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Abstract—We give a new and explicit estimate for the asymptotic behavior of the solutions of the
problem u, —u,, +u’ =0, x>0, >0, with conditions u(0,1)=1, >0 and u(x, 0) = Uy(x) =0,
x>0, for a class of functions U, and parameter 0 <p < 1. We use an approximate solution given by
the heat balance integral method with the innovation property which fixes appropriately the
asymptotic limit of the corresponding approximate free boundary.

I. INTRODUCTION

The purpose of this paper is to give a new and explicit estimate for the asymptotic behavior of
the solutions of the problem:
(i) L(u) =u, —u, +Auf=0, x>0, >0,

(i) u(0, =1, >0,

(iii) u(x, 0) = Up(x) =0, x>0, (1)
for a class of functions U, = Uy(x) corresponding to the initial condition (liii), and parameters
p>0and A>0.

We denote with x_ the positive part of x, that is x, = Max(0, x).
If 0<p<1, it is well known [1,3,9] that equation (1i) has a stationary solution
corresponding to datum (1ii), which has compact support in [0, +) and is given by

k 2i(1=p) 2 1+
w=(1-52) ", =ip =2, @
1/, —p
In the case 0 <p <1 and U, = u.., the solution u = u(x, t) of (l) satisfies
1
O<u(x, 1) <u.x, 1), 0<x {I. >0, (3)

because of the comparison principle for equation (1i) [2]. This means that u(t) =u(.;t) has
compact support in variable x for any { >0 and

s(t) = Sup(x > 0/u(x, t) >0}, >0, (4)

is a free boundary which is moving with finite speed for ¢ > (.

We shall give an estimate of how fast the free boundary s(¢) tends to its limit //A as r— +eo.
The estimate we get implies that this convergence is exponentially fast in time, in a similar form
to the one given in [8]. The purpose of the present paper is to show how this result can be
obtained in a different way to [8] by using the Goodman heat balance integral method [6, 7].
To prove that we use an approximate solution given and motivated by the heat balance integral
method with the innovation property (8) which fixes appropriately the asymptotic limit of the
corresponding approximate free boundary. This method was very useful to some phase-change
problems, see for instance [4, 5, 10]. This approximate solution to (1), approaches exponen-
tially fast the stationary solution u.. = u..(x) when Uy=u. and 0<p <1 for all A>0. This is a
new and explicit proof (with respect to [8]) of the exponentially fast asymptotic behavior of the
solutions in heat conduction problems with absorption.
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II. THE HEAT BALANCE INTEGRAL METHOD APPLIED TO PROBLEM (1)
AND A NEW PROOF OF THE ASYMPTOTIC BEHAVIOR IN HEAT
CONDUCTION PROBLEMS WITH ABSORPTION

We consider a related problem to (1) which consists in finding the function C = C(x, ¢) and
the free boundary s = s(¢) such that they satisfy the following conditions:

(i) C,—C +A%Ch =0, O<x<s(t), >0,
(i) C(0,1)=1, >0,

(iii) s(0)=0,
(iv) C(s(1), 1)=0, >0,
v) Cls(), =0,  t>0. )

Taking into account the heat balance integal method we replace equation (5i) by its integral
in the variable x from 0 to s(r), that is

s(t) s(r) s(t)
»-12[ CP(x, t) dx =I C(x, )dx — | Cuelx, ) dx
(1] s (]

s(t)

= C(x, r)dx + C,(0, 1), >0, (6)

and then we propose for the approximate problem (6)—(5ii—v) the following expression for C,
namely [5-7]:

x @
Clx, t)= (1 - —) 7
wo=(1-35). )
where s = s(¢) is a function to be determined and & > 1 is a parameter to be chosen so that
\ I
lim 5(¢) = % . ®)

This is the present innovation of the heat balance integral method applied to free boundary
problems [6, 7].

Function C satisfies conditions (5ii, iv, v). If we put expression (7) into (6), after some
manipulations, we obtain for s =s(¢) an ordinary differential equation, i.e. the following
Cauchy problem:

1 A
Omateri[ gl
y(0) =0, 9
whose solution is given by
1
s(:)=3[1 —exp(—2a(a + 1)), =0, (10)
with
AZ
P
b a(l+pa)’ a1
If we choose & >1 by imposing the limit condition (8), we obtain that
A
f=——r0. 12
1(p) (12
Condition (12) is an equation for a > 1, and its solution is given by
2
a=a(p)=—-=2>2, (13)

l=p
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which is the same exponent of the stationary solution (2) and independent of the parameter A.
Therefore, we have obtained the following result:

Theoerm 1. Let p € (0, 1) and A >0 be. If we apply Goodman heat balance integral method to
problem (5), that is the problem defined by (6) and (5ii—v), with the innovation property (8),
we obtain the solutions Cyz = Cg(x, t) and sz = s5(r) which are given respectively by (7) with
(13) and

I 2223 —p)n 12
Aol ZE]" o
sp(1) l[ exp 155 t=0 (14)
We can define the following functions:
x JH0-p
)= l—-—} , =0, >0, 5
uy(x, t) [ 0. x t (15)

If we consider the heat conduction problem with absorption (1), we obtain:

THeoreM 2. Let 0<p <1, A=>0and 0=U,=u.. in R" be. If u=u(x, 1) is a solution of (1)
and s = s(1) is defined by (4), we have the following comparison properties:

I
wy(x, £)=u(x, 1) = u.(x), 0=x 51, t>0, (17)
h§
s,(r)‘_:s(r)sz, =0, (18)
and the following estimates
1 1 1 240
(}<1—s(r)si—sl(r)siexp(—ﬂj—). =0, (19)
¢ 2At
exp(—T)
0=u"72x)—u"P2(x, 1) = ul " (x) — ul'"P(x, 1) E_—Zk! ;
1.~ exp(— T)
I
XE€ [O'IJ' t=>0. (20)

Proor. To prove (17) it is sufficient to verify that L(u,) =0 because of the comparison
principle for the operator L [2].
Taking into account the properties

1
(l_i)%i’ Vi e[0, s, (21)
S0 _p( LA
m_z(s.(:) 1)' >0, (22)
we obtain that .
X pMl=p 1 1
L{ul}E[I_MTI)]+ (Sl(”—ﬂ.)(m-—k)ﬂ& (23)
for
1
A"Vz(up)' (24)

Owing to the fact that

1 1 1
S i LY,
2 " Va(i+p) V2 P &
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and the following scalling property:
vy (x, 1) =v,(Ax, A1) (26)

where v, and v, denote the solutions of (1) for A >0 and A = | respectively, we deduce that
L(u;) =0 for all A > 0. Then u, is a subsolution of (1) and we obtain (17) and (18). After that,
the estimates (19) and (20) follow by the expressions of u, and s,.

Cororrary 3. The Theorem 2 implies that the solution u to (1) converges uniformly and

exponentially fast to the stationary solution w.. when t goes to infinity. Moreover, the rate of
convergence is faster than 24/1.

REMARK 1. We shall prove later that function sz = s5(¢) is better than s, = 5,(f) to approximate
the free boundary s = s(r).

From now on, without loss of generality, we consider the case A=1, 0<p <1 and
0=U,=u. in R in problem (1). The results obtained in [8] are given by

V2(1+
s=s=1, =0, (1=1(p)= %})—”—)) @7)
uolx, 1) = ulx, 1) =u.(x), O=x=], t=0, (28)
where functions s, and u, are defined by (take L, =0 and m =1 in [8])
so(t) = I[1 — exp(—cot)]'?, =0, (29)
i X 2/(1=p)
Uglx, 1) = ll— ] \ O=x=1, t=0, (30)
-"u(f) +
with
co=co(p)=4(1-p). (31)
If we consider the functions Cgz and sy given by (Theorem 1):
. q201—p)
Cylx, t)= [1 - ] , O=x=1, =0, (32)
Sﬂ(f} +
sp(t) =11 —exp(—czt)]"?, >0, (33)
with
a _2B3-p)
cE=ealp) == T (34)
and functions u; and s, given respectively by (15) and
s1(0) =1[1 —exp(—c,1)], t=0, (35)
with
2 2
f1=f-';(p}=}=(1—p) T+p’ (36)
then we obtain the following comparison and relationship properties among them.
Tueorem 4. Under the hypotheses and definitions given above we have:
(A) Relationship between wu,, sy and Cg, 55:
so(t) <sg(t) <1, >0, (37)
up(x, 1) = Cylx, 1) = u.(x), O=x=I, t=>0. (38)
(B) Relationship between u,, s; and Cg, s5:
s1(1) <spl(t), t=0, (39)
uy(x, 1) = Cglx, 1), O=x=1, >0, (40)
(C) Relationship between uy, s, and u,, s;:
si(6)<sot), >0, (41)

uy(x, t) =uglx, 1), O=x=1, t=>0. (42)
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Proor. (A) Owing to the expressions (29) and (33), we deduce

200N _ o2
Lc"m—z'sﬁ(—f) = —exp(—cyt)[1 — exp(—(cz — ¢p)t)] <0, >0,
“(p)
because the function
colx) _n (1—- X}Z

2 < D=x=1,

R~ ™% 5%

verifies the following properties:

2
8(0) =§' g(1)=0,

2(x*—6x +1
g'(x)=ﬁ—). g‘{.r)=0©x=3—2\56(0. 1),
g(x)=g(3-2V2)=12-8V2=0.686<1, O=x=I1.

Therefore, we have

; 1 1
u#”W%Lf}—CE‘“%xJ]=x( )<0. 0<x <s4(1), >0,

sp(t)  so(t)
that is (38).
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(43)

(44)

(45)

(46)

(B) Owing to the expressions (33) and (35), we define the function G = G(p, 1), given by (p

is a parameter in 55 and s,):

_ss(t) _ V1 —exp(—cs(p)t)
si(t)  1—exp(—ci(p)t)

We have ¢, < c¢g, because

G(p, 1)

0<p<1, >0,

2

c%(x}—cfg(x)=mQ(x}€0. 0<x<l,
where

Q(x)=x"—=3x*+11x - 17 <0, D=x=1.

Function G verifies the following properties:
G(p,07) =+, G(p, +=)=1, 0<p<l,
exp(—(cp +¢)1)
[1 - exp(—¢;0)PV1 — exp(—cg
0<p<l, >0

1
G p, r)=§c,;c1 ) [Acy, t) = h(ca, D] <0,

where function h = h(c, t) is defined by:

s = SEO=T

c =0, =0
and satisfies
h(0", 1)=1, h(+=, )= +=, t=>0,

+ Ty
e, = @D o

c>0, >0,
with
Wie, t) = (ct — Dexp(cr) = —1, c>0, t=>0.
From (50) we obtain that G(p, r)>1, 0<p <1, t >0 and therefore (39).
Moreover, we have

Wi PR(x, 1) = CYPR(x, 1) =x( l ) ) <0, 0<x<s,(1), >0,

sp(1) _m
that is (40).

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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(C) Following a similar method developed before, we obtain that

So(t) _ V1 —exp(—colp)t)
si(f)  1—exp(=ci(p)r)

>1, 0<p<l, >0, (55)

because
7+ 8x

2 — = 2
co(x) —ci(x)=2(1—x) i

=0, 0<x<l, (56)

that is (41) and (42).

CoroLLary 5. For any 0<p <1, and taking into account Theorem 4 we obtain the following
estimates:

si(t) <solt) =s(t) =1, t>0, (57)
s.(8) <solt) <sglt)<I, t>0, (58)
and therefore
2t
I5(6) = 55(0)| Ef—st.{r)EI—sl(f)slexp(—T), (>9. (59)

ReMARrk 2. The expression s, was obtained in [8] by constructing a sub-solution of the problem
(1) (A =1). Instead s, was obtained by calculating the solution of an approximate problem (6)
and (5ii—v)—(1) through the heat balance integral method with the innovation property (8).
Both expressions, s, and sz, give us a fast asymptotic behavior in heat conduction problems
with absorption (1), but at present we cannot say which is the better. For ¢ large both
expressions are equivalent because

oy peped, (60)
== 5,(1)
CoroLLarY 6. We also obtain
wy(x, 1) =uplx, 1) =u(x, t) = u.x), O=x=1, t=>0, (61)
wy(x, t) = uplx, t) = Cylx, 1) = u.(x), O=x=1, >0, (62)

and therefore:

[ P2 (x, £) — CUP2(x, )] = ulP2(x, t) — ul P2 (x, £) = ulP(x, £) —uf P(x, 1)

.
Eexp(—f). O<x<s(f), >0, (63)

which completes Corollary 3.
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