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We consider a material that occupies a convex polygonal bounded domain € C R", with regular boundary
[ =T Ul (with 'Y N TY = @) with meas (I'y) = [T';| > 0 and [T'2| > 0. We assume, without loss
of generality, that the melting temperature is 0°C. We consider the following steady-state heat conduction
problem in Q:

S| =aw-B), -5 =q

with «, ¢, B = Const > 0, and ¢ and o represent the heat flux on I'> and the heat transfer coefficient on
I'y, respectively. In a previous article (Tabacman— Tarzia, J Diff Eq 77 (1989), 16— 37) sufficient and/or
necessary conditions on data «, ¢, B, €2, I'1, I'2 to obtain a temperature u of nonconstant sign in £ (that
is, a multidimensional steady-state, two-phase, Stefan problem) were studied. In this article, we consider
a regular triangulation by finite element method of the domain {2 with Lagrange triangles of the type 1,
with i > 0 the parameter of the discretization. We study sufficient (and/or necessary) conditions on data
a,q, B, ', and I'2 to obtain a change of phase (steady-state, two-phase, discretized Stefan problem) in
the corresponding discretized domain, that is, a discrete temperature of nonconstant sign in 2. Moreover,
error bounds as a function of the parameter h, are also obtained. © 1999 John Wiley & Sons, Inc. Numer Methods
Partial Differential Eq 15: 355-369, 1999

Au = 0in €2,

Keywords: Steady-state Stefan problem; finite element method; mixed elliptic problem; numerical analysis;
variational inequalities; error bounds

I. INTRODUCTION

We consider material that occupies a convex polygonal bounded domain £2 C R", with regular
boundary I' = T'; UTo(I'Y NTY = @) with meas ([';) = |[;| > 0 and [['3] > 0 (meas
denote the (n — 1)-dimensional Lebesgue measure). We assume, without loss of generality, that
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the melting temperature is 0°C. We consider the following steady-state heat conduction problem
in Q[1,2]:

Au=0in
—*gﬁlr, =a(u—B)onT, (1

— %= |r, =qonTly,

with a,¢, B = Const > 0, and ¢ and « represent the heat flux on I'; and the heat transfer
coefficient on Iy, respectively. The variational formulation of problem (1) is given by [1, 3]:
Find « in V' such that

ao(U,v) = Lagr(v), Yv €V, 2)
where the functional spaces, bilinear and linear forms used are defined by

V=HYQ), V,={ve Vi, =0}

an(u,v) = a(u,v) + a/

uvdy, a(u,v)z/Vu.V-vdx.
T 0

Lags(v) = Ly(v) + aB / vdy, Ly(v) = —q / oy, 3)
Iy I'a

where H! is the usual Sobolev space of order 1.
On the other hand, problem (2) is equivalent to the following minimization problem: Find u
in V' such that

G(u) < G(v), YwveV, 4)

where the functional G is defined by

1
G(v) = 3%a (v,v) = Lagr(v). (5)
The unique solution u = u(a) = u(a, ¢, B) of problem (2) can be obtained by
ule,q, B) = B — qU(a) in 2, (6)

where U = U(«) is the unique solution of the variational equality:
Find U(«) in V such that

an(U(a),v) :/ vdy, YveV. (7)
| Y :

We suppose that §) and T" have the necessary regularity for U («) to be a continuous function
in §2 as in [4] ([2, 5] give three examples in which this condition is satisfied). An evolution Stefan
problem with mixed boundary conditions is considered in [6, 7]. In [5] the following results are
obtained.

Theorem 1. (i) If (v, q) € S*(B), then we obtain a steady-state, two-phase Stefan problem
with
S*(B) = {(a,q) € (R*)?/gm(e, B) < ¢ < qu(a, B)},

8
(Im((-l’-. H) = ‘,B»;l(l;‘f}l s qM ((_t._. B) = Bl(;l._ﬂl l ' ®
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where A = A(«v) is a decreasing function in variable «., which verifies the following properties:

Ala) > lll;—‘jr'—j; limg— 400 A(@) =C >0
lilna-nl-+oo O.‘A’(Q) = 0, (Q‘A(ﬂf))' - qlzﬁ.(ﬂqu, 'u,qu}? (9)

A(a) = [p, Ule)dy = aa(U(a),U(a)),

“I™ represents the derivative with respect to a. On the other hand, the constant C > 0 is

where
given by

C = uzdy = a(ug, uz) > 0, (10)
I

where uy is the unique solution of the variational equality:
Find uy in V) such that

a(us,v) :/ vdy, Vv €V, (11)
I'z
(ii) For the continuous particular case, defined by the condition
1
?a(u(a, q, B),u(a,q,B)) = Const. (=C > 0), (12)

we have that the Const in (12) is C, defined in (10), and the function A = A(«) is given explicitly
by the expression

IT2)% 1

(13)

u
In this article, we consider 75, a regular triangulation of nonnegative type [8] of the polygonal

domain €2 with Lagrange triangles of type 1, constituted by affine-equivalent finite element of
class C, where h > 0 is a parameter that goes to zero. We can take h equal to the longest side
of the triangles 7" € 73, and we can approximate V' by [9, 10]:

Vi = {va € C°(Q)/valr € Pi(T),VT € ;;} C V, (14

where P is the set of the polynomials of degree less than orequal to 1. Let IT;, be the corresponding
linear interpolation operator.

We consider the following finite dimensional approximate variational problem, corresponding
to the continuous variational problem (2), given by:
Find up, = up(ev, ¢, B) in V}, such that

Ga(Un,Vh) = Lagr(va), Yun € Vi, (15)
and then we obtain the following results.
Theorem 2. (i) There exists a unique solution up (o, q, B) € V), of the discretized problem
(15). Moreover, u,(a, q, B) is given by
up(e,q, B) = B — qUp(a), (16)

where Uy, () is the unique solution of the following variational equality: Find Uy («) in V}, such
that

”-fz(Uh(a)-s Uh.) = / 'Uhd"}'. V’Uh = Vh.- (1—”
Iz
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(ii) Function Uy, (a) satisfies the following property:
_ 2] :
Uh(a)d"}‘ = ?', Uh(O.‘) > 0in €. (18)
r

(iii) Function up (v, q, B) satisfies the following properties:

up(a,q, B) < Bin Q,un(a,q, B) < un(q, B) in Q,
up (@, q, B) = up(q, B) in V when o — +00, B (19)
Minp,up(a,q, B) < up(a, q, B) < Maxr,up(a, g, B) in Q,

where uy(q, B) = B — qugy, being usy, the unique solution of the following discrete variational
equality: Find ug in V), such that

a’(u3hrvﬁ) = / Uhd‘}‘: V'Uh € Vvoh.' (20)
I'2

where
Vo = {vr € C°(Q)/vn|r € Pi(T),VT € 4, vnlr, = 0}. (21)
(iv) We have the equalities

a(un(a, q, B),un(q, B)) = a(un(q, B), un(g, B)). (22)

a(uh(a’a q, B) — uh(q: B)., uh(aa q, B) = uh(Q! B))
= a(up(a,q, B),un(a,q, B)) — a(un(q, B),un(q, B)). (23)

(v) We have the following monotony property:
o < 02,q2 < q1 = up(e, @1, B) < un(az,q2,B) inQ, VB > 0. (24)

Proof. (i) Thediscretized variational equalities (15) and (16) have a unique solution uy (e, g, B)
€ V), and Uy (o) € Vj, respectively, because the Lax— Milgram Theorem [3] and the fact that a,,
is a bilinear, symmetric, continuous, and coercive form with

ﬂ'd(U! U) 2 "\QHUHZs Yv e V‘

A = A1 Inf (1, ), Va > 0, (23)

where A; > 0 is the coercive constant of the bilinear form @, (@, is the particular case of ¢, when
a = 1), that is
a(v,v) = )\1||'U|I2, Yo e V. (26)

Moreover, up (e, q, B) is the solution of (15) if and only if Uy, () is the unique solution of (17)
because of the linearity and the uniqueness of (15) and (17).
(ii) By choosing v, = 1 € V}, in (17), we get

ITal = f 1dy = aa(Un(a), 1) = a / Un(@)dy @7)
' Iy

that is (18).
(iii) and (v). They follow by an analogous method to the one used in [5].
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(iv) If we choose v = up(g, B) € B + Vg, C Vj, in the variational equality (15), we obtain

l'_’l',“('{.‘..l,((].,q. B)ﬂ"‘h(‘?s B)) = L(qu(uh(Qs B)) = _q/ Uh(Q~ B)d’) + Q'Bz|]-—‘1|:~ (28)
Iz

where, by definition, we have

ao(un(e,q, B),un(q, B)) = a(un (e, q, B), up(q, B)) + aB up(a, q, B)dy. (29)
I

On the other hand, we have
a(un(q, B), B —up(q,B)) = —q / (B —un(q, B))dy,
JT
that is

G(Uh(qs B)'! 'U-ﬁ_(q,B)) = QB|I12| = Q/‘ uh(q‘B)d’T' (30}

I'z

Therefore, from (18), (28)- (30) we get

alup (e, q. B),up(q, B)) = —q/ up(q, B)dy + aB?|I';| — ﬂBj up(a, q, B)dy
'z

Ty

= a(un(q, B),un(q, B)) — qB|T2| + aB?[I'y |
—aB (B|F1| _ ‘”ﬁ)
a

al(up(q, B), un(q, B)), (3D

that is (22).
Moreover, (23) holds, because

(,l'-(i'l._l,_((l‘._. q, B) - uh(q! B)‘ uh(ﬂ', Q$ B) - uh(Q! B})
= a(up(a, q, B),up(on q. B)) — 2a(up(a, q. B),un(gq, B))

+ a(un(q, B), up(q, B))

= a(un(avq. B), un(a,q, B)) - a(un(q, B), un(q, B)). (32)
|

We define, for each i > 0, the following real functions:
Ap(w) = frz Un(a)dy = an(Un(a), Up(a)) > 0,V > 0, 33)

BIT
Gm,, (v, q) = A—ifﬁl)—.Va,q > 0.

The goal of this article is to consider the discrete equivalent of the inequalities (8), which define
the set S%(B). We shall obtain sufficient (and/or necessary) conditions on data v, ¢, B, h, ), T';,
and I', to get that the discrete solution uy, (e, ¢, B) is of nonconstant sign in €2 (that is, a steady-
state, two-phase, discretized Stefan problem). We shall obtain error bounds for A, (o) — A(a)
and for ¢, (o, B) — ¢, (v, B) as functions of the parameter h. We also will analyze the discrete
particular case corresponding to the continuous particular case (12).
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In other words, we shall obtain for the solution of the mixed elliptic discretized problem
(15), defined as uy, (v, ¢, B), analogous conditions to the ones obtained for the corresponding
continuous problem [5], defined by u(c, ¢, B). For the corresponding numerical analysis, we use
ideas developed recently in [11].

Il. CONDITIONS FOR THE EXISTENCE OF A DISCRETE SOLUTION OF
NONCONSTANT SIGN

For each ¢ > 0, > 0, B > 0, we consider the functions u(«, ¢, B) € V and uy (o, ¢, B) € V},,
respectively, as the unique solution of the variational equalities (2) (continuous problem) and (15)
(discrete problem). Therefore, we obtain the following properties.

Lemma 1. We have:
(i) Function Ay (e) is also given by the expression:

An(a) = aa(U(a), Un(a)). (34)
(i) We have
A(a) = Ap(a) = aa(Un(a) = U(a),Un(e) = U(a)) 2 0. (35)
(iii) Functions q,, and q,,, are related by the following inequality:
Gm (e, B) < g, (., B). (36)
(iv) We have the following integral expressions:
./r up(o, q, Bydy = %[qm(a, B)—gq], Yh>0, (37)
/r‘ up(ev, g, B)dy = Ap(@)|gm, (o, B) — q], Yh > 0. (38)

Proof. (i) If we choose v = Uy (a) € V;, C V in the variational equality (17) we have
gy {(](n')- U_l,_(ﬂ')) = Uh (O')d-}' % an({]h(a)f {-’rh (0)) = Ah (ﬂ')a (39)
rz

that is (34).
(i1) We have

0

IA

an(Up(a) — U(e), Up{a) — U(a))
an(Un(a). Up(a)) + an(Ula), U(e)) — 204 (Up (o), Ular))
Ap(a) + A(a) — 245 (a) = Ala) — Ap(a). (40)

Il

Il

(iii) (36) follows from the fact that A(«c) > Ay (a).
(iv) Taking into account (18) we obtain

/ up (e, q, B)dy
[‘1

(B —qUp(a))dy = B|I'y| — q/ Up(a)dy

ry
I'; I
M = |—2-|—(ql.\_.r (G" B) - q). Yh > U, (4|)
a3 o]

Iy

B|Il'|—q

Il
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that is (37). On the other hand, (38) holds, because

/ un(a,q, B)dy = B|l2| - Q/ Un(a)dy = B|T3| — qAn(a)
| 'y
= Ah(“)[‘]m,,(as B) = q] Yh > 0.

Remark 1. From (37) and (38) we obtain the following equivalences:

/ up(a, ¢, B)dy <0 & q > gm, (o, B),
I's

/ up(a, q, B)dy > 0 < ¢ < gu (e, B).
r

For each h > 0, we define the real function g, : (RT)® — R in the following way:

1
gh(“?QaB) = G(rqB(uh(asq-: B)) = _§L(‘tq3(uh(a1 q. B))
1
= —Euu(uh(a, q,B).up(a,q,B)) <0, Va,q,B>0.

Remark 2. Owing to (45) we deduce

1
gn(a,q,B) = — ‘2‘er{5’(uh(0’s q, B))

aB
= 9/ up(a, q, B)dy — — up(a, g, B)dy
2 l—‘-g 2 1‘1

" - aB q|Ts
= Z[B|l2| — qAn(a)] - — |B|T1| - —=
2[ T2 — gAn(a)] 5 [ T4 o
Apla) . B?
= —%qz + Bq|l'y| - 92—IF1I <0, Va,q,B>0.

Corollary 1.  From (46) we have
2B|F2| (}‘B2|F1|
q 7

Ap(a) > , Ya,h>0,¥q, B >0,

and, therefore, we obtain
|2|?

, Ya,h >0,
alTh] a; >

Ah(a) =

by choosing adequate numbers qand B. g
Theorem 3. (i) We have the following inequalities:

gm(a, B) < gm, (o, B) < qu(a, B), Va,B > 0;
therefore, the set Si(B) is nonempty, where

Sh(B) = {(e,q) € (RY)*/gm, (@, B) < ¢ < qu(a, B)} # 0.

361

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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(i) If (v, q) € S?(B), for a given B > 0, then the discrete temperature un(cv, q, B) is of noncon-
stant sign in S0, that is, we have a steady-state, two-phase Stefan problem in the corresponding
discretized domain.
Proof. (i) The left and right inequalities in (49) are obtained from (36) and (47), respectively,
because
B |F2| B 0’|I 1 |

Gma(@,9) = Ap(a) L [Ta| LR

(ii) From (43) and (44) we get
/ up(a, q, B)dy < 0 and / up(a, q, B)dy > 0. (52)
Iz I

This means that uy, (e, g, B) is a function of nonconstant sign in €2, that is, we have a steady-state,
two-phase Stefan problem in the corresponding discretized domain. -

Lemma 2. (i) We have the following estimates:

Uzh S Uh.(a) in Qv
Ch < Ap(@), (53)
Ay, (0-'} B) < Yoy, (B)v

where
BT’
Ch = / U;-Ihd'h oy, (B) =7 (L' 2| . (54)
ra h
(ii) The function Ay, = Ay («) is a decreasing function in o and verifies
lim Ap(a) =Ch, Yh>0. (55)
=3 400
(iii) The function q,,, = qm, (o, B) is an increasing function in « and verifies the following
properties:
Gmy (01, B) =0, G, (+00, B) = go, (B), VB,h > 0. (56)

Proof. From (6), (16), and (19), we obtain B — qUn(c) < B — quay, in Q, that is, ugy,
< Uy () in . This implies that

C}, = / u:;hd’)( S / Uh(&)d"}‘ = A},(Ct) (57)
l"; rz
and
B|Ty| _ Bl
m ,B) < < = Yo, B). 58

(ii) From (24), we get that u, (v, g, B) is an increasing function in a; i.e., Uy () and then Ay, (o)
are decreasing functions in «v. This means that g¢,,, (e, ¢, B), defined by (23), is an increasing
function in a.

Moreover, from (19) we obtain that Uy, (o) — ugp in V when o — 400, that is

lim Ap(a) = lim / U,:,(a)d’yz/ ugp({a)dy = Cp, Yh > 0. (59)
s T2

0 —F 00 =400
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(iii) From (ii) and (33), we get that g5, (v, B) is an increasing function in « and satisfies

BTy
(/h

m(+00,B) = lm gm,(a, B) = = qo,(B), VB,h > 0. (60)

[ ]
Theoremd. Ifq > q,, (B), then uy(c, q, B) is a function of non-constant sign in Q) when
q|l2]
BIT'y

Proof. If ¢ > g, (B), then the corresponding discrete problem for uy (g, B) (ie., & = +o00
for up (v, g, B)) is a two-phase one [11] and, therefore, uy, (g, B) < 0 in some part of I, that is,
up (e, q, B) < 0 on some part of I';.

On the other hand, from (37) we get the following equivalence:

BO_’!F] |
T2

then the proof is completed. -

a > ay(q,B) = (61)

/ unle, ¢, B)dy > 0 & qu(e, B) —g> 0 & ~¢>06 a> (e, B), (62)
JIY

Theorem 5. (i) The function gn, = gi(a., q, B) satisfies the following properties:

P
9—y(a,q,B) :/ up(a, ¢, B)dy, (63)
q |
99 (4,4, B) ——a/ un(a, ¢, B)d (64)
()B a,q, = 3 h v q, Y
dg
50@0,B) =3 [ Wi B)~ Bueq,B) . (69)

(ii) The function A, = Ap(«) satisfies the following properties:

v, dAp, . B2ly| 2B|T,| 1 9.
h(a} - H(a] - q2 aq qz \/1"1 uh(a1 q, B)dﬁ)(' (66)
jl(a) > —w, Yh > 0, (67)
aq
L la(@)] = ~za(un(a,g, B), un(asq, B)) ©8)
dov QAp == (}'2 Up\tx, q, s Up O, g, 3
lim aA}(a)=0, Yh>0, (69)
=400
. Ogm,
lim “(a,B) =0, ¥B>0. (70)
a—+oo  Ja

Proof. (i) We use (45) and the definition of the derivative as the limit of the incremental
quotient to obtain (65). In order to obtain (63) and (64), we differentiate (45) with respect to ¢
and B, respectively, taking into account (16).

(ii) (66) follows from (46) and (63). (67) is obtained from (19) and (66). (68) follows from
(45) and (66). Moreover, (69) is a consequence of (19), (67), and (68). At the end, (70) follows
from (33) and (69). =
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lll. PARTICULAR DISCRETE CASE

We define a particular discrete case (PDC), similarly to the continuous case (see (V.1) in [5]), as
the problem in variables h, «, g, B, which verifies the condition

1
?ﬂ(uh(ﬂ,% B),up(a,q,B)) = Const. (71)

Necessarily the constant must be Const = C), > 0 taking @ — +o¢ in (51). On the other hand,
taking into account (68), we have the equivalence:

1 d
(PDC) < ?a(uh(a,q, B),up(a,q,B)) =Cr & E[O‘Ah((l‘)l = Cp. (72)
Since (16) and (71), we deduce

Ch = a(Up(@),Un(a)) = An(a) — A Up(a)d, (73)

that is
(PDC) & Ap(e) =Ch+a | Uk(a)dy. (74)
I

Theorem 6.  The following propositions are all equivalent to the particular discrete case (71)
or (72):

up(gq, B) — un(e, q, B) = Const in §2, (75)
un(, B) — un(oy0,B) = 2L in g 76)
ally|
_ I 1B

up(a, g, B)|r, = B — z||li|| onTy, (m‘ Up(a)lr, = Olf|T?1|| on Fl) 3 77

T 2
An(e) = Oy + 22 (78)

all'y|

d

%[(YA;,_(Q)] = Ch‘ (79)

Proof. (75) = (76). If up(q, B) — un(a, q, B) = Const in §, then the constant must nec-
essarily be given by Const = ¢|['z|/|T"1|, because we integrate equality (75) on I'; and we use
(37) and the fact that uy (¢, B)|r, = B.

(76) = (77). It follows from the fact that uy (¢, B)|r, = B.

(77) = (78). From (66) we get

_ B*y| 2By 1 (B— G|F21)2 ITy| = — IT|?
4 ag ¢ |l | Ty

Therefore, integrating the differential Eq. (80) with the initial condition Ay (+00) = Ch, we
obtain

(80)

Dol [ dt

F 2
| +xt_2‘c"+| :

Ah ((1) = (/'h. - Cflrl | 3

(81)
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that is (78).
(78) = (79). By differentiating the expression (78) with respect to cv, we obtain
d —|T2 T2 |?
— [ A =i Ch+ —— =y, 82
d(].‘[a h(ﬂ')] 0(012|I“1f + h +Q|r|i ! ( )

ie., (79).
(79) = (75). We deduce the following equivalence:

up(q, B) — up (e, q, B) = Constin )
< a(un(q, B) — un(a, q, B), un(g, B) — up(a,q, B)) = 0
 a(un(a,q, B),un(a,q, B))
= a(un(q, B),un(q, B)) & (51), (83)

by using (22) and (13). i

Remark 3. For the particular discrete case, we have obtained an anal ytical expression for the
function Ap,(a), given by (78), and, therefore, the description of the set S?(B) is complete.

IV. ERROR BOUNDS AS FUNCTIONS OF THE PARAMETER h

If we take into account the following interpolation result [9, 10],
lv = Tavlly < Cob™ Y|vllng, Yo € HT(Q)(C, > 0), (84)

and we suppose the regularity property U(a) € H"(£2) with » > 1[4, 12— 14] (Refs. [5] and
[2] give us three examples in which the function U(a) is C*°) then we deduce the following
approximation results for the function of the discretization parameter h.

Theorem 7. (i) We have
Ala) = An(@) = aa(Un(e) = U(a),Up(a) — U(w))
== qiga'ﬂ(u(a\ q, B) == uh(a? q, B)* U(Ct’, q, B) - 1":-’i-(OH q, B)) 2 0. (85)

(ii) We have
aa(U(a) — Up(a),Un(a)) =0, (86)

ao(U(a) = Up(a),vy) =0, Yo, € Vi (87)

(iii) We have that Up(a) = Py (U(a)) is the projection of U(a) over the space Vi, with
respect 1o the norm associated to the scalar product a,, given by

IVlle = Vaa(v,v), Yve V. (88)

(iv) We have the following abstract estimate:

U(a) = Up(a)|lv < M, wigx |U(a) — vallv (89)
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with
llaall 1+ a“"l’a"2
M, = < - . 90
Ao~ Minf(1,e) ©0)
being v, : V. — L?*(T) the trace operator.
(v) We have the following abstract estimate:
0 < A(a) — Ap(a) < 1161{/ ao(vh — Ula),vn — Ulw)). 1)
vR EV

(vi) Ifwe have the regularity property U(c) € H" (Q) withr > 1, then we deduce the following
estimates:

|U(a) = Un(@)llv < Cr(a)h™ 1, (92)
0 < A(a) — Ap(a) < Ca(a,r)h%—1), 93)
_ Ca(a,7) 2(r—1)
0 < gm, (@, B) = gm(a, B) < Ale) Gmy (0, B)h ; (94)
where
Ci(a) = CoMu"U(a}”r,!h 02(0-'! ‘f‘) = CgllaGH"U(“)"r.ﬂ- (95)

Proof. (i) and (ii) follow from the definitions of U (a), U (@), A(a), and Ay (). Moreover,
from (87) we deduce (iii) [3, 10].

(iv) Taking into account that the bilinear form a,, is coercive with a coercive constant A, (i.e.,
(25)), for vy, € V}, we have

AallU() = Un(@)lf} < aa(U(a) = Un(e), U(e) = Un(a))
= ao(Us — Up(a),U(c))
= aoq(Us — Up(@),U(a) — vp)
< NaallllU(a) = Un(a)llv|U(a) = vallv, (96)

which implies (89). On the other hand, we have

|aa(u, v)| < |a(u,v)| + a/ lullvldy < llullvlvllv + allullzz) lvlleze)

Ty
< (1 +alvel®llullvllvllv,  ©O7)

that is (90).
(v) We have

Al@) — An(@) = aa(U(a) — Un(a), U(a) — Un(a))
1U(e) = Un()l|% < [U(a) — vnll%

Il

an(U(a) —vp, U(a) —vy), Yoy € Vi, (98)

that is (91).
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(vi) Taking into account the interpolation result (84) and the fact that IT, (U (a)) € V},, then
from (89) and (91) we deduce (92) and (93), respectively. On the other hand, we have

BIDy| A(a) — An(a) _ Caa,7)

Qmy, ((L B) == qm_((l,B} = Ah((}') A(O:} = A(Cl‘)

Gm,, (@, BYh2™=D  (99)

that is (94). =

Remark 4. If U(«) € V (not necessarily U(a) € H"(Q2) with 7 > 1), then, when h — 0,
we have [9, 10]

0 < A(a) — An(a) < ||U(a) = T4 (U(a))||2 = 0, whenh — 0. (100)
| |
We define the function
Ca(a, r)h?(r—1)
Z = _—ee— y X
(o, hy1) =1 A(0) <1, Ya,h >0, (101)
and we have the following equivalence (forany 0 < e < 1):
€< Z(a,h,t) <1 & h < h(e,a), (102)
where
(1 -€¢)A(a)
hy(e,a) = , D<e<l,a>0. (103)
JCUCQ(Q'T)”U(Q)”E,Q

Theorem 8. Letbe h, B > 0,and 0 < € < 1 (e is a parameter to be chosen arbitrarily). Then
we have the following estimates as functions of the parameter h :

1
Gm, (@, B) < Eqm(a,B), Yh < he(e, @), (104)

B|I's|Ca(a, 1)

0 Ty, 1 — Ym :B S
< ama (@, B) = am(@, B) < =250 S

R0 Yh < (e a). (105)
Proof. From (94) we deduce
Z(a, h,7)qm, (a, B) < gm(a, B) (106)
and, therefore, (104), because of the equivalence (102). From (94) and (104) we obtain (105). g
Corollary 2.  We have the following limit:

hl_i)r}})Jr Gmy (0, B) = gm(a, B), Va,B > 0. (107)
]

Lemma 3.  If the continuous and discrete cases are particular cases, then we have
0 < A(a) — Ap(a) = C — Ch < C2|ug|? oh*™ Y, (108)

BO:|F1| -

Qmy, Q:B <
3 ) 19

gm(a, B), (109)
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BCZ|Ty| 2 &
“u'-'i"r.ﬂ
T2 | A(a)
Proof. If the continuous and discrete cases are particular cases, then A(a) and Aj () are
given explicitly by (13) and (78), respectively, and we obtain that A(a) — Ap(a) = C —C}. The
right-hand side inequality is deduced by (72) of [11]. On the other hand, we have

Gm, (@, B) = gm(a, B) < pAT=1], (110)

B|l’ Bao|l'
Gy, ((-1'! B) = | lzll,ll - 1—‘| 1| =qmM ((\', B)' (111)
Ch + Q|f11| | 21

that is (109). Moreover, from (99), (108), and (109), we obtain
B|l'y| Aler) — Ap(a)
Ap(a) A(a)

C~Cy ” Ba|l'y| C - Cy
Ale) = [Ty  Ala)

Ty, ((’t, B) - Qm(ﬁ‘ B) —

= Qmy (Q’-. B)

Ba|l']
= |2|A(a)
that is (110). m

C2lua|2 qh?1), (112)

Remark 5. IfU(a) € H2(Q)NC°(2), then the convergence of Ap, () to A(ar) and g, (v, B)
to ¢, (v, B) is of the order h? when h — 0%.

This article has been sponsored by the Project No. 221, “Free Boundary Problems for the Heat-
Diffusion Equations™ from CONICET-UA, Rosario—Argentina, The author appreciates the valu-
able suggestions by two anonymous referees, which improved the article.
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