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AN INEQUALITY FOR THE COEFFICIENT ¢ OF THE FREE
BOUNDARY s(t) = 26,/t OF THE NEUMANN SOLUTION FOR
THE TWO-PHASE STEFAN PROBLEM*
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Abstract. We consider a semi-infinite body (e.g. ice), represented by (0, + o0), with an
initial temperature —c < 0 having a heat flux h(tf) = —ho/./t (ho > 0) in the fixed face
x = 0. If hy > ck,//na; there exists a solution, of Neumann type, for the resulting two-
phase Stefan problem. If we connect it with the Neumann problem (on x = 0 the body has a
temperature b > 0) we obtain the inequality erf(a/a;) < (k; ba,/k, ca,) for the coefficient o
of the free boundary s(t) = 20./t, where k; and a} are respectively the thermal conductivity
and thermal diffusivity coefficients of the corresponding i phase (i = 1: solid phase, i = 2:
liquid phase). If hy < ck,//na; there is no solution of the initial problem and if
ho = cky/\/mna, the problem has no physical meaning and corresponds to the case where
the latent heat of fusion L tends to infinity.

Notation.

Q=(0, +x) semi-infinite body

x space coordinate variable in Q

t time

() position of the solid-liquid interface (free boundary)
at timet >0

f(x, ) temperature defined for x >0, ¢t > 0

05(x, 1) water temperature defined for 0 < x < s(t), t > 0

04(x, 1) " ice temperature defined for x > s(t), t > 0

c3 specific heat of water

< specific heat of ice

{ latent heat of fusion

p mass density

k, thermal conductivity of water

ky thermal conductivity of ice

—c<0 initial temperature

b>0 temperature in the fixed face x =0

h(t) heat flux in the fixed face x =0

* Received October 1, 1980.
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Cy=pcy, Cy = pcy, L=pl

a, = (ky/C;)'? a, = (k,/C,)'?

a? thermal diffusivity of water
al thermal diffusivity of ice.

I. The problem. We shall consider the two-phase Stefan problem for a semi-infinite
body, represented by Q = (0, + o0) with null change phase temperature (case: water-ice).
That is, we shall find the functions s = s(t) > 0 (free boundary), defined for t > 0 with
s(0) = 0, and

Hx,t)=0;(x, ) >0 if 0<x<s(t)

=0 i x=s(t) 60
=0,(x,t)<0 if s(t)<x,
defined for x > 0 and ¢t > 0, such that they satisfy the following conditions:
a0, 620,

C,— o —ky —5 pw =0, in s(t)<x,t>0, )
2

c,aa’; k,‘?’ 0, in O0<x<st)t>0, ®
By(s(t) ©)=0, Vt>0, @
0(s(t), z) =0, Vt>0, 5)
k; a L (s(e), ) ~ ky 5— (s6), ) = Ls't), Ve>0, 6
0,(x,0)= —c<0, Vx>0, W)

s 0 oo
k, F» (0, t) = K¢, vt > 0. 8)

The function h(t) represents the heat flux that the material Q receives in its fixed face x = 0.

In the case
h(t) = —(ho/\JO) (ko >0), 9

we prove that there is not always a solution of Neumann type [1, 2, 3, 4, 7] for the problem
(2) to (9). Moreover, the explicit solution exists if the constant h, satisfies a certain in-
equality (19). This idea was suggested in [5], where simple exact solutions are given for the
steady-state two-phase Stefan problem in which the heat flux satisfies an inequality on a
given portion of the body’s boundary and the temperature has a constant sign (for example,
positive) on the remaining body’s boundary.

IL. Solution of problem (2)—(9). Following the idea of Neumann for the two-phase
Stefan problem [1, 2, 3, 4, 7], we propose:
8,(x, ) = A, + B, f(x/2a, /1),
8,(x, 1) = A, + B; f(x/2a, /), (10)
) =20\t >0,
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where

fo)= -\—/%1-‘ : exp(—u?) du, a;=/ki/Cs, a;=1/ky/C,.

The four conditions (4), (5), (7), (8) give rise to the two systems of equations
A, + B, = —¢, A, + f(w/a,)B, =0,

a
B,=—/n i ho,  A; +f(w/a;)B; =0.

Solving (12) and (13) as functions of w, we obtain:

(2
A@)=c—2C  B(w)=—5,
.y (9_) 1_f (_a:)
a, a,

h h

The condition (6) is satisfied if w is a solution of the equation

Fo(w) = o, w>0

where

2

w ck, w

ho — = _exp(—xz)
Fo(@) =7 °"”<" Z'%') " Lna 1t (al)’ FO=T"7w

Taking into account the following properties of the function F, :
Fi(0*)=1, Fy(+)= +oo,

d—:x—‘ (x)>0, Vx>0 (cf. Appendix),

we deduce for the function F,

1=1(e-72%)
FO(O )'_L hO \/nal l

dF,
Fo(+ 0) = — o0, 1o (w) <0, Yo >0,

and therefore we obtain

LEMMA 1. There exists a solution (10) of the problem (2)—(9) iff Fo(0*) > 0 and iff

ho > Ckl/\/ﬂ a,

Proof. Using the properties (18), Eq. (15) has a unique solution iff Fo(0*) > 0.
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Remark 1. If hy < ckl/\/ ma,, there is no solution of the problem (2)—(9) of the type
(10). The limit case hy = ck,/ /ma, has no physical meaning and corresponds to the case
L— + oo (cf. Sec. IV).

IIL. Relationship with the Neumann solution. The temperature in the fixed face x = 0 is
given by

bo = 03(0, 1) = Ax(w) = /1 “;:°f (ﬁ) (20)

Since b, > 0, we can consider the two-phase Stefan problem consisting in finding the
functions s(¢), 8,(x, t), 8,(x, t) solutions of (2}—(7) and (8 bis), where:

0,0,£)=b with b> 0. @ bis)

The solution of problem (2}—(7) and (8 bis), which is known as Neumann solution [1, 2, 3,
4,7],is given by:

6i(x, )= 2y + By f (Zaj‘ \/t),

02(x, t) =0, + ﬂz f ('2—‘;2%)’ (21)
s(t) = 20 \/t,

- (D)
)

ax(0) = b,

Bio) = —b /f (i)

Here ¢ is the unique solution of the equation

with

Fo)=0, ¢>0 @3)
with
o) = i ot - "—2) -2 ok - %) )
La,\/n a?/ La,\/=n a’
which satisfies:
FO*) =+, F(+®)=—wo, %(a)<0, Yo > 0. 25)

Remark 2. Notice that
Ay(x) = ay(x), Vx >0, B,(x) = By(x), vx > 0. (26)
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Lemma 2. If the condition (19) is valid and we take b = by > 0, then

o= v4))
Proof. Since B(w) = —1/n(az ho/k,), we have:
—cky, exp(—w?/a?)

F(w + ex —w?/a}
@)= Lavr 1—flay L P75 o
_h 2.2 cky = =
= xp(—0%/ad) = 77— Fi(o) = Folo) = 0
and from the uniqueness of ¢ in Eq. (23), we deduce (27).
Remark 3. With the hypothesis of Lemma 2, we have:
Ax(x) = ay(x), Vx>0, B,(x) = Ba(x), Vx > 0. (29)

Remark 4. With the hypothesis of Lemma 2, we deduce the following equivalence:
Problem (2)}—(9) <> Problem (2)—(7) and (8 bis); this implies the inequality:

ko b/\/ma, f(a/as) > cky/\/na,

or

f(o/ay) < kya,b/kyac= b \/ k; Ca/k, C,. (30

Notice that this inequality takes into account the temperatures b, ¢ and the coefficients k,,
a, and k,, a, corresponding to the solid and liquid phase, but not the latent heat of fusion
L.

IV. Limit cases. Using a method analogous to that in [6], we have
LEmMMA 3.

Fo0*) = 0o by = 24

a;Jn
Let 6,(x, t) be the function defined by (10), (14) and (15) for each L > 0. Then:
Remark 5. If hy > cky/a, /=, the limit of 8,(x, t) as L— + oo is given by:

<>=0sL=+0o. 31)

Or-o(x, )= lm By(x,)=0 if x=0,

L+ « (32)
=—cf(2a“/t)<0 if x+0.

Moreover, 6, - ., is a continuous function, but its heat flux in x = Ois given by:

aoL 22 0, = - ckl 4= \/t

This implies that the limit L— + co has no physical meaning, as was remarked in [6].

(33
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Remark 6. 1fhy > cky/a, \/n the limit of 0,(x, £) as L— 0 1is given by:

81— olx, £) = tim B,(x, f) = y/mazho (1 —f ( X )) (34)

L0 kz 2a,/t

The function 6, ., is continuous and its heat flux in x = Qis:

k2(00,-o/OXXO, £) = —ho/s/t = h(). 35)
Appendix. Let
_ exp(—x?) _2 _
Fi(x)= [ fx)= \/n,[, exp(—u?) du = erf(x),
S 2 _ M
H(x) = 1= 1) = \/7: F(x), G(x) = H(x) — 2x.
We prove the following properties:
LEMMA.
)] H(0) = 2/{/=, H(+ o) = + o0, H(x)>0, Vx>0,

(ii) G(0) = 2/\/m, G(+ ) =0,
(iii) H'(x) = G(x) - H(x), G'(x) = H'(x) — 2, )
(iv) G(x) > 0, Vx>0,
v) 1(x) > 0, Vx>0,

Proof. (i), (ii) and (iii) are evident by definition or by application of L’Hopital’s rule. (iv)
we suppose that there exists x, > 0/G(x,) = 0. It follows that

H(xo) = 2x,, H'(xo) = 0, 3
Glxg) =0, G'xo)=-2<0 @)
The conditions (4) implies that there exists x; > xq,
G(x))=0, G(x)<O0. ()
Therefore
H'(x,) = G(x{)H(x,) < 0.
Then

0=G'(x,)=Hl(x)—2< —2,

which is a contradiction. (v) is evident using (iii) and (iv).
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