The Asymptotic Behavior for the One-Phase Stefan Problem with a Convective Boundary Condition

D. A. Tarzia
Dpto. Mat., FCE, Univ. Austral, Paraguay 1950, (2000) Rosario, Argentina
C. V. Turner
FaMAF, UNC., Ciudad Universitaria, (5016) Córdoba, Argentina

(Received and accepted November 1995)

Abstract

We consider the one-phase Stefan problem with a convective boundary condition at the fixed face, given by the temperature of the external fluid $(G(t))$ depending on time. We study the asymptotic behavior of the corresponding free boundary $s_{\beta}(t)$ when the time goes to infinity and we obtain $\lim _{t \rightarrow \infty}\left(s_{\beta}(t) / \sqrt{2 \int_{0}^{t} G(\tau) d \tau}\right)=1$ for all heat transfer coefficients $\beta>0$.

Keywords-One-phase Stefan problem, Phase change process, Asymptotic behavior, Melting, Free boundary problem.

In this paper, we study the asymptotic behavior when $t \rightarrow \infty$ of the following parabolic free boundary problem (one-phase Stefan problem with a convective boundary condition on the fixed boundary $x=0$):

Problem (P):

$$
\begin{align*}
z_{x x} & =z_{t}, & & \text { in } D_{T} ; \tag{1}\\
s(0) & =1 ; & & \tag{2}\\
z(s(t), t) & =0, & & 0<t<T ; \tag{3}\\
z_{x}(s(t), t) & =-\dot{s}(t), & & 0<t<T ; \tag{4}\\
z(x, 0) & =\varphi(x), & & 0<x<1 ; \tag{5}\\
z_{x}(0, t) & =\beta[z(0, t)-G(t)], & & 0<t<T, \tag{6}
\end{align*}
$$

where $D_{T}=\{(x, t) \mid 0<x<s(t), 0<t<T\}, \beta>0, \varphi(x) \geq 0,0<x<1, G(t) \geq 0, t>0$ and the compatibility conditions $\varphi^{\prime}(0)=\beta[\varphi(0)-G(0)]$ and $\varphi(1)=0$.

Existence and uniqueness for Problem (P) is given in [1]. Asymptotic behaviors for the onephase problem with temperature boundary condition on the fixed face are given by [2,3].

For the particular case $G(t)=$ Const >0, the study of the asymptotic behavior is obtained by using the variational inequality for the multidimensional case $[4,5]$ and in [6] for the onedimensional case. A general boundary condition is considered in $[7,8]$ by using a quasi-variational

[^0]inequality for the one-dimensional case. The same problem for the supercooled Stefan problem $(\varphi(x) \leq 0, G(t) \leq 0)$ is considered in [9].

Theorem 1. Let $\left(T, s_{\beta}, z_{\beta}\right)$ be a solution of Problem (P) satisfying the following hypotheses on φ and G.

$$
\begin{align*}
\varphi^{\prime}(x) & \leq 0 \quad \text { for } 0 \leq x \leq 1 ; \tag{H1}\\
\dot{G}(t) & \geq 0, \quad \text { for } t>0 ; \tag{H2}\\
\max _{[0,1]} \varphi(x) & \leq G(0) ; \tag{H3}
\end{align*}
$$

then
(a) $z_{\beta}(x, t) \leq z_{\infty}(x, t)$ in $D_{T}, s_{\beta}(t) \leq s_{\infty}(t) \forall \beta>0, t>0$.
(b) $\beta_{1} \leq \beta_{2}$, then $z_{\beta_{1}}(x, t) \leq z_{\beta_{2}}(x, t)$ in D_{T} and $s_{\beta_{1}}(t) \leq s_{\beta_{2}}(t)$.

Proof. This is obtained by using the maximum principle.
Lemma 2. Problem (P) depends monotonically on G.
Proof. This is obtained by using the maximum principle.

Theorem 3.

(a) If $\int_{0}^{\infty} G(\tau) d \tau<\infty$, then $\lim _{t \rightarrow \infty} s(t)=s_{\infty}$ where $s_{\infty}=(\sqrt{1+2 \beta A}-1) / \beta$ is the unique positive solution of the equation

$$
x\left(1+\frac{\beta}{2} x\right)=A(\beta, \varphi, G), \quad x>1
$$

where $A(\beta, \varphi, G)=1+\beta / 2+\int_{0}^{1}(1+\beta \xi) \varphi(\xi) d \xi+\beta \int_{0}^{\infty} G(\tau) d \tau$.
(b) Let (s, z) be a solution of Problem (P) with $\int_{0}^{\infty} G(\tau) d \tau=\infty$. For each $t_{0} \geq 0$, let (σ, v) be the solution of the following problems:
(i) $v_{x x}=v_{t}, 0<x<\sigma(t), t>t_{0}$;
(ii) $v_{x}(0, t)=\beta[v(0, t)-G(t)], t>t_{0}$;
(iii) $v(\sigma(t), t)=0, t>t_{0}$;
(iv) $\sigma\left(t_{0}\right)=0$;
(v) $\dot{\sigma}(t)=-v_{x}(\sigma(t), t), t>t_{0}$.

Then we obtain

$$
1 \leq\left(\frac{s(t)}{\sigma(t)}\right)^{2} \leq 1+\frac{C\left(t_{0}\right)}{\sigma^{2}(t)}, \quad t>t_{0}
$$

where

$$
C\left(t_{0}\right)=s^{2}\left(t_{0}\right)+\frac{2 s\left(t_{0}\right)}{\beta}+\frac{2 \int_{0}^{s\left(t_{0}\right)}(1+\beta x) z\left(x, t_{0}\right) d x}{\beta}
$$

and

$$
\lim _{t \rightarrow \infty} \frac{s(t)}{\sigma(t)}=1
$$

Proof. (a) The solution of the Problem (P) satisfies

$$
s(t)\left(1+\frac{\beta}{2} s(t)\right)=Q(t)-\int_{0}^{s(t)} z(x, t) d x \leq Q(t) \leq A(\beta, \varphi, G),
$$

where $Q(t)=1+\beta / 2+\int_{0}^{1}(1+\beta x) \varphi(x) d x+\beta \int_{0}^{t} G(\tau) d \tau$.
Thus we obtain $s(t) \leq s_{\infty}$ for $t \geq 0$.

When the function G has compact support, let W be the solution of the following problems:
(i) $W_{t}=W_{x x}, 0<x<s_{\infty}$;
(ii) $W(x, 0)= \begin{cases}\varphi(x) & \text { if } 0<x<1, \\ 0 & \text { if } 1<x<s_{\infty} ;\end{cases}$
(iii) $W\left(s_{\infty}, t\right)=0, t>0$;
(iv) $W_{x}(0, t)=\beta[W(0, t)-G(t)], t>0$.

Using the maximum principle, we obtain $z(x, t) \leq W(x, t)$ in D_{T} and we deduce that

$$
\lim _{t \rightarrow \infty} \int_{0}^{s(t)}(1+\beta x) z(x, t) d x=0
$$

Then the proposition holds.
We have to complete the proof for general G not necessarily with compact support. Let

$$
G_{n}(t)= \begin{cases}G(t), & 0<t<n \\ 0, & t>n\end{cases}
$$

For each G_{n}, we have a problem noted P_{n} for z_{n} and s_{n}. Since G_{n} has compact support $\lim _{t \rightarrow \infty} s_{n}(t)=s_{n \infty}$. Using monotonicity, it follows that $s_{n}<s_{m}$, for all $n<m$ (since $G_{n}<G_{m}$), and $s_{n \infty} \leq s_{m \infty}$ and $\lim _{n \rightarrow \infty} s_{n \infty}=s_{\infty}\left(\lim _{n \rightarrow \infty} G_{n}=G\right)$.
(b) Using the maximum principle and the fact that $\sigma(t)<s(t)$ for $t>t_{0}$, we obtain $z(x, t)>$ $v(x, t), 0<x<\sigma(t), t>t_{0}$. Now, we use an integral representation associated to Problem (P), with an adequate initial condition at $t=t_{0}$ and we get

$$
\begin{aligned}
s(t)+\frac{\beta s^{2}(t)}{2} & =s(t)\left(1+\frac{\beta}{2} s(t)\right) \\
& \leq \frac{\beta C\left(t_{0}\right)}{2}+\int_{0}^{t} \beta G(\tau) d \tau-\int_{0}^{\sigma(t)}(1+\beta x) v(x, t) d x \\
& =\sigma(t)\left(1+\sigma(t) \frac{\beta}{2}\right)+\frac{\beta C\left(t_{0}\right)}{2} \leq s(t)+\frac{\beta \sigma(t)^{2}}{2}+\frac{\beta C\left(t_{0}\right)}{2}
\end{aligned}
$$

then $\sigma^{2}(t) \leq s^{2}(t) \leq \sigma^{2}(t)+C\left(t_{0}\right), t>t_{0}$, from which we obtain the result.
Theorem 4. Let $\left(T, s_{\beta}, z_{\beta}\right)$ be a solution of Problem (P) with the hypothesis (H3); then if

$$
\int_{0}^{t} G(\tau) d \tau=\infty, \quad \int_{t_{0}}^{t} G(\tau) d \tau<\infty, \quad \text { for all } t \text { and } t_{0}
$$

and $\lim _{t_{0} \rightarrow \infty} \max _{\left[t_{0}, \infty\right)} G(\tau)=\lim _{t_{0} \rightarrow \infty}\|G\|_{\left[t_{0}, \infty\right)}=0$, we have

$$
\lim _{t \rightarrow \infty} \frac{s_{\beta}(t)}{\sqrt{2 \int_{0}^{t} G(\tau) d \tau}}=1 \quad \text { for all } \beta>0
$$

Proof. We will use the definition of the function $v(x, t)$ of Theorem $3(\mathrm{~b})$.
If we write an integral representation for the pair $(\sigma, v)=\left(\sigma_{\beta}, v_{\beta}\right)$ and use the maximum principle, we obtain $v_{\beta}(x, t) \leq\|G\|_{\left[t_{o}, t\right]}$ and then

$$
\begin{aligned}
\sigma_{\beta}(t)\left(1+\frac{\beta}{2} \sigma_{\beta}(t)\right) & \geq \int_{t_{0}}^{t} \beta G(\tau) d \tau-\int_{0}^{\sigma_{\beta}(t)}(1+\beta x)\|G\|_{\left[t_{o}, t\right]} d x \\
& \geq \int_{t_{0}}^{t} \beta G(\tau) d \tau-\|G\|_{\left[t_{0}, t\right]} \sigma_{\beta}(t)\left(1+\frac{\beta}{2} \sigma_{\beta}(t)\right)
\end{aligned}
$$

Thus we obtain

$$
\frac{\beta \int_{t_{0}}^{t} G(\tau) d \tau}{1+\|G\|_{\left[t_{0}, t\right]}} \leq \sigma_{\beta}(t)\left(1+\frac{\beta}{2} \sigma_{\beta}(t)\right)
$$

For $\left(s_{\beta}, z_{\beta}\right)$, we have

$$
s_{\beta}(t)\left(1+\frac{\beta}{2} s_{\beta}(t)\right) \leq Q(t)=D(\beta, \varphi)+\int_{0}^{t} \beta G(\tau) d \tau
$$

Since $\sigma_{\beta}(t)<s_{\beta}(t)$, dividing by $\beta \int_{0}^{t} G(\tau) d \tau$ and taking the limit when $t \longrightarrow \infty$ and the limit when $t_{0} \longrightarrow \infty$, the inequality becomes

$$
1 \leq \lim _{t \rightarrow \infty} \frac{s_{\beta}(t)\left(1+(\beta / 2) s_{\beta}(t)\right)}{\beta \int_{0}^{t} G(\tau) d \tau} \leq 1
$$

Corollary 5. (Convergence when $\beta \longrightarrow \infty$.) If $\left(s_{\beta}, z_{\beta}\right)$ is a solution of the Problem (P) and $\left(s_{\infty}, z_{\infty}\right)$ is a solution of the Problem (P_{∞}), with the hypotheses (H1), (H2) and (H3), then
(i) $\lim _{\beta \rightarrow \infty} s_{\beta}(t)=s_{\infty}(t)$ for each $t>0$,
(ii) $\lim _{\beta \rightarrow \infty} z_{\beta}(x, t)=z_{\infty}(x, t)$ for each $0 \leq x<s_{\infty}(t)$, for each $t>0$.

Proof. The solutions z_{β} and z_{∞} satisfy the following inequality for all β :

$$
0 \leq \int_{0}^{s_{\beta}(t)} x\left(z_{\infty}(x, t)-z_{\beta}(x, t)\right) d x+\frac{\left(s_{\infty}^{2}(t)-s_{\beta}^{2}(t)\right)}{2} \leq \frac{s_{\infty}(t)}{\beta}\left[1+\|G\|_{t}\right]
$$

Using the fact that $s_{\beta}(t) \leq s_{\infty}(t)$ and $z_{\beta} \leq z_{\infty}$ for all β, the left-hand side terms of the inequality are positive. Thus,

$$
0 \leq \frac{s_{\infty}^{2}(t)-s_{\beta}^{2}(t)}{2} \leq \frac{s_{\infty}(t)}{\beta}\left(1+\|G\|_{t}\right) \quad \text { for all } \beta
$$

Letting β tend to infinity for each $t>0$, then $\lim _{\beta \rightarrow \infty} s_{\beta}(t)=s_{\infty}(t)$ and $\lim _{\beta \rightarrow \infty} \int_{0}^{s_{\infty}(t)}$ $x\left(z_{\infty}(x, t)-z_{\beta}(x, t)\right) d x=0$. Then we can conclude $\lim _{\beta \rightarrow \infty} z_{\beta}(x, t)=z_{\infty}(x, t)$ for each $0 \leq x<s_{\infty}(t)$, for each $t>0$.

REFERENCES

1. A. Fasano and M. Primicerio, General free boundary problems for the heat equation, J. Math. Anal. Appl. I: 57, 694-723, (1977); II: 58, 202-231 (1977).
2. J.R. Cannon and C.D. Hill, Remarks on a Stefan problem, J. Math. Mech. 17, 433-441, (1967).
3. J.R. Cannon and M.P. Primicerio, Remarks on the one-phase Stefan problem for the heat equation with the flux prescribed on the fixed boundary, J. Math. Anal. Appl. 35, 361-373, (1971).
4. D.A. Tarzia, Sur le problemè de Stefan à deux phases, C.R. Acad. Sci. Paris 288 A, 941 944, (1979).
5. D.A. Tarzia, Etude de l'inéquation variationnelle proposée par Duvaut pour le problème de Stefan à deux phases II, Boll. Un. Mat. Italiana 2 B, 589-603, (1983).
6. A.D. Solomon, V. Alexiades and D.G. Wilson, The Stefan problem with a convective boundary condition, Quart. of Appl. Math. 40, 203-217, (1982).
7. N. Kemocchi, One-phase Stefan problems with a class of non linear boundary conditions on the fixed boundary, Control and Cybernetics 14, 221-246, (1985).
8. S. Yotsutani, Stefan problems with the unilateral boundary condition on the fixed boundary I, Osaka J. Math. 19, 365-403, (1982).
9. D.A. Tarzia and C.V. Turner, The one-phase supercooled Stefan problem with a convective boundary condition, Quart. of Appl. Math. (to appear).

[^0]: This paper has been partially sponsored by Grant 221 (CONICET-Rosario, Argentina) and Grant 2882/94 (CONICOR-Córdoba, Argentina), Grant \#89 (SECYT-UNC).

