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ABSTRACT
We use the Solomon-Wilson-Alexiades' mushy zone model
(Letters Heat Mass Transfer, 9(1982), 319-324) for the
simultaneous determination of unknown coefficients of a
semi-infinite material through a phase-change problem
with an overspecified condition on the fixed face. We
also find formulas for the unknown coefficients and the

necessary and sufficient conditions for the existence of
a solution.

1. Introduction

We consider a semi-infinite material that is initially as-
sumed to be so0lid at its melting temperature 0 C without loss of
generality. At time t=0, a constant temperature B>0 is imposed at
x=0 and then fusion ensues, where three distinct regions can be
distinguished (for a complete description of this model see [4]):

H1) Solid, at temperature 0 C, occupying the region x>r(t).

H2) Liquid, at temperature 6(x,t)>0, occupying the region
O<x<s(t), where s(t)<sr(t).

H3) Mushy zone, at temperature 6(x,t)=0, occupying the region
s(t)<x<r(t). Thus, the mushy region is taken to be isothermal, we
make the following two assumptions on this structure:

H3i) the material contains a fixed fraction €& (0<e<1)
of the total latent heat 2, i.e.,

(1) -ko_(s(t),t)= pz[(1-e)§(t) + ef-(t)], £>0
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H3ii) its width is inversely proportional to the
temperature gradient, i.e.,

(2) -0 _(s(t),t) (r(t) - s(t))= v>0 , t>0.

From now on we denote one of the four coefficients k, p, £,
¢ of a given material with the words 'thermal coefficient'.

Let us suppose that one or two thermal coefficients of the
liquid phase of some given semi-infinite material are unknown
(For the solid phase we can consider a solidification process
instead of a fusion process which has an analogous formulation).
If by means of a phase-change experiment (fusion of the material
at its melting temperature) we are able to measure certain
quantities (see further), then we shall find formulas for the
simultaneous determination of the unknown coefficients. We shall
consider a (direct or inverse) one-phase Lamé-Clapeyron problem
(or one-phase Stefan problem with constant thermal coefficients)
[1.2.3] with an overspecified condition on the fixed face x=0
(See more details and references on this subject in [5]). This

overspecified condition can be either the specification of the
heat flux [5]

h
- 0
(3) kex(O,t)- - - , t>0 (ho>0)

or the temperature gradient [6]
H

(3 bis) 6 _(0,t) = - /_:_ » >0 (H_>0)

through the fixed face x=0 of the material undergoing the phase-
change process.

We shall prove that the different problems posed in the
next sections for the determination of several unknown coef-
ficients do not always have an explieit solution. Moreover, it
does exist iff some complementary conditions for the correspond-
ing data are verified.

2. Determination of One Thermal Coefficient

We shall coqsider two cases for the determination of one of
the four coefficignts k, o, 4, c.
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The first one will deal with the simultaneous determination
of the two free boundaries s(t) and r(t), and the second will
deal with the simultaneous determination of the coefficients ¢
and Y.

2.1, First Case

Problem P1. We shall find the functions s=s(t)>0 and
r=r(t)>s(t), defined for t>0 with r(0)=s(0)=0; the temperature
9=0(x,t) of the liquid phase, defined for 0<x<s(t), t>0 and one
of the four thermal coefficients k, p, %, ¢ of the phase-~-change
material so that they satisfy the conditions (1)-(7) where

(4) a6 =6, , O<«x<s(t) , t>0 (a%= pkc )

(5) e(o,t)=B>0 , t>0 ; (6) 6(s(t),t)=0 , t>0
(7)  s(0)=r(0)=0 ,

Where h°>0, B>0, y>0 and 0<e<1 are data and must be known or
determined by an experience of change of phase.

The solution of problem (1)-(7) is given by

(8)  8(x,t)=B - 3rEy £(ziyp)
(9) s(t)= 2ag/t , (10) r(t)= 2awt

where the three unknown coefficients &£,u and one of the four

thermal coefficients k, p, &, ¢ satisfy the following system of
equations

(11) us= £ + _l.'{..—TL_ £(g) exp(Ez)

2B
(12)  F(E)= §5— (13)  £(g)= & Eee

(o}
with X
(14)  f£(x)=erf(x)= —=— 5 exp(-t2) dt
/Ty
(15) P =xe(exp(d + 2L (o) oxp(xh)]®

Since condition (11) expresses u in function of the element £,
the two remaining unknown £ and one of the four thermal coef-
ficients k, p, %, ¢ must satisfy the conditions (12) and (13).
Then, we obtain the following Property
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Property 1. Whatever the data h°>0, B>0, v>0, 0<e<1 we
have the following result:

The necessary and sufficient condition for problem P1 with
¢ unknown to have a unique solution is that the coefficients
k,p,2>0 of the phase-change material do verify the condition

2
2 h°

€Y
(16) 1 + < STEB

B

In such case, the solution is given by (8)-(10), where u is
given by (11), c is given by
hz
(17)  e==—=2 r£2(g)
kpB?2
and & is the unique solution of the equation
h3/7w

(18) G(x)= B%Eﬁ , x>0

where function G is defined, for x>0, by the expression

(19)  o(x)= £ -

foo
Moreover, for the problem P1 with k or p or £ unknown we have
analogous results.

2.2 Second Case

Problem P2. We suppose that the two moving boundaries are
given by

(20) s(t)=20vt , r(t)=2w/% , with 0<o<w.

The problem lies in finding the temperature 6=6(x,t) of the
liquid phase (defined for 0<x<s(t), t>0), the two coefficients ¢
and v which characterize the mushy region, and one of the four
thermal coefficients k, p, £, ¢ of the phase-change material so

that they satisfy the conditions (1)-(6), where ho?O, B>0, O<o<w
are data.

We define

(21) = -g— y a=

vk
/pe
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which is known or unknown iff 2 is unknown or known, respective-
ly. Then the temperature 6 of the problem P2 is given by (8) and

the three unknown coefficients must satisfy the following
conditions:

(22) Y= 2B (w-0) 2&2&:5:1
o/

£,(8)
(23)  ote(w-0)=SB2 oxp(-E%) y(24) £ (€)= kB
ud fx(g) GhO/F

where functions f1 and f;are defined for x>0, by the expressions

(25) £ (0)=xf(x) , £ (x)=Eix)

Since condition (22) expresses Y in function of the element &,
the two rewaining unknown € and & (or %) must satisfy conditions
(23) and (24). Then, we obtain the following Property

Progertx 2. Whatever the data ho>0, B>0, 0<o<w, we have the
following result:

The necessary and sufficient condition for problem P2, with
¢ unknown, to have a unique solution is that the coefficients
k, 2,0>0 of the phase-change material do verify the conditions

(26) fz(/TBE”Z;) <kB__ < fz(/lsg“Yo) if Y >1

OhO/F
or
f(VIog zo) <kB <—2
2 oho/? e
(27) if ¥ <1
Z ,>1

where Z° and Yo are given by

h
: 2 — z =2
(28)  Z,°376 + Yo% Hrw -

In such case, the temperature is given by (8), Yy is given by
(22), € and ¢ are given by
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h, exp(-£2) - 1
(29) €= oo , €= X g2
(w/0)-1 po?

where & is the unique solution of the equation

(30) £ (x)= kD , x>0 .
2 oho/E

Moreover, for the problem P2 with k or % or p unknown we have
analogous results.,

Proof. The coefficient ¢ is obtained from (21) and the
element £ is given as the solution of equation (30) iff the data
verify the condition

(31) L- <2 -
oho/? T

From the expression for c=c(£) and condition (23) we obtain, for
€, the expression (29). Then we have:

€0 <=> £</Tog 2, , 2,1 <=>

(32) KB
fz(/log zo) < f2(6)= =, 21

oho/F

because the function fz is a decreasing one for x>0, and

b _
(33)  e<l <=> Y = —2 <exp(&2?) .
plw

In case Y <1, the condition (33) is always verified and in case

Yo>1. we have

(34) et <> B cp (VIgT) L ¥ 1.

oho/?
Since
(35) £ (x) <=2 , ¥ x>0
2 T

we deduce the thesis.
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3. Determination of Two Thermal Coefficients

Similarly to what we have previously done, we suggest the
following problen.

Problem P3. We suppose that the moving boundary s(t) is
given

(36) s(t)=2avt , o>0 .

The problem lies in finding the temperature 6=6(x,t) of the
liquid phase, defined for 0<x<s(t), t>0; the free boundary r(t)
which characterizes the mushy zone defined for t>0 with r(0)=0
and r(t)>s(t) for t>0; and two of the four thermal coefficients
k, p, ¥, ¢ of the phase-change material so that they satisfy the
conditions (1)-(6), where h >0, B>0, 0>0, y>0 and 0O<e<1 are data.

We define & by (21) which is unknown iff one of the three
thermal coefficients k, p, %, ¢ is unknown. Then the temperature
8 of the problem P3 is given by (8), the free boundary r is given
by

(37) r(t)=2wF , w0,

and the three unknown coefficients (w and two of the four thermal

coefficients k, p, &, c) must satisfy conditions (24), (38) and
(39) where

h
(38)  w=o(1 + L T (8)) (39) —=2 exp(-£2)=1+ EL T(¢§)
pLo B :
with the function T=T(x) is defined for x>0 by

(40)  T(x)= —*’ffzm oxp(x?) .

Since condition (38) expresses w in function of the element &
and other data, the two remaining unknown coefficients must

satisfy conditions (24) and (39). Then we obtain the following
Property

Property 3. Whatever the data h°>0, B>0, o>0, y>0, O<e«1,
we have the following result:

The necessary and sufficient condition for problem P3, with
k and c¢ unknown, to have a unique solution is that the coef-
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ficients p,2>0 of the phase-change material do verify the
conditions

h
_— EY
(41) s> 1+ -
In such case, the temperature is given by (8), w is given
by (38), k and c are given by

ch V7 YT h

- - £(g)
(42) Xk -g fz(E) , ¢C pBo’o g

where £ is the unique solution of equation

h
(43) 1 4+ 5% T(x) = BE% exp(-x2?) , x>0 .
Moreover, for the problem P3 with (k,&} or {k,p} or {&,c} or
{2,p} or {p,c} unknown we have analogous results.

Remark 1. We may pose a new problem P'3, analogous to
that of problem P3, where r(t) now turns out to be a datum and
s(t) an unknown.

The results of both problem P3 or P'3 may be of practical
interest if we can determine accurately one of the two boundaries

through a phase-change experiment and we want to calculate where
the other boundary is located.

Remark 2. When the thermal conductivity is unknown a new
variant can be proposed for the determination of coefficients of
a semi-infinite material [(ﬂ. If we replace condition (3) by
(3bis), we can consider problem (P1bis), (P2bis),.(P3bis), k
always being an unknown coefficient. We can use a aimilar method
to the one developped before so we would not include it here.

For the calculation Ho’ it is necessary to obtain the

experimental determination of the temperature gradient on the
fixed face x=0 with condition (5) of constant temperature. On
the other hand, according to condition (3), the experimental
determination of the heat flow in x=0 is necessary for the
calculation of the coefficient ho' It is held that this new

variant may, to some extent, simplify the experimental results
for the application of the present method.
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be Determination of Other Coefficients

There exist two constants 0<e<1 and y>0 defined in the
Solomon-Wilson-Alexiades' model. It is our interest to compute vy
or € through an experience of phase-change with an eoverspecified
condition (3) on the fixed face, i.e., to find formulas for
{¢,r,s,Y} or {6,s,r,€}. We obtain the following results

Property 4

The necessary and sufficient condition for determining that
{o(x,t),s(t),r(t), Y} has a unique solution is that the data
h°>0. B>0, 0<e<1 and the coefficients k,p,2,c O of the phase-

change material do verify the condition

kB

(071 (key)
< f(U
aho T 13 ’

(44)

where '
(45) U(x)=x exp(x2?) , U”! 1inverse function of U for
x>0.

In such case, the temperature 6 is given by (8), s(t) is

given by (9), r(t) is given by (10), Y and u are respectively
given by

2aho [cah

(46) Yoz klo exp(-§%) - E] exp(-£%)

cah

(47) u= § + -1-6[-}3% exp(-§2%) - E]

where § is the unique solution of the equation

]

48)  f(x)= 2 Ykle 45,
( X ho = RS

Moreover, for the other case with € unknown we have
analogous results.

A longer version of this paper can be requested to the
author.
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Nomenclature
2
a=§% thermal diffusivity
c specific heat
-C<0 initial temperature
h, coefficient defined by (3)
H, coefficient defined by (3bis)
k thermal conductivity
L latent heat of fusion
r mushy zone-solid interface
] mushy zone-liquid interface
t time variable
X spatial variable

Greek Symbols

Y coefficient defined by (2)

£ coefficient defined by (1)

o ?oggficient which characterizes the boundary s by (20) or

3

u coefficient which characterizes the boundary r by (10)

o mass density

] temperature

£ =3 dimensionless parametre defined by (21) and the coefficient
a which characterizes the boundary s by (9)

w coefficient which characterizes the boundary r by (20)
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