 0.

We replace in the Green identity, take the limit when ¢ — oo, and obtain the first
integral representation:

b 0
pls(t) = plb + / -l-cztp(z) dz + / ﬂtb(_:z:) dz
0o M b @
t
- / kauf(0,7)dr (1.9)
0

()
——/ —u”(z t)dz—/ "(z t)dz.
o (¢) &1
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Now weset z=uf, w=zin D, 2= v w =z in D.. We replace in the Green

identity, take the limit when ¢ — 0o, then obtain the following integral representation:

s’(t) b2 b ka
pl—2—- = pli + /o ;;:up(:c) dz

+/; —It/)(.‘t dz+/ kzu"(O T)

Qaz agy

s(t) o0
—/ :cé-u"(z t)dz—/ zﬁ-v"(z,t) dz.
0 t)

Now if we consider (1.9) + ;—(1.10), obtain the relation (1.8).
2

(1.10)

o

Lemma 3. The temperatures v¥(z,t) and uf(z,t) satisfy the following inequalities:

i) uf(z,t) < f(2) in Dy,
ii) vl (z,t) > ¥(z) in Dy,

under the following hypotheses on the data: f(t) >0, ¢¥'(z) <0, and ¢"(z) > 0.

Proof. i) We define an auxiliary function

V(z,t) = f(t) - u?(z,1).

The function V satisfies the following problem in Ds:
LV = pc3Vi — kyVer = pea f(t) 2 0
V(z,0) = f(0) —¢(z) 2 0
V(s(t),t) = f(t) 2 0
kaVo(0,t) = —H(uH(0,t) — f(t)) = HV(0,1).
Since LV > 0, by the maximun principle we obtain V(z,t) > 0.
i) In the same way we define the auxiliary function

W(z,t) = v (z,t) - ¥(z)

which satisfies the following problem in D;:
paW, - kW = kn'/)”(x) >0
W(z,0) = vf(z,0) —¢(z) = 0
W(s(t),t) 20

We obtain W > 0 in D, by using the minimum principle.
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1.2. MONOTONE DEPENDENCE OF THE SOLUTION
WITH RESPECT TO THE DATA

Lemma 4. If (v, u¥ sH T),i = 1,2, are solutions of the Stefan problem (1.1)-(1.7)

s 2% Y5
corresponding to the data f;, i, ;i and b;, and if fi < fo, o1 < 2, ¥y < ¥y and
by < by, then s (t) < s¥(t) and ul! < ufl, v < of in their corresponding common
domains.

Proof. The proof is a straight-forward application of the maximun principle to the
auxiliary functions V = v§f — vl and U = ufl — ufl. O

1.3. MONOTONE DEPENDENCE OF THE SOLUTION WITH
RESPECT TO THE THERMAL TRANSFER COEFFICIENT H

Theorem 1. If (ufi vfi sHi T) i = 1,2, are solutions of the Stefan problem (1.1)-
(1.7) corresponding to the data H; and H; with Hy < H;, and f >0, then vHh <
vfs ubh < yH2) sH(t) < sM3(t) in the common domains where they are defined.

Proof. Suppose first that s#1(0) = b1 < bff2 = sH3(0), then s¥1(t) < s™2(t). K not,
there exists a first positive time to such that sH1(to) = s#3(to) and $71(t0) > $2(t,).
We define the functions:

U = uffs — in0<z<st), 0<t<t,,
V =offr — in sM2(t) < 2 < 00,0 < t < to.
These functions satisfy the following equations and conditions:
pely —koU.. =0, O<z<sf(t), 0<t<t,,
U(z,0)=0, 0<z<bdh,
U(sfi(t),t) = w2 (s™(2),8) >0, 0<t<t,,
kU=(0,) = (H, — Hy)(u™(0,t) — f(1)) + HU(0,1), 0<t<t,,
and
paVi—kiVee =0, sft)<z<oo, 0<t<ty,
V(z,0) =0, b < z < 00,

V(s™(t),t) = —oM (s (1),8) >0, 0<t<t,.
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Using the maximum principle we obtain V 2> 0.

In order to see that U > 0, first we suppose that there exists a t; < %o such
that U(0,t;) < 0 then U;(0,¢;) > 0. But this contradicts the boundary condition
kU (0,t) = (Ha— Hy)(u2(0,8)— f(¢))+ HiU(0,t) < 0, since H, > H, and uf? < f(1).
Then we conclude that U > 0.

Now, we shall prove that s#!(t) < s2(t). We compute U at the point (s (t0), t0),
namely:

U(s™ (to), to) = u™(s™(to), to) — u™t (s (to), to) = w*(s™(t0), t0) = 0.

Then the point (s (t),%0) = (s"2(t),%0) is a minimum for the function U in
0 <z < sy, (t), 0 <t<to,and by the maximum principle U.(s% (%), to) < 0.
In the same way we conclude that (s(Zo), o) is 2 minimum point for the function V

at its domain, and V(s(t), to) > 0. We plug these inequalities in the Stefan condition
for the free boundary and we have :

0> kQU,(SH' (to),to) -_ k,V;(s”' (to),to)
= (kauf® — kyol®)(s™ (t0), to) — (kaull* — k1" )(s™ (t0), o)

= —pls™ (to) + pls™ (t0) 2 0,

which is a contradiction. Then sHi(t) < sfa(t),t > 0.

The case bH' = b2 is analyzed by taking the limit of the previous result when
bH2 > bH1 and we take bH2 — bH1. O

2. THE CASE WHERE THE THERMAL TRANSFER
COEFFICIENT APPROACHES TO INFINITY

We consider the following two-phase Stefan problem for a semi-infinite material
with a temperature boundary condition on the fixed face z = 0.

We call this Problem P, which is given by:
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porus — kpuze =0,  0<z < s(t), (2.1)
porv —kwss =0,  s(t) <z < oo, (2.2)
wz,0)=p(z) 20, 0<z<b, (2.3)

o(z,0)= () <0,  b<z < oo, (2.4)

v(00,0) =¥(c0),  0<t, (2.5)

u(0,t) = f(t) >0, 0<t<T, (2.6)

u(s(t),t) = v(s(t),t) =0,  0<t<T, 2.7)
kyoe(s(t), ) ~ kyus(s(t),£) = pli(t), 0<t<T. (2.8)

Theorem 2. The solution (u,v,s,T) of Problem P, and the solution (u",v¥, sH T)
of Problem Py satisfy the following inequalities:

i) sH(t) < s(t), t >0,
i)uf <u,0<z<sf(t),0<t<T,
W) v <v,s(t)<z<00,0<t<T,

provided f > 0, b¥ < b, and H > 0.

Proof. Since s#(0) = b < 5(0) = b, then s#(t) < s(t), t > 0. We denote by ¢,
the first positive time such that s#(t;) = s(to) and $(to) < $¥(to). We define the
functions:

Wy =u—ufl, 0<z<sf(t), 0<t<t,,
W, =v-—¥, s(t) <z, 0<t<to
The functions W, and W, satisfy the following equations:
pc2(Wa) — ko(W).: = 0, 0<z< s"(t), 0<t<ty,
Wy(z,0)=0, 0<z<b¥,

Wa(s¥(t),t) = u(s"(t),0) > 0, 0<t<ty,

Wi(0,1) = u(0,) — u¥(0,8) > f(t) - f(1)) =0,
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since uf1(0,t) < f(1), (f >0). Then Wy >0in 0 < z < s¥(t),0 < t < to. Since
Wy (s (%), to) = Wa(s(to), o) = u(s(to),to0) = 0, the point (s (to), to) is the minimum
point for the function W, then by the maximum principle we obtain

(W2)z(s" (to), to) = (W2)z(s(to), to) < 0.

In the same way we obtain that W, > 0 in the domain s(t) < z < o0,t < i,
and the point (s(%o), o) is the minimum for W), then by the maximum principle we

conclude

(Wh):z(s"(to), to) = (Wh)=(s(to), to) > 0.

Now we compute
0 > k3(W3)s — ki(W))s(s" (t0), to) = pl(5" (to) — $(t0)) > 0,

which is a contradiction. Then s¥(t) < s(t),t > 0, H > 0. 0

3. ASYMPTOTIC BEHAVIOR OF THE FREE BOUNDARY

We will study the asymptotic behavior of the free boundary s¥(t) when ¢t = oo or
H — oo. In Tarzia and Turner [14], was considered the global existence in a general
Stefan-like problem.

Theorem 3. If (uff,v¥ s¥ T) is the solution of Problem Py, and 4,z € L'(b¥, 0),
then we have the following properties: :

1 o0 . : —_ : H _ .00

i) If [ f(r)dr < 00 and ‘lLrg f(t) =0, then ‘1_1_’1'28 (t) = s§,

where s§j is the unique positive solution of the equation of second order given
by

» H
lz{l+—2z) =
pz( +2kzz) b,

where

buH
= plb
b ”'”(” 2k2>+/o

b‘"

(ks +yH) 2 gy

+/b°° (k.+%‘—) ?g—)dwfowﬂf(r)df,

H

provided that D > 0.
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H t )
ii) If f° f(r)dr = oo, then ‘ll’rg %(%)- = 1, where o(t) is the free boundary of the

following problem:

For each to > 0, let (o, Vi, V2) be the solution to the following problem P, :

pca(Va)s = ka(Va)esy 0 <z < a(t), t > to,
pci(V1)e = ki(Vh)zz, z > ot), t > to,
W0 =0, 0<z < s (t),
Vi(z,0) = v (z,t0),  z 2 s (to),
Vi(oo,t) = v¥(c0,t0), > to,
ka(V2)=(0,t) = H(V2(0,t) - f(t)),  t>to,
Va(o(t),t) = V;(cr(t),f) = b, t > to,
a(to) = 0,

k1 (Vi)s(o(2),) — ka(Va)e((t), t) = pla(t), > to.

Proof. i) First we find bounds for the functions u” and v*.

We define the auxiliary function U which satisfies the following:

Problem Py
pcUy — kU = 0, 0<z<o00, t>0,
kU.(0,t) = HU(0,t) - f(t)), t>0,

‘P(I)’ 0<z< bH,
U(z,0) =
0, bH < z.

Using the maximum principle we can prove that uf(z,t) < U(z,t), for
0 < z < sH(t), t > 0. Moreover if limy_,o f(t) = 0, then lim;,o U(z,t) = 0, by
Friedman [9].

Now we define the function V such that Problem Py is satisfied:
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Problem Py

paVi — kiVer =0, 0<z<oo, t>0,
v(0,t) =0, t>0,
V(o00,t) = ¥(o0), t>0,

{w(b") =0, 0<z <A,
V(z,0) =
¥(z), bH < z.

It follows that V(z,t) < 0 and V(z,t) < vH(z,t) in s#(t) <z < co. It is known
that lim V(z,t) = 0 by Friedman [9].

=0
Using the integral representation (1.8) and the bounds for ufl and v¥ we obtain
the following inequalities:

(B s [ )
o [ Hieran= [ e Lo g
<ot (14 5-5(0) G
o (1 52) [ [ o) S0

V(z, t)

a)

t oo kl
+/o Hf(f)df-/‘ﬂ(t)(k +z sz)

From the above inequality we can conclude that the lim s¥(t) exists, then

t—o0
taking limit when ¢t — oo in (3.1) we obtain:
: H b H b (z)
. H S H Y P
‘l_!.rgpls (t) (l + 2% s (t)) plb (1 + T ) +/o (k2 + :J:H)—a2 dzr

[ (oeee) e e

i1) The proof is the following. Using the maximum principle we can prove that
o(t) < s¥(t), t > tp and

Va(z,t) < u¥(z,t), Vi(z,t) < v¥(z,t) in the corresponding domains, for t > to.
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Now, we use the integral representation (1.8) with the adequate initial condition

at t = to and we get

pls" (1) ( + -H—S"(t)) = pls* (to) (1 + HS;)H )

sH (o) t hae t
+/ (k1+zhH)L(iL)dz +/ (ks + H)E(—zll)
1]

ka oz 2 (to)
' v wf(z,t)
+/ Hf(r)dr —-/o (k1+ k2> —az
to) H
_/ (k,+zH)” ( t)d < plsH (to). (1+3 ék°) )
"o " k 2”'( to)
[ 0 ( oo 1 v I,
ki 4T H ) ——% 4
+/° (kg + o H) 252t +/’"(‘o)(. oz ) o 4o

t ’(‘) |7/ 00 V
+ [Hrnar - [ (kz+zH)—2dz-/ (k,+,k_)__nd,
to 0 a3 a(t) 2/ O

= C(to) + plo(?) (1 + —a(t))

where

H sH (o) H
C(to) = pls"(to) (l + M) + / (kz + IH)u (:c,to) dz.
2k, A o7

Then we have ok
a*(t) < sn(t) < o*(t) + Clto) -

Taking the limit when ¢t = oo in the above inequalities and using the fact that

) oo s"(t)
‘l_n'rg o(t) = oo (since fj° f(r)dr = o0), then lim =1.

t—o00 a’( )

a

Lemma 5. If (uf,v¥,s#,T) is a solution of Problem Py, with f > 0 and H > 0,
then

‘ $ [+ 2 0t c
/o(u"(O,T) —- f(r))dr < [s(t)Cel + a'}l{f"( ) * ],

where

e Ry
C= /baltl)(:c)d:c>0

and s(t) is the free boundary of the problem P,.

Proof. Using the integral representation (1.9) we can write
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¢ | ! "
H/(; (f(r) —u"(0,7))dr = plsH(t) — plb — /; %(p(z) dzr

oo aH (1)
-—/ ﬁ¢(z)d1+/ Ez—u"(z,t) dz
b ay 0 Q9

+ / " B (g, 0)dz < pls (1) - /,,m —(z)dz + s”(t)—- max f(7)

H(g) ay (0.)

<HOb+ 2 flggl - [ bl ds

that is the thesis. (]

Lemma 6. If (u” v¥ s¥ T) is a solution of Problem Py and the data satisfy f>o,
then (uf,vfl sH, T) and (u,v,s,T) satisfy the followmg inequality

0 < PO =) | /'”“’ cha(u(z,t) - w(z,1)

2 aq

® zky(v(z,t) - v¥(z,t)) u ,
+/’m dz</ ka(f(r) — u (0, 7)) dr .

o

Proof. We use the integral representation (1.10) for both pairs: (u¥, v, s¥ T)and
(u,v,s,T) and we obtain

3(t b? bk
plf%-)- = ol +/0 ;:-z(p(z)d:t

oo k t
+ / 5 (z)dz + / kauH (0, 7) dr (3.2)
b @ 0
l"(!) o0
-—/ :z:-kluH(:t,t)dz:—/ zf—vﬂ(: t)dr,
0 _ 2] sH(t) aj
Z(t) b2

b
—p13+/° -z—:z(p(x)dx
oo k t *
+/b ;l:z¢(z)dz+/o‘ kaf(r)dr (3.3)

l(l) k o0
—/ z—zu(z,t)dz—/ zﬂv(z,t)d:c.
0 a3 s(t) 2]

Then we substract s} from s? and using the fact that u > 0 and v# < 0 we obtain
the thesis. . a



326 Tarzia and Turner

Theorem 4. (Convergency when H — o0). If (uf,vfl | sH T) is a solution of Prob-
lem Py, (u,v,s,T) is a solution of Problem P and the data satisfies f > 0, then

i) limy 400 SH(t) = s(t);

i) limpy e uf (z,t) = u(z,t) and limy,00 vi(z,t) = v(z,t) for all compact sets
included in their corresponding domains.

Proof. Using Lemmas 5 and 6 we can write the following inequality:

mwm—ﬁm»f[“uhwmnﬁwuwmz

0<
0- 2 s

®  zky(v(z,t) — vi(z,t)) [s(t)(pl + &2 2 || fllio,ep) + C]
+ /;"(t) - dz < ks 7

Since sf <'s, uff <wuand v¥ < v in their corresponding domains for all positive
H, then the three left hand side members of the inequality are positive, and we obtain:

pl(s*(t) — s%,(t) <k [s()(pl + & 1/ ll0.9) + C1
2 -— 3 H b
for all H. Let us tend H to infinity for each ¢t > 0, then

0<

lim sf(t) = s(t), Vt>o0.

—$00

We can do the same with the difference u — u” ‘and v — v¥. 0

It is interesting to study the asymptotic behavior of the free boundary s(t). In
this direction we have the following results.

Theorem 5. If (u¥,v# sH T) is a solution of Problem Py, for H > 0 and the
following conditions:

i) /:o f(7)dr = oo, / f(r)dr <oo Vi, to and lime,e VIf(t) = oo,

it) lim ma.x f(r)= li_{!go "f"[to.oo) =0

to —oo [to

are satisfied, then
pls(e)(1 + HL5"(1)) _

e H [ f(r)dr

?

~ forall H> 0.
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Proof. We will use the definition of the functions V; and V; of Theorem 1. We
write the integral representation (1.8) for (W4, V3,0):

ptot®) (1 + oot = - [ Dy io s [ iy

az .

oo had z,t
- / 1 (k‘ + z-k—l-H) Vi(z,t)dz + / (kr + = H )____(_o)
a(t) N k aH(to) o

Using the maximum principle and the fact that Va(z,t) < max(,,c0) f(7), we have:

H °® (kp+ zH
prott) (14 o)) 2 - [ LD gl s

+/°° (ks 2H )” (’ t°)d +H/ f(r)dr

aH (¢)
(kao(t) + Ho(t)?) - (34)

az

+/o°°(k,+ cH: )” (“°)d +H/fr)dr

= = [ flli0

and then
U(t)(l + HU(t)) > fl: Hf(T)dT + fooo(kl + zH%)v‘:;toldz
2k2 - (pl + "ﬂkaznz'qkz) ’

since v > V>V, 2> 0(t),t >t

H

Now for (u#,v#,s¥ T) we have the following relations obtained from (1.8)

plsf(t) (1 + ——s”(t)) D(H,b,¢,¢) +/ Hf(r)dr

sH() k oo
— / (—E-i-z—l{)uy(z’t) dz — / 1 (kl + .‘B%—) 'UH(.‘D, t) dz
0 2

Qs a”(t) Qg

t 00
< D(H,bp )+ [ Hir)dr - / - (k+’i—’°) V(z,t)dz,

where

D(H,b,so,w)=ptb(1+—) /""”H) (2) dz

* 1 .‘Bkl
+/'; -a—l(kl-l- k2) (z)dz
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¢t
Since we prove o(t) < s¥(t), then dividing by H/ f(r) dr we have
0

Jo Hf(r)dr — E(t) . plsH(t) (1 + ;szsH(t))
(P‘ + ﬁllflllgo,q) Hf f(rydr — H IS f(r) dr

D(H,b,p,%) + E(t)
s+ H [, f(r)dr

]

where
o 1 Hk,
= - — | V(z,t)d

E(t) /; p (k1+a: kz) (z,t) dz.

We have HE .
1

B < 2y ., + 2 o vellevlly, .

then

:-»oof f(r )d a k ) :-mf f(.,-)d.,.
First we take limit when ¢ = oo, and then when t; & co. Therefore we obtain

the following inequality:

pls (1) (1+ fLs" (1))
1< lim - <
t—+o0 H [, f(r)dr
that is the thesis. : 0O

Corollary 1. Under the hypotheses of Theorem 5 we have the following result for all
H>0:

H _
lim s () =1,

t—o0 /'2_:12 fo‘ f(‘r)d‘r

which gives an ezplicit formula for the asymptotic behavior for the free boundary s”
which is independent of the positive heat transfer coefficient H.

Remark 1. The hypotheses for f in Theorem 5 are satisfied when f verifies the
asymptotic condition f ~ ¢~ with 0 < a < ] when t — oo.
Moreover, in this case the free boundary s”(t) has the asymptotic behavior

sH(t) ~ t* as t — oo independently of H, where the coefficient u is given by
l-a 11

#"—Z—G( )

Remark 2. The result of Corollary 1 shows that the free boundary s¥(t) has the
same kind of behavior as for the one-phase Stefan problem as it was proved in Tarzia
and Turner {14). We emphasize that the limit is independent of the thermal transfer
coefficient H.
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4. DISAPPEARANCE OF A PHASE
In this section we discuss the relation between the disappearance of a phase and

the total energy supplied to the media. We use the following definitions:

(kg+H:v)M, 0 <z<by,
o(z) =
(k +-1H)¢( ), by < z < o0,

Ts = inf{t*, t* >0, s¥(¢*) =8 or s”(t*)— B = }, 0<d<by

To = sup {Ts},
0<i<by
Q(t) = plb" (l + szH) + /0°° ®(z) d:l;' + -/o‘ Hf(r)dr.

H

From now on, we write s¥ = s# = s for convenience in the notation.

Theorem 6. If0 < Q(t) < oo for all t > 0, then Ty = 0o, which means that neither
phase disappears in a finite time period.

Proof. Suppose Tp < oo, then there exists a sequence {§;} with lims, 0 Ts, = To,
such that s(Tj;) — 0 or s(Ty) — oo as §; = 0 or & — bH. Suppose s(T5) = 0 as
d; = 0, then using the integral representation of Lemma 2, we obtain

pls(Ts,) (1 + Elz—zs(T;,.)) = plbH (1 + %) + /ooo ®(z)dz + " Hf(r) dr

_/'(T‘)(k N ) izt

Q3.

0 H
_/ (k1+ 1:le> vi(z,t) ds
'(TJ.') k2 (29

*(Ts;) uf(z
> Q(TL) - /T (ka4 2L @0 g

Qs

since v¥ < 0. Therefore, as s(Ts;) & 0 as ; = 0, then 0 > Q(To), which contradicts
the assumption of the theorem.
For the case s(Ts;) =& oo as §; — b, we now compute:

pls(Te)(1 + 2508

) *® zk\H vH(z,t)
T ) S Q- [t B,

since u¥ > 0, therefore if S(TJ ) = oo as §; = b, then Q(T,) > oo, whnch contradicts
the assumption of the theorem. 0
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Recalling Problems Py and Py in Theorem 3 we demonstrate the following result.

Theorem 7. If there exists ¢ T** such that

bH - T
plb(1+§E>+/ O(z)dr + ; Hf(r)dr

/ (ki + = Hk‘)K(x—T-—)dzd,
k (631

then To < T**.

Proof. Suppose that the inequality holds and To > T**. Then we define

oo t c(t H .‘I:
H(t)=/0 <I>(:c)da:+/0 Hf(-r)dr——/o (ks + zH)E22H) (2t)d

o H
_/ (kl + zk,H) v (z,t) de.
(1) k, Q1

H is a continuous function and H(0) = 0. We compute

) T ] k 1%
H(T*) 5/ (z) dz + Hf(r)dr—/ (k, 42 ‘H) Y i
0 0 0 k2 o
bH
< — ==
< —plb (1 + 2k2)
Then there exists a 0 < ¢, < T** such that
, _ bHY Hs(ty) bH
H(tz) = —plb (1 + ok ) = —pls(ty) (1 + T ) plb(1 + m),
that is pls(t;) (1 + 1(2'—22)-}1) = 0, then s(¢3) = 0 which is a contradiction. O

5. THE TWO-PHASE STEFAN PROBLEM FOR A SUPERCOOLED
LIQUID AND A CLASSICAL SOLID WITH A CONVECTIVE
BOUNDARY CONDITION

In this section we consider a two phase Stefan problem analyzing the relation
between the initial and boundary data, and the possibility of continuing the solution
for arbitrarily large time intervals. v

Moreover, if the solution exists, then three cases can occur, see Cannon and Prim-
icerio {3].

(A) The problem has a solution with arbitrarily large t.
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(B) There exists a constant Tg > 0 such that li‘r_r’l”i.gf s(t) = 0 or limsup s(t) = oo.

t=Tg
(C) There exists a constant Tc > 0 such that li‘r_r’l”i_rc\f s(t) > 0or h:r_l”srgp s(t) = o0

and limsup [$(¢)} = oo.
t=4Tc

We will consider two cases:

(i) Case I. The supercooled liqguid. From now on we consider the case ¢ < 0,
f <0and ¢ <0. In this case the liquid is supercooled and the solid is classic. A
first simple result is Lemma 8 below which uses the function Q(t) which was defined

in Section 4.
Lemma 7. If (uf,v¥#,5,T) is a solution of Problem Py, then:

a) u <0, v¥ <0, in their respective domains,

b) ull >0, ve <0 onz=s(t),

c) s(t) is a decreasing function in (0,T),

4) Q(t) < pls(t) (1+ HU) < plb(1+ ££2), ¢ > 0,

e) Q(t) is a decreasing function in (0,T).
Proof. (a),(b) and (c) : Since ¢ < 0 and f < 0, by using the maximum principle
we can obtain u¥ < 0; in the same way, since ¥ < 0, then v¥ < 0. In both cases v¥
and uf have a maximum at z = s(t), then uf(s(t),t) > 0 and v¥(s(t),t) < 0. Now

using the abové inequalities in the Stefan condition we obtain s < 0. (d) is obtained
replacing (a) in the integral representation of Lemma 2. In order to prove (e) we get

Q(t)= Hf(t) 0. a

We proceed to characterize cases (A), (B) and (C) depending on the value of Q(t).

Lemma 8. Case (B) = Q(Tg) <0.

Proof. If we take limit when t — Tp in the integral representation, we obtain:

Q(Ts) = /;w (k. + zf'-H) ili(f:-‘—)dz <0.

kz a)

a

Lemma 9. Let (u¥, v, s, T) be a solution of Problem Py. We suppose st = lin71. s(t) >
t—
0, and there ezist d € (0,s(T)),d <1 -b,2 € (0,1)andz; > 0.
If the solution (uff, v s, T) satisfies

ufl(s(t)—d,t) < -z, and VH(s(t) +d,t)> -2, in (0,T),
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then ‘
$(t) > —k, forsome k>0.

Proof. We can use a similar technique as in Marangunic and Turner {12] because

the proof is independent of the value of uf’ in the boundary. O
Corollary 2. If Case (C) occurs, the isotherm uf = —1 exits and reaches the free
boundary.

Lemma 10. If f € L'(0,0), ‘l_i’m f(t) = 0, then case (A) = 0 < Q(t) <
bH

b (l + m)

Proof. Lettingt — oo in the integral representation (1.8), and using llm uf(z,t) =

0= lj’m off (:l: t) uniformly in z, we obtain:

tims(t) (1452 = g,

then bH
< -
0 Q(t)<b(l+2k)

Lemma 11. Suppose to < T, let ‘lixa s(t) > 0 and
—ty".

Q(t) = plb (1 + —-) / Hf(r)dr +/ ®(z)dz > 0.
If we define a function n as
max{z € [0,s(t)] : u¥(z,t) < —1}
n(t) =
0, if uf(z,t) > -1,z € [0,s(t)],

then limsup n(t) < lim s(t).
t—tg t—+to
Proof. The proof is the same as this done in Comparini et al [6]. a

Lemma 12. Case (C) = Q(T¢) <0.

Proof. Suppose Q(Tc) > 0. Then by using Lemma 12, the free boundary should be
separated from the isoterm u” = —1, contradicting the hypothesis of case (¢). O

Lemma 13. IfQ(t) > 0 for every t > 0, then we have case (A).
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Proof. If we have case (B), then Q(Ts) < 0, contradicting the hypothesis. If we
have case (C), then Q(T¢) < 0, contradicting the hypothesis, then the only possibility

s the case (A). =

Remark 3. Note that for Q < 0, it is impossible to characterize cases (B) and
(C) only by the value of Q(t), they depend on the initial configuration ¥, ¢ and on
the boundary data f (see also Marangunic and Turner {12]), this in contrast to the
one-phase problem in Fasano and Primicerio 8].

(i) Case II: The superheated solid.

The initial temperature for the liquid will be positive, i.e. u(z,0) = ¢(z) > 0 and
the initial temperature for the solid will be positive, i.e. v(z,0) = ¥(z) = 0. In this
case the solid is superheated and the liquid is classical.

In the same way as before we can obtain analogous results for this case.
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