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NUMERICAL ANALYSIS FOR THE HEAT FLUX IN A MIXED ELLIPTIC
PROBLEM TO OBTAIN A DISCRETE STEADY-STATE TWO-PHASE
STEFAN PROBLEM*

DOMINGO ALBERTO TARZIA!

Abstract. We consider a material 2 C R" which occupies a convex polygonal bounded domain with regular

boundary I' = I') U 'y (with 1°‘1 n[‘lz = @) with meas(I';) = |T';} > 0 and |I';| > 0. We assume, without loss of
generality, that the melting temperature is 0°C. We apply a temperature b = Const > O on I') and a heat flux g =
Const > 0 on I'>. We consider a steady-state heat conduction problem in .

‘We consider a regular triangulation of the domain 2 with Lagrange triangles of type 1. We study sufficient (and/or
necessary) conditions on the heat flux g on I'; to obtain a change of phase (steady-state, two-phase, discretized Stefan
problem) in the corresponding discretized domain, that is, a discrete temperature of nonconstant sign in .

Key words. steady-state Stefan problem, finite element method, mixed elliptic problem, numerical analysis,
variational inequalities, error bounds

AMS subject classifications. 35R35, 35185, 65N15, 65N30

1. Introduction. We consider a material 2 C R” which occupies a convex polygo-

nal bounded domain with a regular boundary I' = T, U T, (with [y NIz = @) with
meas (I')) = [Ty} > 0 and |2} > 0. We assume, without loss of generality, that the
melting temperature is 0°C. We apply a temperature b = Const > O on I'; and a heat flux ¢ =
Const > 0 on I';. We consider a steady-state heat conduction problem in Q. Following [10],
we study the temperature § = @(x) for x € Q2. The set §2 can be written by

where
Q) ={x € Q/0(x) < 0} (solid phase),
) Q; = {x € 2/6(x) > 0} (liquid phase),

L ={x € 2/8(x) = 0} (free boundary),
are, respectively, the solid phase, the liquid phase, and the free boundary which separates
them. The temperature 6 can be represented in 2 in the following way:

6(x) <0, xe€Q,
3) x)=13 0, x €L,

6(x) >0, x e,
and satisfies the conditions

AG,- =0 an, (i = 1,2),

01=02=0, k1%-1-=k2222- on£,
on on
@ &lr, =b>0,
96, .
—kz-g;l-'rz =4q 1f9|rz >0,
96, .
—klaha =q iffir, <0,
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where k; > 0 is the thermal conductivity in ; (i = 1: solid phase, i = 2: liquid phase). If
we introduce the new unknown function [3, 10]

1
(&) U=kt -k (6 =—u* - lu' in 2,
k2 ky

where 6+ and 6 ~ represent the positive part and the negative part of the function 8, respectively,
then problem (4) is transformed into the mixed elliptic problem

Au=0 inQ,
ulr, = B,
©) aul -
m =9

whose variational formulation is given by

D au,v—u)=L(v—u) Yvek,

uek,
where
V=HYQ), B=kb>0 only,
@) K={veV/vr, =B}, V,={veV/vr,=0},

a(u,v) = f Vu.Vvdx, L@)=L,(v)= —/ qudy.
Q r2

Moreover, the solution of (7) is characterized by the minimization problem [5]:
Juw)<J@v) VYvek,

® uek,
where
(10) J() = J;(v) = %a(v, v)-L,(v) = -;»a(v, v) +/rl' qudy.

We can define the real function f : R* — R in the following way:

1
an 1@ = J,(ul@)) = 3a(u(@), u(@) +4 /r uy dy,

where u = u(g) is the unique solution of the variational equality (7) for each heat flux g > 0
(for a given B > 0).

The evolution of the Stefan problem with mixed boundary conditions is considered in
[7, 81.

For the continuous problem (6) or (7), a sufficient condition to have a steady-state two-
phase Stefan problem (i.e., the solution of u(g) of (7) is a function of nonconstant sign in £2)
was obtained in [11, 12] in terms of qualitative properties of f.

THEOREM 1. (i) The function f is differentiable. Moreover, f’ is a continuous and strictly
decreasing function and it is given by

12) F@ = fr u(g) dy.
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(ii) There exists a geometric constant C = C(2, I'1, ') > O such that

9
(13) a@(g),u@) =Cq’, f(@)=-3q"+BIl:lg Yg>0.

Moreover, the constant C > 0 is given by

(14) C=ausu3)= | uzdy >0,
T,

where us € V, (u(q) = B — qu; in Q) is the unique solution of the mixed elliptic problem

Au3 =0in Q,
(15) dus
uslr, =0, a-lr, =1,
whose variational formulation is given by
(16) a(us, v) =/l: vdy VYveV,,
us €V,. :
(iii) If
17 q > qo(B),

then (6) or (7) represents a steady-state two-phase Stefan problem (i.e., the solution u(q) of
problem (7) is a function of nonconstant sign in Q), where qo = qo(B) is given by

(18) go(B) = Bi2l vp 5 0.

(iv) If the function u(q) is constant over 'y, then the sufficient condition (given by (17))
is also necessary.

Proof. See [12].

Now, we consider 7,, a regular triangulation of the polygonal domain Q with Lagrange
triangles of type 1, constituted by affine-equivalent finite element of class C°, where h > 0
is a parameter which goes to zero. We can take h equal to the longest side of the triangles
T € 1, and we can approximate V, by [2]:

19 Vi = {vs € C*(Q)/valr € Pi(T),VT € t, vplr, =0},

where P, is the set of the polynomials of degree less than or equal to 1. Let IT, be the
corresponding linear interpolation operator. Then there exists a constant C, > 0 (independent
of the parameter ) such that

(20) lv = Myvlly < Coh™ Yvlig, Vv e H'(Q), withl<r<2.

We consider the following finite-dimensional approximate variational problem, corre-
sponding to the continuous variational problem (7), given by

a(up, vp) = L(vp), Yvp €V,

1) un € Ky = B+ Vp,

and we can obtain the following results.
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LEMMA 2. We have
(22) hl-iH)l+ Hur — uflv =0,

where u is the unique solution of the variational equality (7).
Proof. Since meas(I";) > 0, we have that the bilinear form a is coercive over V,; that is

[5],
(23) Ja > 0/a(v, v) = IIUll%, >alvl}, YveV,,
and therefore || - |y, and || - ||y are two equivalent norms in V,. We conclude the proof by

following a method similar to the one developed in [2].
COROLLARY 3. If we define

1 1 1 1

24 6 =—u ——u; €V, = —ut — —u-
(24) h kzu k;uh € 7] kzu k1u eV,
then we have
(25) hlil})l+ 16r —Ollg =0,
where H = L%().

Proof. If we consider the scalar product in H, defined by
(26) u,v) = f uvdx,

Q
then we deduce
@n Nun — ulidy = Ny — w¥ i3 + g —w™ i3 + 208, u7)
+ 20wt = luy — wt I+ ey — i

that is,
(28) Max(lluy — u*ll, luy —u~l) < fiun — ulia.

From (24) we obtain

1 1 _ _
16x — Ol = —zllu;,* —utlg + k_lllu" —u" |l

(29)

< (& + = ) hun =l
*\utn h I’y
that is, (25) holds.

The goal of this paper is to consider the discrete equivalent of the inequality (17). We
study sufficient (and/or necessary) conditions on the constant heat flux g on I'; to obtain a
change of phase (steady-state, two-phase, discretized Stefan problem) in the corresponding
discretized domain, that is a discrete temperature of nonconstant sign in 2. We obtain the
following.

(i) There exists a constant C;, > 0 (which depends only on the geometry of the domain Q
for each h > 0 and which is characterized by a variational problem) such that if g > go, (B) =
B|I';|/ Cj then the steady-state discretized problem presents two phases.

(ii) We have the estimations C, < C and go(B) < qo, (B), where C and go(B) are given
for the continuous problem by (14) and (18), respectively, (see [12]).

(iii) We deduce an error bound for C — Cj and go,(B) — go(B) as a function of the
parameter h.

In other words, we obtain for the mixed elliptic discretized problem, defined by u;,
analogous conditions to the ones obtained for the corresponding continuous problem [12]
defined by u.
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2. Inequality for the heat flux in the discretized problem. Foreachg > 0 we consider
the functions u(q) € K and ux(g) € Kj, respectively, as the unique solution of the variational
equalities (7) (continuous problem) and (21) (discrete problem). For each & > 0, we define
the real function f; : R* — R in the following way:

1
GO fi@) = @) = 5ar@), 1r(@) +4 f un(@dy, q>0.

I,

‘We obtain the following properties.
THEOREM 4. (i) If u; = ux(q;) is the solution of (21) for g; > 0 (i = 1, 2), then we have
the relations

(31 a(uy —uy,uz —uy) = (q1 — %)j;_ (w2 —uy) dy,

(2 aluz, u2) — aur, uy) = alu + w1, 4z — y) = @1 +42) fr 1 — up) dy.
2
(ii) For all real numbers q > 0 and & such that (q + 8) > 0, we obtain the estimations

<p, o lnl

(33) 2y,
v [+ 4

S008(@) — r(q + )

(34) < D2 = Diliysll,

L¥(T2)

where y, is the linear and continuous trace operator defined over V and a is given by (23).
Moreover, the function Rt — R,

1
E[uh@) —un(g +9)]

35) g fr up(@)dy €R,

is a continuous and strictly decreasing function.
(iii) The function fy = fu(q) is differentiable. Moreover, f; is a continuous and strictly
decreasing function given by

36) fi@= fr un(@)dy.

Proof. (i) If we take v = u, — u; € Vj, in the variational equality corresponding to #; and
v = u; — u € V, in the one corresponding to 4, and add and subtract the resulting relations,
then we obtain (31) and (32), respectively.

(ii) Taking into account (23), the Cauchy—-Schwarz inequality, and the continuity of the
operator ¥,, we deduce (33). From (33) and the continuity of y, we have (34). Therefore, we
have (35) because

@3N

fr [un(g) — un(q + 8>1dy| < DI\ 1s.

Moreover, the monotony property is a consequence of (31).
(iii) From (30) and elementary computations, we deduce

1

@®) $UA@+9) — @) =5 [ Wh@+us(q +8Ndy,
r2

that is (36), by using (35).



1262 DOMINGO ALBERTO TARZIA

THEOREM 5. (i) The element up, = us(q) € Vy can be written as
(39) up(q) = B — quzp

where u3y, is the unique solution of the variational equality

a(usy, vp) = vhdy Vu, € Vy,
(40) (43, V&) ./r,hy h € Vi
u:,;,th.

(ii) There exists a constant Cy, > 0 such that
1
(41) (@) =g BTzl - 5Cig* V¥g >0,

42) a(ur(@), ur(@)) = Crg* Vg >0,
where the constant Cy, is given by

(43) Cr =a(us,, u3,) = / uz, dy.

I,

(iii) If ¢ > q,,(B), then problem (21) represents a discretized steady-state two-phase
Stefan problem (i.e., uy(q) is a function of a nonconstant sign in ), where
B|I,|

Cr

Proof. (i) follows from (21), (30), and (39) by uniqueness of the variational equalities
(21) and (40).

(ii) follows from (8), (30), and (39).

(iii) follows taking into account

(45) f1(20,(B)) =0

and the monotony property of the function f;,.
Remark 1. We have

(44) q0,(B) =

(46) up(0) =B, fu(0*) = BIT2lq, f;(0") = BII;|.
THEOREM 6. (i) We have the equality

@7 a@(@), un(@)) = Cag* Vg > 0.
(ii) Also, we have the inequalities

(48a) Ch <C,

(48b) q0(B) < q0,(B).

Proof. (i) If we take v = up(q) € K = B+ Vy C B+ V, = K in the variational
equality (7), and we take into account the expressions (13) and (41), then we obtain (47).
(ii) On the other hand, from (23) and (47) we have

(49) allu(g) — un(@)ll} < au(g) — un(g), u(q) — ur(q)) = (C — Cx)g%,
that is (48a). Moreover, (48b) follows from (18), (44), and (48a).
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Now we shall use the interpolation result (20) for the function u3 € H” (S2) as a hypothesis
of regularity of the continuous problem (7) (in general, 1 < r < 3/2 [1,4,6,9]). In [11]
three examples with explicit solutions were presented. In those cases u(g), uz € C* ().
THEOREM 7. We have the relations and estimations

(50) a(u(q) —up(q), v) =0 Vv, €V,

(C — Ch)g? = a(u(q) — un(q), u(g) — un(g))

S < Inf a(u(q) — vn, u(g) — vs),
v;,eV;.
(52) 0 < C—Cy < C2p* D2,
] C2 2(r-1) 5
(53) 0 < g0,(B) — qo(B) < —=———usl; q q0,(B).

C

Proof. If we take v = v, € V, C V, in the variational equality (7) and subtract from it
with the variational equality (21), we obtain (50). By using (47), (49), and (50) we deduce

a(u(q) —un(q), u(q) — un(q))
= a(u(q) — ur(q), u(q)) — a(u(q) — un(q), ur(q))
(54) = a(u(g) — un(q), u(q)) — a(u(q) — ua(q), va)

= a(u(qg) — un(q), u(g) — vp) < [a(u(g) — un(g), u(g) — uh(q))]i
- [a(u(g) — v, u(g) — v)IE Vv, € Vi,

because a(., .) is a scalar product in V,; then we obtain (51).
By using (51), the facts that

(55) Mp(u(g)) € B+ Vi, u(q) —Ix(u(g)) € V4,

and the interpolation result (20), we deduce (52). The relation (53) is obtained by using the
definitions of qo, (B) and go(B) and (52).
Remark 2. If we only have u(q) € V (i.e., u3 € V), we can obtain

1
(56) 0<C-GCr= a;llu(q) — M @@)IF = llus — My @3,

where the second term converges to zero when # — 0% [2], but we cannot give an order of
convergence. .

Remark 3. If the constant heat flux on I'; verifies the inequality g > go, (B), then both
the discrete and continuous problems represent steady-state two-phase Stefan problems; that
is, their temperatures are of nonconstant sign in £2.

Remark 4. When the function u,(q) is constant on I'; (as a function of x € I';), then
the sufficient condition given by Theorem 5(iii) is also necessary in order to have a two-phase
discrete problem, because

(&Y)) / up(q)dy <0< up(g) <Oon T,y
r;
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THEOREM 8. Ifweleth, B > 0, and 0 < €, < 1 (€, is a parameter to be chosen
arbitrarily), then we have the estimations

(58) 20(B) < o (B) < LB ""(B ) and Cy > Ceoy Vh < hy(es),

C2 2
(59) 0 < go,(B) — g,(B) < —"—'Ciz"—’“qo(B)h“'-", Vh < hy(€,),

0
where
b=
Cl—e)
(60) hr(er) = | = .
° (CE,"I u32q )
Proof. From (53) we deduce
(61) A(h)go,(B) < qo(B),
where
C2 2

(62) Ah)=1- —?f‘c’i‘lhﬂ'-') <1

If we consider, for each €g, 0 < €, < 1, the equivalence
63) O0<e, <AMh) <14 0<h<h(c)),

then we deduce the inequalities (58) and (59).
COROLLARY 9. If B > 0, then we have the limit

(64) Jm g, (B) = go(B).

Remark 5. If r = 2 then the convergence in Corollary 9 is of the order of A.

Remark 6. Everything we proved in this paper is still valid if the boundary I" of the
bounded domain 2 is represented by the union of three portions (I' = I'y U I'; U I';) having
the following characteristics:

(i) I'; and I'; have the same conditions as the ones previously described in (4).

(ii) T3 is a wall impermeable to heat; i.e., we have 22 |r, = 0in (4) and therefore %|r, = 0
in (6).

Moreover, the first example considered in [11] verifies this condition.
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