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Abstract

We review some recent results concerning to the heat equation with a heat source
depending on the heat flux occurring at the fixed x=0 of a semi-infinite material.
We also present a new free boundary problem (one-phase Stefan-like problem) for a
non-classical heat equation, and we obtain the temperature and the free boundary
(the phase-change interface) through the solution of a system of two Volterra integral
equations.

Resumen: Se da una revisién de algunos recientes resultados concernientes
a la ecuacién del calor con una fuente que depende del flujo de calor que ocurre
en la frontera fija x=0 de un cuerpo semi-infinito. También se presenta un nuevo
problema de frontera libre (problema de tipo Stefan a una fase) para una ecuacién
no clésica para la cual se obtiene la temperatura y la frontera libre (la frontera de
cambio de fase) a través de la solucién de un sistema de dos ecuaciones integrales
de Volterra.

Key words: Non-classical heat equation, asymptotic behavior, Stefan problem,
phase-change problem, free boundary problem, Volterra integral equation.

Palabras claves: Ecuaciéon del calor no-clasico, comportamiento asintético,
problema de Stefan, problema de cambio de fase, problemas de frontera libre,
ecuacién integral de Volterra.
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1 Introduction

The following non-classical heat conduction problem for a semi-infinite material was stud-
ied in [17]

U (2, 1) — Uge(z,t) = B(2)F(u-(0,2)), >0, t>0,
u(0,2) = g(t), t>0, (1)
u(z,0) = h(z), z >0,

*MAT - Serie A, 3 (2001), 21-26.
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where ®, g, h are real functions defined on R* and F is defined on Rt x R which
depends on the heat flux at the extremum z = 0. Non-classical problems like (1) are
motivated by the modelling of a system of temperature regulation in isotropic media and
the source term ®(z) F'(u,(0,t)) describes a cooling or heating effect depending on the
properties of F' which are related to the evolution of the heat flux u,(0,t). It is called
the thermostat problem. Related problems are considered in [4],[6],[9]. Under suitable
assumptions on data, existence, uniqueness and monotone-continuous dependence on the
data are established in [17] for problem (1).

It was consider in [2] the simple instance of problem (1) given by

Up — Upe = —F(ux(0,¢)), >0, t>0,
u(0,t) =0, t>0, (2)
u(z,0) = h(z), x>0,

where h(z), £ > 0, and F(v), v € R, are continuous functions. The function F', referred
as control function, was assumed to fulfill the following condition:

A) vF(v) > 0,F(0) =0,

which intuitively means that the control attempts to stabilize the process at every
time.
As it is shown in [18] (see also [17]), the solution to problem (2) can be represented by

z

w(z, 1) = vo(z, ) — /(; ert (2 \/t——7> F(V(r))dr, 3)

where ug = ug(z,t), defined by

wo(z, £) = / Gz, t;£,0) h(€) dt, (4)

is the solution to problem (2) with null source term F' = 0. Function V = V/(¢) in (3)
represents the heat flux at the extremum of the slab, i.e.

V(t) = us(0,1), t >0, (5)
and it satisfies the following Volterra integral equation

POV, )

Vo=

V(t) = Vo(t) —

where the forcing function Vp(t) is given by

Valt) = 2—;%— Tsexp (—%) h€)de, t> 0. )
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Function G in (4) denotes the Green function of the heat equation in the quarter plane
and, as it is well-known, it can be written as G(z,t;¢,7) = K(x,t;€,7)—K(—z,t;£,7), z,& >

0, £t > 7 >0, where
e 1 _(w—£)2)
K(a:,t,{,'r)— 47I'(t—T) exp( 4(t~T) ’

is the one-dimensional heat kernel. Moreover, we also define the Neumann function of the
heat equation in the quarter plane as N(x,t;€,7) = K(z,t;€,7) + K(—=,t;€,7), z,€ >
0, t>7>0.

From now on, we suppose that h is a non-negative and non-identically null function
which, in view of (7), implies Vp(t) > 0, ¢t > 0. When the control function F' satisfies
condition (A) and, moreover, the initial temperature h is non-negative, then the solution
u(z,t) to problem (2) tends to zero when t — +o00 (see [17], [18]). In 2] was studied the
problem of ”controlling” problem (2) through F' so that, by the stabilizing effect of the
control, its solution should converge to zero (when the time goes to infinity) faster than
that corresponding to problem (2) in absence of control; i.e.lim;_, 4o u(x,t)/up(z,t) = 0.
The heat flux w(z,t) = u,(x,t) satisfies a classical heat conduction problem with a
nonlinear convective condition at £ = 0. The first papers in this direction are [10] and
[13]. Other related problems are considered in [1], [8] and [12]. In [2], a general study of
the above stated control problem for (2) was done finding spatially uniform bounds for
the quotient u(z,t)/ug(z,t) which depend on the solution V() to integral equation (6),
from which becomes apparent that condition (A) is not sufficient to attain the objective
of the control; i.e., to obtain lim;_, ;00 u(x, t) /ug(z,t) = 0. In Section 2, for linear control
functions F' (v) )\ v, we give an example to illustrate that there exists an exact solution
to problem (6) prov1d1ng u(x,t)/uo(z,t) = 1/(2 %), t — +o00. In Section 3, we present
a one-phase Stefan problem for a semi-infinite material for a non-classical heat equation
with a source term F which depends of the evolution of the heat flux at the extremum
z = 0. Its solution is given by the solution of a system of two Volterra integral equations

[31,[7},[11].

2 Constant initial temperature and their control func-
tion
We shall consider the instance of problem (2) corresponding to a constant initial tem-

perature h(z) = hop > 0, £ > 0. The solution to problem (2) is represented by (3)
with

uo(z,t) = hoerf (_a:_

0\%> — 9 \/Z

while V = V/(t) becomes the solution to the Volterra integral equation

),:1:>0,t>0, (8)

V(r) ,
/ V= R ©
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Therefore, the following inequalities

@ u(z,t) _ 1 t V() 1 .
V) < m < g / Ve ot / F(V(r) (10)

hold for z > 0, ¢ > 0 [2].

From now on we suppose the case of linear controls: i.e.,
F(v) = M, (A>0), (11)

and in order to obtain the explicit solutions u and V' of the problems (2) and (9) respec-
tively, we define the real function Q(z) = /mx exp(x?) erfc(z), defined for x > 0 [15]
which satisfies the following properties: Q(0) = 0, Q(4+00) =1, @ (z) > 0, £ > 0. The
most important facts on the behavior of the solution V(t) to equation (9) corresponding
to a linear control (11) are collected in the following result (See [2]).

Lemma 1 If F is given by (11), then we have

0< V(L) = [1 - Q(A\/_] < ﬁ (12)

S Ak

-1 / F(V(r)) dr = exp(A%t) erfc(A/D), (13)

for allt > 0 and tli{P u(z,t) /ug(z,t) = 0, uniformly in x > 0. Furthermore, we have the

estimates )
< u(z,t) < 1

A%~ ug(x,t) — M/wt’

as t — 400 . Moreover, the temperature u is given by

(14)

u(z,t) = heexp(A%t) [erfc (,\\/Z) — exp()z) erfe (,\\/Z + ffi)} , (15)
u(z,t)

and a more accurate estimation wo(, ) ~ 1/(2At?), when t — +o0, uniformly in z > 0

18 also obtained.

3 A Stefan problem for a non-classical heat equation.

We consider the following free boundary problem (one-phase Stefan problem) for the
temperature u = u(x,t) and the free boundary x = s(t) (see [16}) with a control function
F which depends on the evolution of the heat flux at the extremum z = 0 given by the
following conditions:

Up — Upy = — F(uz(0,1)), 0<z<s(t),0<t<T,
u(0,t) = f(t) > 0, 0<t<T,

u(s(t),t) = 0,uz(s(t),t)=—5(t), 0<t<T,

u(z,0) = h(x), 0<z<b=2(0).

(16)
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Theorem 2 The solution of the free boundary problem (16) is given by

u(z,t) = /:G(a:,t;E,O)h({)d§+/otGE(a:,t;O,T)f(T)dT+/0 Ge(z, t; (1), T)v(T)dT
—/D(t) G(z,t; €, T)F(V(1))dédT |

s(t) = b /otv(r)dr

where D(t) = {(z,7)/ 0 <z < 8(7),0 < T <t}, and v(t) = uy(s(t),t) = — s (¢t) and
V(t) = u.(0,t) must satisfy the following system of two Volterra integral equations

o) = 200) - FOING0,50,0) + [ Nis(o), 56, 0)n (e
~2 /0 t N(s(t),t;0,7) f (1)dT + 2 /0 t G (s(t), t; s(1), T)v(T)dT
+2 [ IN6(0),t55(0)7) = N6(0), 60, 7)) F(V ()

V() = [h(0)— £(0)] N(0,¢;0,0) + /0 bN(o,t;g,O)h’(g)dg— /0 tN(O,t;O,T) f (r)dr
4 /0 G0, 5(r), TYo(r)dr + /0 "IN, & 5(r), 7) = N(0, 0, 7)) F(V (r))dr

where G and N are the Green and Neumann functions of the heal equation in the quarter
plane, defined previously in Section 1.

Proof. We compute u,(x,t), and their corresponding limits as t — 0% and z —
s(t)~. By using the jump relations [5], [14] the system of two Volterra integral equations
holds.

The corresponding study of the eristence and uniqueness of the solution will be given
in a forthcoming paper.
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