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Abstract-we consider the one-phase Stefan problem with a convective boundary condition at 
the fixed face, given by the temperature of the external fluid (G(t)) depending on time. We study 
the asymptotic behavior of the corresponding free boundary so(t) when the time goes to infinity and 

we obtain limt,, (so(t)/,/-) = 1 for all heat transfer coefficients p > 0. 
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In this paper, we study the asymptotic behavior when t + 00 of the following parabolic free 
boundary problem (one-phase Stefan problem with a convective boundary condition on the fixed 
boundary x = 0): 

Problem (P): 

z zz = Zt, in D,; (1) 
s(0) = 1; (2) 

25 (s(t), t) = 0, O<t<T; (3) 
% (s(t),t) = -i(t), O<t<T; (4 

45 0) = cp(z), O<a:<l; (5) 
zz(O, t) = P MO, t) - WI, O<t<T, (6) 

where DT = {(z,t) 1 0 < cc < s(t), 0 < t < T}, ,d > 0, cp(z) 2 0, 0 < z < 1, G(t) 2 0, t > 0 and 
the compatibility conditions p’(O) = p [v(O) - G(O)] and ~(1) = 0. 

Existence and uniqueness for Problem (P) is given in [l]. Asymptotic behaviors for the one- 
phase problem with temperature boundary condition on the fixed face are given by [2,3]. 

For the particular case G(t) = Const > 0, the study of the asymptotic behavior is obtained 
by using the variational inequality for the multidimensional case [4,5] and in [6] for the one- 
dimensional case. A general boundary condition is considered in [7,8] by using a quasi-variational 
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inequality for the one-dimensional case. The same problem for the supercooled Stefan problem 
(p(x) 5 0, G(t) < 0) is considered in [9]. 

THEOREM 1. Let (T, so, zp) be a solution of Problem (P) satisfying the following hypotheses 
on cp and G. 

d(x) 5 0 for 0 < 2 5 1; (HI) 
G(t) 2 0, for t > 0; (JW 

;y+) 5 G(0); (H3) 

then 

(a) zg(x, t) 5 z&,(x, t) in DT, sp(t) 5 SW(t) VP > 0, t > 0. 

(b) PI I P2, th en ~8~ (2, t) 5 zp2 (2, t) in DT and spI (t) I sp2 (t). 

PROOF. This is obtained by using the maximum principle. 

LEMMA 2. Problem (P) depends monotonically on G. 

PROOF. This is obtained by using the maximum principle. 

THEOREM 3. 

(4 

(b) 

If&O0 G(r) dr < co, then limt_+oo s(t) = s, where s, = (dm - 1)/p is the unique 
positive solution of the equation 

P II: 1+5x 
( > 

=A(@,cp,G), 5 > 1, 

where A@, (p, G) = 1+ P/2 + J,,r(l+ PC)cp(t) 4 + P_&,” G(r) dr. 
Let (s, z) be a solution of Problem (P) with &O” G(r) dr = 00. For each to > 0, Jet (a, v) be 
the solution of the following problems: 

(i) vxx = vt, 0 < z < a(t), t > to; 
(ii) vz(O, t) = p[v(O, t) - G(t)], t > to; 

(iii) v(o(t), t) = 0, t > to; 
(iv) a(t0) = 0; 
(v) c+(t) = -v,(a(t),t), t > to. 

Then we obtain 
1 < ( ) s(t) 2 < 1 + c(to) 
- a(t) - c+(t) ’ t > to, 

where 

C(b)) = s2(to) + - 
2s(to) + 2 &+‘)(l+ Pz).z(z, to) dz 

P P 
7 

and 
lim s(t) = 1 

t+ca o(t) . 

PROOF. (a) The solution of the Problem (P) satisfies 

s(t) (1 + ;s(t)) = Q(t) - ~‘@)+,t)dl: I Q(t) I A(P,cp,G), 

where Q(t) = 1 + P/2 + Ji(l+ PZ)CP(Z) dx + P _&i G(r) dr. 
Thus we obtain s(t) i so0 for t 2 0. 



One-Phase Stefan Problem 23 

When the function G has compact support, let W be the solution of the following problems: 

(i) Wt = W,,, 0 < x < s,; 

(iii) W(s,, t) = 0, t > 0; 
(iv) W,(O, t) = p[W(O, t) - G(t)], t > 0. 

Using the maximum principle, we obtain ~(5, t) 5 W(x, t) in & and we deduce that 

J s(t) 
lim 

t-+ca 0 
(1 + /?x)z(z, t) dx = 0. 

Then the proposition holds. 
We have to complete the proof for general G not necessarily with compact support. Let 

G,(t) = 
G(t), 0 < t < n, 
o 

, t > n. 

For each G,, we have a problem noted P, for z, and s,. Since G, has compact support 
limt_+oo sn(t) = snoo. Using monotonicity, it follows that sn < sm, for all n < m (since G, < Gm), 
and s n.03 I &ncc and limn+oo s,, = sex, (lim,+,, G, = G). 

(b) Using the maximum principle and the fact that a(t) < s(t) for t > to, we obtain z(z, t) > 
~(2, t), 0 < z < a(t), t > to. Now, we use an integral representation associated to Problem (P), 
with an adequate initial condition at t = to and we get 

s(t) + ps2(t) l=s(t)(l+;s(t)) 

< W(to) + - 2 
1” ,OG(Q-) dr - I”‘“’ (1 + /?z) v (z, t) dx 

then 02(t) 5 s2(t) 5 a2(tj + C(h), t > to, from which we obtain the result. 1 

THEOREM 4. Let (T, sp, zp) be a solution of Problem (P) with the hypothesis (H3); then if 

J 
t 

G(T) d,r = cm, 
0 J t G(T) d7 < 00, for all t and to, 

to 

and limt,,, maxIt,,+,) G(r) = limt,-m llGll[to,a) = 0, we have 

PROOF. We will use the definition of the function w(x, t) of Theorem 3(b). 
If we write an integral representation for the pair (a, V) = (00, VP) and use the maximum 

principle, we obtain ~p(x, t) 5 [[G/l lt,,,tl and then 

J 
t 

2 to 
W-(T) d-r - lIGll~to,ty# 
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Thus we obtain 
P St”, G(T) d7 
1 + IIGllpo,t~ Iffp(t) (1+&3w). 

For (so,+), we have 

q(t) (1 + $dt)) 5 Q(t) = WA cp) + I’ W(T) c-17. 

Since o@(t) < so(t), dividing by p $ G(T) dr and taking the limit when t + 0;) and the limit 
when to - co, the inequality becomes 

15 lim s&) (1 + (Pl2)s,(t)) 
t+w P s,” G(T) dT 

<_ 1. 

COROLLARY 5. (Convergence when p - oo.) If (sp, zp) is a solution of the Problem (P) and 
(s oo, z,) is a solution of the Problem (Pa), with the hypotheses (Hl), (H2) and (H3), then 

(i) limp,, sp(t) = soo(t) for each t > 0, 
(ii) limp,, zp(z, t) = zoo(q t) for each 0 I z < SW(t), for each t > 0. 

PROOF. The solutions zp and z, satisfy the following inequality for all p: 

J 
SP (t) 

05 x (zod~, t> - Z&G t>) dz + 
(&(t) - s;(t)) 

0 2 
5 y [l + l[Gllt]. 

Using the fact that so(t) 5 SW(t) and zp I zoo for all ,6, the left-hand side terms of the inequality 
are positive. Thus, 

05 
ecJ(t) - s;(t) < soQ(t> 

2 - 4 (1 + IPllt) for all p. 

Letting /I tend to infinity for each t > 0, then limp-+, sp(t) = SW(t) and limp-, SoSrnCt) 
x(z~(z, t) - z~(z, t))da: = 0. Then we can conclude limp,, zp(s, t) = .&(z, t) for each 

05 2 < SW(t), for each t > 0. I 
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