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I. MIXED ELLIPTIC PROBLEMS WITH OR WITHOUT PHASE CHANGE.

We consider a heat conducting material occuping §2, a bounded domain of RE (n=1,2,3in
practice ), with a sufficiently regular boundary I' = I'; U I'; U I'; (with meas(I';) = | T, | > 0,
[Ty] > 0 and | T3 | > 0) . We assume, without loss of generality, that the phase-change temperature is
0°C. We impose a temperature b = b(x) > 0 on I'; and an outcoming heat flux ¢ = q(x) > 0O on T, ;
we also suppose that the portion of the boundary I'; (when it exists) is a wall impermeable to heat, i.e.
the heat flux on T3 is null. If we consider in 2 a steady-state heat conduction problem, then we are
interested in finding sufficient and/or necessary conditions for the heat flux q on Iy to obtain a change
of phase in Q, that is, a steady-state two-phase Stefan problem in 2. Following [Tal] we study the
temperature 6 = 0(x) , defined for x € Q. The set Q can be expressed in the form

where
Ql={er / o(x)<o},

2) Qz={xEQ/0(x)>0}, L={x€Q/0(x)=0},

are the solid phase, the liquid phase and the free boundary (e.g. a surface in R®) that separates them

respectively. The temperature # can be represented in §2 in the following way :
0i(x) <0, x€Q ,

(3) f(x) = 0o , xe€EL,
f,(x) >0, x€, ,

and satisfies the conditions below :

i)A0i=0 in Qi(i=1,2) )

o, =0,=0, k, P k, o on L ,
_ Y _
111)02|F1_b, 1v)anlra—0,
“ 00
2 - .
—k2 %‘Ir\2—q lf 0Ir\2>0 y
v)
a9, _ .
—kla—nlrz—q lf 0'F2<0 s

where ki > 0 is the thermal conductivity of phase i (1 = 1 : solid phase, i = 2 : liquid phase ), b > 0
is the temperature given on ', , and q > 0 is the heat flux given on I', . Problem (4) represents a free

boundary elliptic problem (when L # ) where the free boundary £ (unknown a priori) is



characterized by the three conditions (4ii). Following the idea of [Ba, Dul, Du2, Fre, Tal] we shall

transform (4) into a new elliptic problem but now without a free boundary. If we define the function u

in Q as follows

(5) u=k20+—k10— (0=klu+—ﬁl—u-) in Q
2 1

where §Tand 64— represent the positive and the negative parts of the function 8 respectively, then

*

problem (4) is transformed into
i)Au=0 in D'(),
" _ _ o Qu _ du _
®  ulp =B (B=kb>0), i) -W| =q, P =0,

whose variational formulation is given by

(M a(uv—u) = L(v—-u) YveK , uekK ,
where
vV = HY(Q) |, V0={V€V/VIP1=0},
(8) K=KB={V§V/V|P1=B},
a(u,v) = J Vu. Vv dx , L(v) = Lg(v) = —J qv dvy .
Q Iy

Under the hypotheses L € V) ( eg. q € L%I',) ) and B € Hl/z(l",), there exists a unique
solution of (7) which is characterized by the following minimization problem [BC, KS, Ro, Ta3]

(9) ueK , Ju) <lv) , YvekK ,
where
(10) J(v) = Jq(v) = %a(v,v) - L(v) = %a(v,v) + Jq vdy .
Iy

LEMMA I: Ifu = qB is the unique solution of problem (7) fordataqon 'y and B > 0on T, ,

then we have the monotony property :

(11) B, <B,onT,andq, <qonl, = Uq,B, < Ug,B, in Q.
Moreover,
(12) q>0onT, = quSMaxlB inQ ,
and function u = Y4B satisfies the equality
(13) a(u—u—) = J qu—dy
Iy

COROLLARY 2. From (13), we deduce the equivalence

(14) u— #0inQ & u—#0onl,,



whereq > 0and B > 0.

We shall give three problems, with their corresponding solutions, which are related to problem (6)
or (7).

Problem 1: For the constant case B > 0 and q > 0, find a constant q; = qo(B) > 0 such that
for q > qq(B) we have a steady-state two-phase Stefan problem in , that is the solution u of (7) is a

function of non-constant sign in (.

Remark 1: From (14) we deduce that an answer to problem 1 is the element q for which u takes

negative values on the boundary I, .

LEMMA 3: Let u = uq be the unique solution of the variational equality (7) for q > 0 (for a
given B > 0). Then : i) The mappings

(15) q>0—-uqg€V and q>0 — J‘uqd'y €ER
are strictly decreasing functions. T,

ii) For allq > 0 and h > 0 we have the following estimates :

2
(18) Il (agyn = vg) lly < & = Lellyr, p/2,
1 - =
17 | h (uq uq+h) ”LZ(I‘z) <Co=Cillvoll

where v, is the trace operator (linear and continuous, defined on V), and a5 > 0 is the coercivity

constant on V, of the bilinear a , i.e. :

(18) a(viv) 2 ag I v Il , Vv eV, .
iii) For allq > 0 and h > 0 we have
(19) 0 < J‘uqd'y - J.uq_*_hd'ysCsh(Cs=Cz|I‘2|l/2>0)
r, r,

and therefore the functionq > 0 — J. uq dv is continuous.
Iy

Let f : |R+ — R be the real function defined by

(20) f(q) = J(uq) = %a(uq,uq) + qJ‘ uq dvy .
Ly
Remark 2. To solve Problem 1 it is sufficient to find a value q > 0 for which we have f(q) < 0.
We shall further see that this technique can still be improved.



THEOREM 4. i) The function f is differentiable. Moreover, f' is a continuous and strictly

decreasing function, and it is given by the following expression
(21) f'(q) = j uq dv .
Iy
ii) There exists a constant C = C(Q2,I';,I';) > 0 such that
(22)  aluguq) =Cq? , fl@)=—-§a®+B|T;]q .
iii) If ¢ > qo(B) , then we obtain a two-phase steady-state Stefan problem in § (i.e. uq is a function of

non-constant sign in ), where

(23) a(®) = 212

Remark 3. The sufficient condition f(q) < 0, to solve Problem 1, was improved by the condition
f (q) < 0, which is optimal (see examples more later). In the case where, because of symmetry, we
find that the function uq is constant on T', , the sufficient condition, given by (Th.2-iii), is also

necessary to have a steady-state two-phase Stefan problem.

COROLLARY 5. If we consider the general case b = b(x) > 0 on I', , we obtain : If function q
satisfies the inequality

kp | Ty |
(24) Inf _ q(x) > 2<% Sup b(x)
x €T, C x €T,
then we have a two-phase steady-state Stefan problem in , that is function u = u qb is of non-

constant sign in Q.

Let qc > 0 be the critical heat outgoing flux which characterizes a steady-state two-phase Stefan
problem, that is

q > q¢ < 3 2-phases,
(25)
q < g¢ € 3 1-phase (the liquid phase).

We shall give now some estimates for the critical flux qc [BST].

LEMMA 6. i) Let w denote the solution to

-— 1 = = a—w =
(26) AW—Oan, wlI‘l—B,WII\Z—O,anlI‘a—O.
If we define
= Min (— 2%
(21) % =Mp (=5 Ir)



thenug > w > 0 in Q,Vvq< q; - Moreover, we have q <qc -
ii) Let P, € I';, and the affine function 7 such that

(28)  wlp 2B, w®)=0,7|p 20, | 20.
If we define
= Max (= 2
(29) Qs —Maf‘(z( an|[‘2)

then uq < 7 in Q, Vq > qs . Moreover, we have uq(P;) < 0, Yq > qs and then q¢c < qs .
iii) On the other hand w < 7 in Q and if w # 7 we have q <gs -

Remark 4. A sufficient condition for such 7 to exist is the existence of supporting hyperplanes o
to Q at P, € T, which are a positive distance away from T, : construct an affine function 7 vanishing
on o (and at P,), such that = | r, > B and there is P, € T, with m(P;) = B . The optimal g can
be obtained by selecting P, , ¢ = 7p, such that dist(o, T,) is the largest. This construction fails if
I, is a flat portion of T, e.g. the side of a triangle @ C R?, T, being formed by the other two sides and
Iy = 0. The fact that ug(P,;) < 0 suggests that the second phase appears at P, € I'; , the point
"farthest” from I'; . In many cases (c.f. [BST]) the function = can be obtained by satisfying (28) and
7(P,) = B, where P, € T, , P, € T, and dist( P;, P, ) = Sug r dist(x,T';) . There is no

X

2
uniqueness in general for the points P, € T, and P, € T, . For instance, in Example 1 (see below)

there are many P, = (0,y) and P, = (xo,y), with y € [0,y,).

We shall consider q¢ = q¢(f2) as a function of the domain Q. Let 2, and Q, be two bounded

domains, with regular boundaries, such that [BST] :

(30) Q,c , a@)=tMur,ur,, a@)=rPur,ur,,

where the boundary conditions on I‘El) (i =1, 2), T, and T'; are of the same type as the ones defined
before. Let u; (i =1, 2) be the solution to problem (7) for the domain §; with data B = B(x) > 0
(i)

on )" and q; = q;(x) on T3 (i = 1, 2), that is

(31) I.li € Ki (i = 1, 2) N ai(ui, V—ui) = - I qi (V -_— ui) d7 y Vv (S Ki y
where r, ’
(32) a;(nv) = J Vu.Vvdx (i=12), K= {v € Hl(Qi) /v F(i) = B} .
Q 1

i
THEOREM 7. Under the above hypotheses, we obtain the following property :

(33) @ <q onl; = u<y inQ.



Moreover, we have that qc(2,) < qc(,) , that is, q¢ = q¢(f2) is a non-increasing function of the

domain 2 where the order is represented by conditions (30).

We shall give now another estimate for q¢, by using Poincaré type barriers. Let £ € T', be such

that there exists x, ¢ &, with

)  lxo-¢&ll=a>0 , {x/llx-xllsajn@={¢c},
where a is a positive parameter and || - || is the euclidean norm in R™. The Poincaré barriers at £ €T,

are [Ke] :

(35) VD,a(x,E) = V(x,§) =

where D is a another positive parameter. Let P, € T, , P, € T, be such that

(36) d =Sup dist (x,T,) =||P, =P, || >0 .
xeTl,

Let £ = P, € T'y be . Then we have

THEOREM 8. We assume the following hypotesis :

(37) \A T, >B & V(P,§) 2B .
Let gy be defined by

(38) Qv =
Then we obtain that

V(f!i],ff)=B (%) )

(39) V(x,) > ug(x) , Vx€Q , Ya>aqy , (40)  qc <aqy -

Remark 5. Equivalence (37) is an immediate consequence of the monotonicity of V on {|x — x| ,

for special domains.
Remark 6. Let
(40) Q={mw€W/—E5xszm$ygh},E>0,h>0.

Let T, be the top and bottom sides of this rectangle, and let ', be the two vertical sides. We
maintain a temperature b > 0 on I'; ( B=k,b > 0 ) and ask for the minimum heat flux q on T’y for
which the zone { (xy) € Q /ulxy) >0 } (whose boundary obviously contains I'y) is disconnected, a

region where u < 0 joins the two components of I';, . By introducing a variant of the Poincaré barriers



(35) we obtain that [BST]

(41) q> fgﬂ—gf (withh > E) = {u >0 } is disconected.

Problem 2 : For the general case b = b(x) > 0 on I'; and q = q(x) on I'y , we consider the
following optimization problem : Find q € Q+ that produces the maximum heat flux on T, , without
change of phase within Q , i.e. [GT] :

(42) Max  F(q)
aeqQt

where

F:Q—-R / F(q)=qu7,
I-‘2

1/2 .
/(rz) vs={V€K/AV=OmQ,g_:'l|r3=O},

Q=H
(43)
S+={VGS/v20inQ}, Q+=T'1(S+)={q€Q/uq20inQ}.

The application T : Q — S is defined by T(q) = u where u = uq is the unique solution of
(7). We consider that the domain Q and the data B on T, (e.g. B € H3/2(I‘1)) and qon I’y (e.g. q€Q)
are sufficiently regular to have the regularity property u € H(Q) n C*Q) (forn < 3, H3(Q) C
C%Q) ) . Moreover, in the three examples given below, the solution satisfies this condition for the

constant case. Therefore, we have that there will not exist a phase change in Q for any heat flux

qeQ™.

THEOREM 9. (i) The operator T is an affine and monotone increasing operator, that is, there
exist u; € S and two new operator T, and T, so that T = T, + T, , where

T,:Q — §/Ty(q) =v, €5 ,Vq€Q,
(44)
T,:Q — Vgy/ T, islinear and continuous.
(ii) Q+ is a convex set and F is a linear (then, convex) functional.

(iii) There exists a unique § € Q+ such that

(45) F(@) = Max_ F(a) .
qQ€Q
Moreover, the element q is defined by @ = — g_: | T, where w is given by (26).



Problem 3 : For the general case b = b(x) > 0 on Ty and q = q(x) > 0 on ', , we consider the

following optimization problem : Find the maximum upper bound for q such that there is no change of
phase within Q, i.e. [GT]

(46) Findq}y >0/uq>0inQ ,Vq=gq(x) SqyonT,.

THEOREM 10. (i) For the case q = const. > 0 , we obtain that

47 0 —nf ¥
47 M= e

where u, and ug are given respectively by

P _ 8u, _
(48)  Aw=0in @, wlp =B ,5lp yr, =0,

s ' - Oug _ dug =
(49) Auz =01in @ , wlp =0, Flp, =1, 52, =0

(ii) If @ = q(x) > 0 on T, satisfies the condition Sup q(x) < qlo\'l , where qOM is defined by (47),
xeTl
then uq > 0 in Q. 2

(iii) For the constant case, we have that q?w = qc , where q¢ is the critical heat outgoing flux (25).

Now, we replace the condition (4iii) by the following one [Tal] :

a9 .
—kza—'nzlr\lz a(kzoz—B) if 0IF1>0 y
(50)
a6 .
‘k1‘5;1|r1= a(k 6, -B) if 0|rl<0 )

where @ = const. > 0 represents a heat transfer coefficient on I'; . We are interested in studying the
temperature § = 0, , represented in by (3), which satisfies the conditions (4i,ii,iv,v) and (50) . If
we define the function uy in Q by (5), then it is transformed into
. _ . ! s Ou _ du _
i))Au=0 in D(Q), iii) a;|r\2—q ) anlra—o,
(51)
sy a__ll _ _ _
ii) anlrl..a(u B),B=k,b>0,

whose variational formulation is given by (u = u,, qB ):

(52) aa(u,v) = Lan(V) 1y V v e V 1y u € V )
where



(53) ag(u,v) = a(u,v) + a I uv dvy , Lan(v) = Lq(v) + a J Bv dy.
T, T,

1/2

Under the hypotheses Lan € V' (eg. q € LT,) and B € H/“(T,) ), there exists a unique

solution of (52) which is characterized by the following minimization problem

(54) G(u) <G(v) , Vvev , uev ,

where

(55) G(v) = Gan(v) = %aa(v,v) - Lan(v) = Jq(v) + %‘ I vidy — « IBv dv .
T, T,

LEMMA 11: Ifu = UsqB is the solution of problem (52) for dataq > 0 on 'y, B> 0 on T, and
a > 0, then we have the following properties (for a given B > 0 ):
(i)uansBinQ,Va>0,Vq>0,
(ii)uanSqusBinQ,Va>0,Vq>0,

(56) (iif) g q,B < Yq,q,B nQ,¥Va <a,,Y4q;,<q,
(iv)Mzsuanng nQ,YVa>0,YVq>0;
where
(57) M, = My(a,q,B) = Mirl‘lz UsqB M, = M (a,q,B) = Maragl UsqB

Moreover, we have that o lin_l'_ o YagB = Yaq strongly in V, where uqyq is the solution of (7).
ca—

COROLLARY 12 : From (56), we deduce

=

(58) Ma.;_; uan = Ml y Mi uan = M2 .

o]l

where the elements M, and M, are defined in (57).

Now, we shall consider a problem ( Problem 4 ) related to (51) or (52).

Problem 4. For the constant case B > 0,q > 0 and « > 0, find conditions between a, q (for a
given B > 0) to have a steady-state two-phase Stefan problem in Q, that is the solution u of (52) is a

function of non-constant sign in Q.

We shall consider that the domain Q2 and the data b (or B) on T'; and q on T, are sufficiently
regular to have the regularity property u aqB € H%(Q) N C%Q). Moreover, in the three examples, the

solution u aqB satisfies this requirement.

10



Remark 8. (i) The problem (52) is a two-phase Stefan problem in Q if and only if :

(59) 3x,€ T,,x, € Ty / uan(x1)>0 , uan(xg) <0 .
(ii) If u aqB satisfies the following condition
(60) I UsqB dy >0 , Juan dy <0
Iy Iy

then the problem (52) is a two-phase problem.

THEOREM 13. If q > qy(B), then (52) is a steady-state two-phase Stefan problem in Q for all
a> ay(q,B), where

_all,|
(61) a(aB) = F i

Remark 8. In the case where, due to symmetry, we find that function u agB is constant on T, ,
then the sufficient condition, given by Theorem 10, is also necessary for problem (52) to be a steady-

state two-phase Stefan problem.

Let g: (R'*')3 — R be the real function defined by

(62) g("aQaB) = Gan(uan) y ,qB>0.

THEOREM 14. (i) Function g has partial derivatives with respect to variables @, q and B, and
they are given by the following expressions for all @, q, B > 0 :

g — 1
63)  FE@aB) = | (Julqp —Buge )dv
T,
(64) 08 (4,q,B) = d 65) 98(a,q,B) = d
5(—1 a,q, - uan T ( ) % a,q, ) = -« uan v .
r? I‘l

(ii) There exists a function A = A(a) > 0, defined for @ > 0, such that

Aa 2

66)  glmaB) = -2 q2 4 pq|r,| - Be 1y,
6) [ upqpdr =B T2l —aA@) , Yg,B>0.

Iy

(iii) Function A = A(a) is a decreasing positive function of a which verifies
A() > 1T2l 1 lim Afa) =C
[T & a — +0oo ’
(68)
o £m+ma Alla) =0, (e A(a) ) = c%z a(uan,uan) ,

11



where C > 0 is the constant defined in Theorem 4.

THEOREM 15. (i) Let qqm = qm(a,B) and qp; = qpq(a,B) be real functions, defined for
a,B>0 by the following expressions

B|TD,] BalT, |

69 ,B) = , a,B) = —/———— .

(69) am(a,B) Ala) QM( ) [T, |
They verifies the conditions

am(0,B) = q(0T.B) =0 ,  am(e,B) < qpq(«,B) , Ya > 0,B >0,
(70)
o lim+oo dm(a,B) = q¢(B) , qm is an increasing function of variable a .
The set
2
) $9@) = {(@e) € ®")? / am(@B) < a < ay(aB) @ >0}

is not empty, forall B > 0 .

(ii) We have the following equivalences :

(1) )] upqpdr >0 ® a<ay(@B) , i) [ upqpdr <0 @ 4> am(@B) -
T, L,

COROLLARY 16. If (a,q) € S(2)(B) , then (52) is a two-phase steady-state Stefan problem.

Remark 9. In the case where, due to symmetry, we find that u agB is constant on T}, and T,
respectively, then the sufficient condition, given by Corollary 16 is also necessary for problem (52) to

be a two-phase Stefan problem.

The function A = A(a) , defined for « > 0, is not explicitly known but has properties (68) .
Now, we shall consider a particular case for which we can obtain more information about the

expression of A(a). We consider the particular case when u qB verifies the condition [TT]
(73) # a(uan, uan) = Const. (= Const(a,q,B) ), Va,q, B> 0,
or in an equivalent way ( a A(a) )’ = A(a) + a A’(a) = Const. , Va > 0, due to (68). In this

case, we have necessarily that Const(a,q,B) = C > 0, Ve, q, B > 0, where C is the constant
defined in Theorem 4.

12



LEMMA 18. (i) We have the following equivalence

(74) UgB — YaqB is constant in @ & (a A(a)) =C.

(ii) For the particular case (73), we have the following properties :

- _alTl,| . — R _ q| T, |
(75) qu uan = ——a I Fl I in Q y (76) uan | Fl =B ——-’a ' Fl | N
Ou Ou
aqB,  _ al|Tl,]| qB, _
(™ o | r,~= T, ] (78) o | r, = Const.

Moreover, the function A(a) is given by the expression

T 2
(79) Ae) = C + };'I—fz-}- .
1

Remark 10. For the particular case (73), a complete description of the set S(z)(B) was obtained.

We shall give three examples in which the solution is explicitly known [Ta2] so that we can verify

all the theoretical results obtained in this paper.
Example 1. We consider the following data
n=2 , Q=(0x0) x(0,y0) ., Xg>0, yo>0 ,

(80) I = {0} x [0,y] , Tz = {xo} x [0,yo] , T3 = (0,x9) x {0} U (0,x0) x {yo}.

Example 2. Next we consider

n=2 , 0<ry<r, ,T3=2¢9,

2 : annulus of radius r, and r, , centered at (0,0) ,

(81) T, : circumference of radius r, and center (0,0) |,

T’y : circumference of radius r, and center (0,0) .

Example 3. Finally, we take into account the same information of Example 2 but

now for the case n=3.

Remark 11. The three examples verifies condition (73), that is, they are particular cases.

Remark 12. The two elliptic variational equalities (7) and (52) appear if we consider the
asymptotic behavior when the time t — +o00 in four parabolic variational inequalities of type II,

defined in [Tal), for the evolution two-phase Stefan problem (See also [Da, Du2, Fre, Fr2]).

13



II. MIXED PARABOLIC PROBLEMS WITH OR WITHOUT PHASE CHANGE.

We consider a semi-infinite material, represented by Q2 = (0,+00) ., with an initial uniform
temperature 8, > 0. On the fixed face x = 0, the body may have a temperature — D < 0
(solidification problem) or an outward heat flux q(t) > 0 for all instant t > 0. We enlarge the
problem by taking into account the effect of the density change during the phase change. Moroever, the

material has constant thermal coefficient, e.g. :

ki > 0 :thermal conductivity of the phase i, ¢ > 0 : specific heat of the phase i,
(1) Py > 0 : masskdensity of the phasei, h > 0 : latent heat of fusion,

a; = ai2 = - lc > 0 : thermal diffusivity of the phase i,

11

where i = 1 and i = 2 represent the solid and liquid phase respectively. Without loss of generality, we

take null phase-change temperature (i.e. we consider the case : ice-water).

The problem consists in finding the function x = s(t) > 0 (free boundary), defined for t > 0

with s(0) = 0, and the temperature
O,(xt) <0 if 0<x<s(t),t>0,
(2) 0(x,t) = 0 il x=s(t),t>0,
Oo(x,t) >0 if x > s(t),t>0,

defined for x > 0 and t > 0, such that they satisfy the following conditions [CJ,Ru] :

i)o:1¢91xx=¢9lt , 0<x<s(t),t >0,

i) g 00, + BB s1) 0, =0, , x>s(t),t>0,
iii) s(0) = 0 ,
) iv) 8)(s(t),t) = O(s(t)t) =0 ,t >0

(3bis) V) ky By (s(t)t) — ky 85 (s(t)t) = py h3(t) , t >0,
vi) 0,5(x,0) = 0y(+ooit) =60,>0 , x>0, t>0,
vii) ,(0t) = — D < 0, ( (viibis) k; 8, (0,t) = q(t) >0 ), t> 0.

We shall give the explicit Neumann solution to problem (3) [BT,CJ,Ru].

LEMMA 1. The solution to the problem (3) (known as Neumann solution) is given by

01(x,t)=A1+B1f(2—;l‘ﬁ—), sty =274t (v>0),
(4)

02(X,t) = A2 + B2 f(61 + ?ﬁtp) ,
2

where
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X
W = [ew-wdn (=at9), Am=-D B =B~
0 a)
_ 0ef(g5) 8,
(8) Ay(7) = ~ w » Ba(y) = - 5.7?,)
Py — P2 )

f="7_"61=a7‘|f|’30= )
2 2 1+ el

and « is the unique solution of the equation
(6) Fx)=x, x>0,
with
(7 F(x) = —h——#_ B, (x) exp( — x_: - %—- B,(x) exp( — %2 )
pr 8 a P18z NT ag

which satisfies the following properties

(8) FOY) = +00 , F(+00) = —o0 ,F' <0 .
Now, we shall analyse the solution of problem (3bis) for different heat fluxes q = q(t).

Problem 1. For which heat fluxes q = q(t) do (3bis) have a solution of the Neumann type, i.e.

when does problem (3bis) represent an evolution two-phase Stefan problem for that fluxes ?

We shall prove that there is not always solution of the Neumann type for the problem (3bis), i.e.,
problem (3bis) does not always represent an evolution two-phase Stefan problem; the cases considered

will be [BT,SWA,Ta4]
9) at) =qet™? (>0, t>0, n=—1,01,...

For the case n = — 1 we instantaneously have a two-phase Stefan problem (evolution case) if

and only if the coefficient q, verifies the following inequality {BT (for p; # p, ), Tad(for p; = p, )]
(10) g > -:“2_:’3- =9,

ky py ¢y
For the cases n = 0, 1, . . . solidification does not immediately begin at t = 0 because the

material temperature in x = 0 must be raised from 6, to 0 before solidification begins and a waiting

time ty is necessary, where [SWA]

kT(3+3) o+
(11) t“=(a2qor(1+g—)9° .
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THEOREM 2. (i) When the heat flux is q(t) = q, g~ 1/2 (t > 0), then there exists a solution of
the Neumann type for the problem (3bis) if and only if qq verifies the inequaliuty (10). In this case, the
salution of (3bis) is given by

o,(x,t)=cl+D1r(m-), s(t) =2wdt (w>0),

(12)
—_ X
05(x,t) = Cy + Dy f(52 +m-),
where
a T a ir
Cw) = = =M &), D) = L=,
(13) -
0of(a£,u") [/ w| el
Cow) = = ——2— , Dy(w) = —TP0rreo , b, = ,

and w is the unique solution of the equation

(14) Fo(x) =x, x>0,

with
K, 0, exp( — 35

0
hpra, ¥ 1-1(3)

2
(15)  Fo(x) = po—exp( — %) -
1 ay
(ii) If q < _kzjgo__ there is no solution for the solidification problem (3bis), we just have a problem of

the heat conduction in the initial liquid phase.

iii) The case q5 < ky 0 corresponds to the limit case of problem (3) when the latent heat of fusion
a, \®

h = +o00.

Since the temperature @, , defined in (12), verifies that #,(0,t) = C,(w) < 0 , then we can

consider the problem (3) for D = — C;(w) and so we obtain the following
LEMMA 3. If the condition (10) is valid and we take D = — C,(w) in problem (3), we have :
y=w,

ii) the coefficient vy, which characterizes the free boundary of the Neumann solution for the problem

(3), verifies the following inequality

1
P1 ¢ ky 43
(16) f(a1)< [-—--p2c2 1° .
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Now, we consider a slab, represented by the interval 0 < x < x, at the initial temperature 8o
= fo(x) > 0, having a heat flux q = q(t) > 0 on the left face x = 0 and a temperature condition
b(t)> 0 on the right face x = x4 (xo could be also +o0, i.e., a semi-infinite material). We consider
the corresponding heat conduction problem (0 < xo < +00):

i) pecldy—kbxx =0, 0<x<Xxo, t>0,
i) 8(x,0) =0o(x) >0, 0<x<x0,

a1amn iii) k 0x(0,t) =q(t), t>0,
iv) 6(xo,t) = b(t), t > 0.

We replace the condition (17iv) by 8(+oo,t) = 8o(4+00) > 0, t > 0 for the case xo=+00. We
assume that the data satisfy the hypothese that ensure the existence and uniqueness property of the

solution of (17).

We consider the following posibilities:
(a) The heat conduction problem is defined for all t > 0 (waiting- time t* = 4 00);
(b) there exist a time t*<+oco such that another phase (i.e. the solid phase) appears for t > t*
(waiting-time 0 < t* < +400) and then we have a two-phase Stefan broblem for t > t*. In this case,

there exist a free boundary x = s(t) which separates the liquid and solid phases with s(t*)=0.

We will separate the cases waiting-time t*=0 (i.e. there exists an instantaneus change of phase)

and 0<t* < +4o00. These possibilities depend on the data 84, q, b.

Problem 2 : Clarify this dependence by finding necessary or sufficient conditions on data 8o, q, b
to have the different possibilities, i.e. an instantaneous change of phase (t* = 0) or a waiting-time t*>0

[TTu).

Remark 1. The term waiting-time was used for free boundary problems corresponding to the

porous medium equation (See, for instance [Ar]).
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THEOREM 4. If the data q = q(t), o = 0o(x) and b = b(t) verify the conditions
i) 0<q(t) £q.,0<t<ty withty >0,
(18) ii) 8'5(x) > 0and By > 0o(x) 2 B, >0, 0<x<xo withB, < By,
iii) b(t) >8; and b(t)20, t >0,
then there exists a waiting-time t*>0 for problem (33), (i.e. another phase could appear at t>t*),
where t* verifies the following inequality

(19) t*> Min(ty, t§), th=wkpcp?/4q? .

Remark 2. When the data verify conditions (18), problem (17) represents a heat conduction
problem for the initial phase (in our case, the liquid phase) for t < t*.

Remark 3. We can see that tj does not depend on the length of the slab x5 > 0.

instantaneus change of phase (i.e. t* = 0) is q(0+) = +o00.
Remark 4. If we consider the following case
Xo = +00, - bo(x) 2 8,>0,¥x2>0,

) B Se®) == V>0

then problem (17) is a heat conduction problem for the liquid phase for all t>0, i.e. there is not a

phase-change process for any t> 0 . Moreover, the particular case

B,k
21 t) = —2 = t , t>0,
(2) aM) = Sf= (=) L t>
show us that condition q(0+) = 400 is not sufficient.

Remark 5. If xo = 400 and 8o(x) > B, > 0 for x > 0, then a necessary condition to have

(17) an instantaneous change of phase (i.e. the wainting-time is t*= 0) is to exist an instant to> 0

8.k
h that t Q
such that q(to) > =

18



THEOREM 6. If the data verify the conditions
xo=+°°;0500(x)5ﬁ1 Vx>0,
(22) q(t)zq—§,0<t<1,withq°>Oand%<ﬂ<1,
t

then an instantaneous phase- change occurs, that is the waiting-time is t*= 0.

We consider the case of constant temperature b(t) = b > 0, t > 0 on x = x, and constant heat
flux q(t) =q >0, t >0 onx = 0. The steady- state solution is given by 8oo(x) = % (x~xo0) + b
and a necessary and sufficient condition to have a steady-state two-phase Stefan problem is [Ta2]

q>qy(B) = % , B =kb >0, where k is the thermal conductivity of the liquid phase.

Using the fact that § = 6(x,t) , solution of (17) with data q > 0 and b > 0, converges to
0oo=0900(x) when t goes to +oo [Frl], for any initial temperature 8o =0(x), we can formulate the

following.

Problem 3 : find the relation between the heat flux q > 0 on x = 0 and a time t; such that

another phase appears for t > t{, and we can reformulate problem (1) in a two-phase Stefan problem

fort > ty.

THEOREM 7. The initial temperature verifies the conditions 6, > 0, 0o >0, 0o,/ <0in

[0,xo] and 8o(xo) = b. If the time t; > 0 and the constant heat flux q > 0 verify the inequality

(23) > bk o= K
) Xo (1— eXP(" i.légl)) T

then another phase (the solid phase) there exists for t > t;. Moreover, (0,t) < 0 for allt > t; and

the free boundary x = s(t) begins at a point (0,t/) with 0 <t' < ty -

19



COROLLARY 8. If we consider the q,t plane and we define the following set

(24) Q={(ta)/ a>f(t)= bk t>0}

Xoll — exp( — 5]
40

then we obtain that for all (q,t) € Q we have a two-phase problem.

NOTE. Many others free boundary problems for elliptic or parabolic partial differential equations
(of Stefan type) can be found in [ BC, Ca, CJ, Cr, Di, Du2, EO, Fa, Frl, Fr3, Li, Mal, Ma2, Pr, Ro,

Ru, Ta3, Ta5, Ta7 ].
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