1st Pan-American Congress on Computational Mechanics

and

XI Argentine Congress on Computational Mechanics

held in Buenos Aires, Argentina 27-29 April 2015

Edited by:

Sergio R. Idelsohn (Chairman)

International Centre for Numerical Methods in Engineering (CIMNE) - Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain Centro de Investigaciones de Métodos Computacionales (CIMEC), Santa Fe, Argentina

Victorio Sonzogni

Centro de Investigaciones de Métodos Computacionales (CIMEC), Santa Fe, Argentina

Alvaro Coutinho

High Performance Computing Center (COPPE) Federal University of Rio de Janeiro, Brazil

Marcela Cruchaga

Universidad de Santiago de Chile, Chile

Adrian Lew Stanford University, Stanford (California), USA

Miguel Cerrolaza

Instituto Nacional de Bioingeniería de la Universidad Central de Venezuela Caracas, Venezuela

A publication of:

International Center for Numerical Methods in Engineering (CIMNE) Barcelona, Spain

NEUMANN SOLUTIONS TO FRACTIONAL LAMÉ-CLAPEYRON-STEFAN PROBLEMS WITH HEAT FLUX OR CONVECTIVE BOUNDARY CONDITIONS

DOMINGO A. TARZIA¹

¹CONICET – Depto. Matemática, Univ. Austral Paraguay 1950, S2000FZF Rosario, Argentina E-mail: DTarzia@austral.edu.ar

Key words: Fractional Lamé-Clapeyron-Stefan Problem, Phase-change Problem, Neumann Solution, Wright Function, Mainardi Function, Explicit Solution.

Abstract. In this paper, generalized Neumann solutions for the two-phase fractional Lamé-Clapeyron-Stefan problems for a semi-infinite material are obtained with constant initial condition, and a boundary condition at the fixed face x = 0 given by a heat flux or a convective (Robin) condition. In these problems, the two governing diffusion equations and a governing condition for the free boundary include a fractional time derivative in the Caputo sense of order $0 < \alpha < 1$. When $\alpha \rightarrow 1^-$ we recover the classical Neumann solutions for the two-phase Lamé-Clapeyron-Stefan problem through the error function, given in:

(i) Tarzia, Quart. Appl.Math., 39 (1981), 491-497, for a heat flux boundary condition at the fixed face x = 0 when an inequality for the coefficient which characterizes the heat flux boundary condition is satisfied;

(ii) Tarzia, MAT – Serie A, 8 (2004), 21-27, for a convective boundary condition at the fixed face x = 0 when an inequality for the coefficient which characterizes the convective boundary condition is satisfied.

1 INTRODUCTION

In the last decades the fractional differential equations were developed [10, 14, 16, 18-21] and in the recent years some works on the fractional Lamé-Clapeyron-Stefan problem were published [1, 8, 12, 13, 22-24, 32, 33].

In this paper, generalized Neumann solutions for the two-phase fractional Lamé-Clapeyron-Stefan problems for a semi-infinite material are obtained with constant initial temperature, and a boundary condition at the fixed face x = 0 given by a heat flux or a convective (Robin) condition. Recently, a generalized Neumann solution for the two-phase fractional Lamé-Clapeyron-Stefan problem for a semi-infinite material with constant initial temperature, and a constant temperature condition at the fixed face x = 0 was given in [24].

In these problems, the two governing diffusion equations and a governing condition for the free boundary include a fractional time derivative in the Caputo sense of order $0 < \alpha < 1$ which is defined in [4]:

$$D^{\alpha}f(t) = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{f'(\tau)}{(t-\tau)^{\alpha}} d\tau \quad \text{for } 0 < \alpha < 1$$

= f'(t) for $\alpha = 1$ (1)

where Γ is the Gamma function defined by:

$$\Gamma(x) = \int_{0}^{+\infty} t^{x-1} \exp(-t) dt .$$
 (2)

Now, we define two functions (Wright and Mainardi functions) which are very important in order to obtain the explicit solutions in the following Sections.

The Wright function is defined in [34]:

$$W(z;\alpha,\beta) = \sum_{n=0}^{+\infty} \frac{z^n}{n \Gamma(n\alpha + \beta)}, \quad z \in \mathbb{C}, \quad \alpha > -1, \quad \beta \in \mathbb{R}.$$
 (3)

and the Mainardi function is defined in [10]:

$$M_{\upsilon}(z) = W(-z; -\upsilon, 1-\upsilon) = \sum_{n=0}^{+\infty} \frac{(-z)^n}{n \, \Gamma(-n\upsilon+1-\upsilon)}, \quad z \in \mathbb{C}, \quad \upsilon < 1$$
(4)

which is a particular case de the Wright function. Some basic properties are given by:

$$\frac{\partial W}{\partial z}(z;\alpha,\beta) = W(z;\alpha,\alpha+\beta)$$
(5)

$$W(-x; -\frac{1}{2}, 1) = \operatorname{erfc}\left(\frac{x}{2}\right), \quad 1 - W(-x; -\frac{1}{2}, 1) = \operatorname{erf}\left(\frac{x}{2}\right)$$
 (6)

$$D^{\alpha}\left(t^{\beta}\right) = \frac{\Gamma(1+\beta)}{\Gamma(1+\beta-\alpha)} t^{\beta-\alpha} \qquad (7)$$

Moreover, for the classical Lamé-Clapeyron-Stefan problem there exist thousands of papers on the subject, for example the first published papers [15, 26], the books [2,3,5-7, 9, 11, 17, 25, 31] and a large bibliography given in [28]. A review on explicit solutions with moving boundaries was given in [30].

In Section 2, we will obtain a generalized Neumann solution for the two-phase fractional Lamé-Clapeyron-Stefan problem for a semi-infinite material with constant initial condition, and a heat flux boundary condition at the fixed face x = 0. When $\alpha \rightarrow 1^-$ we recover the Neumann solution for the classical two-phase Lamé-Clapeyron-Stefan problem through the error function, given in [27], when an inequality for the coefficient which characterizes the heat flux boundary condition is satisfied.

In Section 3, we will obtain a generalized Neumann solution for the two-phase fractional Lamé-Clapeyron-Stefan problem for a semi-infinite material with constant initial condition, and a convective (Robin) boundary condition at the fixed face x = 0. When $\alpha \rightarrow 1^-$ we also recover the Neumann solution for the classical two-phase Lamé-Clapeyron-Stefan problem through the error function, given in [29], when an inequality for the coefficient which characterizes the convective boundary condition is satisfied.

2 THE TWO-PHASE FRACTIONAL LAMÉ-CLAPEYRON-STEFAN PROBLEM (MELTING PROCESS) WITH A HEAT FLUX BOUNDARY CONDITION AT THE FIXED FACE

We consider the following melting process:

Problem (FFP_{α}) Find the free boundary x = s(t), and the temperature T = T(x, t) such that the following equations and conditions are satisfied $(0 < \alpha < 1)$:

$$D^{\alpha}T_{s} - \lambda_{s}^{2}T_{s_{xx}} = 0, \qquad x > s(t), \quad t > 0,$$
(8)

$$D^{\alpha}T_{\ell} - \lambda_{\ell}^{2}T_{\ell_{xx}} = 0, \qquad 0 < x < s(t), \quad t > 0, \qquad (9)$$

$$s(0) = 0,$$
 (10)

$$T_s(x,0) = T_s(+\infty,t) = T_i < T_f, \qquad x > 0, \quad t > 0,$$
(11)

$$T_s(s(t),t) = T_f, \quad t > 0,$$
 (12)

$$T_l(s(t), t) = T_f, \qquad t > 0,$$
 (13)

$$k_{s}T_{s_{x}}(s(t),t) - k_{\ell}T_{\ell_{x}}(s(t),t) = \rho\ell D^{\alpha}s(t), \quad t > 0,$$
(14)

$$k_{\ell}T_{\ell_{x}}(0,t) = -\frac{q_{0}}{t^{\alpha/2}}, \qquad t > 0, \qquad (15)$$

where $\lambda_s^2 = \frac{k_s}{\rho c_s}$, $\lambda_\ell^2 = \frac{k_\ell}{\rho c_\ell}$.

Theorem 1 Let $T_i < T_f$ be. a) If the coefficient q_0 satisfies the inequality:

$$q_0 > \frac{k_s(T_f - T_i)}{\lambda_s \Gamma(1 - \alpha/2)},\tag{16}$$

then there exists an instantaneous phase-change (melting) process and the problem (FFP_{α}) has the generalized Neumann explicit solution given by:

$$T_{\ell}(x,t) = T_{f} + \frac{q_{0}\lambda_{\ell}\Gamma(1-\alpha/2)}{k_{\ell}} \left[W\left(-\frac{x}{\lambda_{\ell}t^{\alpha/2}}; -\frac{\alpha}{2}, 1\right) - W\left(-\lambda\xi_{F\alpha}; -\frac{\alpha}{2}, 1\right) \right]$$
(17)

$$T_{s}(x,t) = T_{i} + (T_{f} - T_{i}) \frac{W\left(-\frac{x}{\lambda_{s}t^{\frac{\alpha}{2}}}; -\frac{\alpha}{2}, 1\right)}{W\left(-\xi_{F\alpha}; -\frac{\alpha}{2}, 1\right)},$$
(18)

$$s(t) = \xi_{F\alpha} \lambda_s t^{\alpha/2}, \qquad (19)$$

where the coefficient $\xi = \xi_{F\alpha} > 0$ is the solution of the following equation:

$$F_{F_{\alpha}}(x) = \frac{\Gamma\left(1 + \frac{\alpha}{2}\right)}{\Gamma\left(1 - \frac{\alpha}{2}\right)} x, \quad x > 0$$
(20)

with

$$F_{F_{\alpha}}(x) = \frac{q_0 \Gamma(1 - \alpha/2)}{\rho \ell \lambda_s} M_{\alpha/2}(\lambda x) - \frac{k_s (T_f - T_i)}{\rho \ell \lambda_s^2} F_{2\alpha}(x) .$$
(21)

$$F_{2\alpha}(x) = \frac{M_{\alpha/2}(x)}{W\left(-x; -\frac{\alpha}{2}, 1\right)}.$$
(22)

b) If the coefficient q_0 satisfies the inequalities

$$0 < q_0 \le \frac{k_s(T_f - T_i)}{\lambda_s \Gamma(1 - \alpha/2)}, \tag{23}$$

then the problem (FFP_{α}) is a fractional diffusion problem for the initial solid phase whose solution is given by:

$$T_{s}(x,t) = T_{i} + \frac{q_{0}\lambda_{s}\Gamma(1-\alpha/2)}{k_{s}}W\left(-\frac{x}{\lambda_{s}t^{\alpha/2}}; -\frac{\alpha}{2}, 1\right), \quad x > 0, \quad t > 0.$$
(24)

Theorem 2 Let $T_i < T_f$ be. If the coefficient q_0 satisfies the inequality (16) then the solution of the problem (FFP_a) converges to the solution of the classical Lamé-Clapeyron-Stefan problem (FFP₁) when $\alpha \rightarrow 1^-$, and then we recover the classical Neumann explicit solution and the inequality for the coefficient which characterized the heat flux at x = 0 obtained for $\alpha = 1$ in [27], that is:

$$q_0 > \frac{k_s(T_f - T_i)}{\sqrt{\pi\alpha_s}}.$$
(25)

3 THE TWO-PHASE FRACTIONAL LAMÉ-CLAPEYRON-STEFAN PROBLEM (SOLIDIFICATION PROCESS) WITH A CONVECTIVE BOUNDARY CONDITION AT THE FIXED FACE

We consider the following solidification process:

Problem (FCP_{α}) Find the free boundary x = s(t), and the temperature T = T(x, t) such that the following equations and conditions are satisfied $(0 < \alpha < 1)$:

$$D^{\alpha}T_{\ell} - \lambda_{\ell}^{2}T_{\ell_{xx}} = 0, \qquad s(t) < x, \quad t > 0,$$
(26)

$$D^{\alpha}T_{s} - \lambda_{s}^{2}T_{s_{xx}} = 0, \qquad 0 < x < s(t), \quad t > 0, \qquad (27)$$

$$s(0) = 0$$
, (28)

$$T_s(x,0) = T_s(+\infty,t) = T_i > T_f, \qquad x > 0, \quad t > 0,$$
(29)

$$T_s(s(t),t) = T_f, \qquad t > 0,$$
 (30)

$$T_l(s(t), t) = T_f, \qquad t > 0,$$
 (31)

$$k_{s}T_{s_{x}}(s(t),t) - k_{\ell}T_{\ell_{x}}(s(t),t) = \rho \ell D^{\alpha}s(t), \quad t > 0,$$
(32)

$$k_{s}T_{s_{x}}(0,t) = \frac{h_{0}}{t^{\frac{\alpha}{2}}} \left(T_{s}(0,t) - T_{\infty} \right), \qquad t > 0,$$
(33)

where $\lambda_s^2 = \frac{k_s}{\rho c_s}$, $\lambda_\ell^2 = \frac{k_\ell}{\rho c_\ell}$.

Theorem 3 Let $T_{\infty} < T_f < T_i$ be.

a) If the coefficient h_0 satisfies the inequality:

$$h_0 > \frac{k_\ell (T_i - T_f)}{\lambda_\ell (T_f - T_\infty)} \frac{1}{\Gamma(1 - \alpha/2)},\tag{34}$$

then there exists an instantaneous phase-change (solidification) process and the problem (FCP_{α}) has the generalized Neumann explicit solution given by:

$$T_{s}(x,t) = T_{f} - (T_{f} - T_{\infty}) \left[1 - \frac{\frac{k_{s}}{h_{0}\lambda_{s}\Gamma(1 - \alpha_{2}')} + 1 - W\left(-\frac{x}{\lambda_{s}t^{\alpha_{2}'}}; -\frac{\alpha}{2}, 1\right)}{\frac{k_{s}}{h_{0}\lambda_{s}\Gamma(1 - \alpha_{2}')} + 1 - W\left(-\frac{\xi_{C\alpha}}{\lambda}; -\frac{\alpha}{2}, 1\right)} \right]$$
(35)
$$= T_{\infty} + (T_{f} - T_{\infty}) \left[\frac{\frac{k_{s}}{h_{0}\lambda_{s}\Gamma(1 - \alpha_{2}')} + 1 - W\left(-\frac{x}{\lambda_{s}t^{\alpha_{2}'}}; -\frac{\alpha}{2}, 1\right)}{\frac{k_{s}}{h_{0}\lambda_{s}\Gamma(1 - \alpha_{2}')} + 1 - W\left(-\frac{\xi_{C\alpha}}{\lambda}; -\frac{\alpha}{2}, 1\right)} \right],$$

$$T_{\ell}(x,t) = T_{i} - (T_{i} - T_{f}) \frac{W\left(-\frac{x}{\lambda_{\ell}t^{\frac{\alpha}{2}}}; -\frac{\alpha}{2}, 1\right)}{W\left(-\xi_{C\alpha}; -\frac{\alpha}{2}, 1\right)}$$

$$= T_{f} + (T_{i} - T_{f}) \left[1 - \frac{W\left(-\frac{x}{\lambda_{\ell}t^{\frac{\alpha}{2}}}; -\frac{\alpha}{2}, 1\right)}{W\left(-\xi_{C\alpha}; -\frac{\alpha}{2}, 1\right)}\right],$$
(36)

$$s(t) = \xi_{C\alpha} \lambda_{\ell} t^{\frac{\alpha}{2}}, \tag{37}$$

where the coefficient $\xi = \xi_{C\alpha} > 0$ is the solution of the following equation:

$$F_{C_{\alpha}}(x) = \rho \ell \lambda_{\ell} \frac{\Gamma\left(1 + \frac{\alpha}{2}\right)}{\Gamma\left(1 - \frac{\alpha}{2}\right)} x, \quad x > 0$$
(38)

with

$$F_{C_{\alpha}}(x) = \frac{k_s(T_f - T_{\infty})}{\lambda_s} F_{4\alpha}(x/\lambda) - \frac{k_\ell(T_i - T_f)}{\lambda_\ell} F_{2\alpha}(x)$$
(39)

where

$$F_{4\alpha}(x) = \frac{M_{\alpha/2}(x)}{\frac{k_s}{h_0 \lambda_s \Gamma(1 - \alpha/2)} + 1 - W\left(-x; -\frac{\alpha}{2}, 1\right)}.$$
(40)

b) If the coefficient h_0 satisfies the inequalities

$$0 < h_0 \le \frac{k_{\ell}(T_i - T_f)}{\lambda_{\ell}(T_f - T_{\infty})} \frac{1}{\Gamma(1 - \alpha/2)}, \tag{41}$$

then the problem (FCP_{α}) is a fractional diffusion problem for the initial liquid phase whose solution is given by:

$$T_{\ell}(x,t) = T_{\infty} + \frac{T_i - T_{\infty}}{1 + \frac{k_{\ell}}{h_0 \lambda_{\ell} \Gamma(1 - \alpha/2)}} \left[\frac{k_{\ell}}{h_0 \lambda_{\ell} \Gamma(1 - \alpha/2)} + 1 - W \left(-\frac{x}{\lambda_{\ell} t^{\alpha/2}}; -\frac{\alpha}{2}, 1 \right) \right], \quad x > 0, \quad t > 0$$

$$(42)$$

Theorem 4 Let $T_{\infty} < T_f < T_i$ be. If the coefficient h_0 satisfies the inequality (34) then the solution of the problem (FCP_{α}) converges to the classical solution of the problem (FCP₁) when $\alpha \rightarrow 1^-$, and then we recover the classical Neumann explicit solution and the inequality for the coefficient h_0 which characterized the convective (Robin) boundary condition at x = 0 obtained for $\alpha = 1$ in [29], that is:

$$h_0 > \frac{k_\ell}{\sqrt{\pi\alpha_\ell}} \frac{T_i - T_f}{T_f - T_\infty}.$$
(43)

4 CONCLUSIONS

- We have obtained generalized Neumann solutions for two two-phase fractional Lamé-Clapeyron-Stefan problems for a semi-infinite material with constant initial condition, when a heat flux or a convective (Robin) boundary condition is imposed on the fixed face x = 0.
- The explicit solutions are given through the Wright and Mainardi functions.
- When $\alpha \rightarrow 1^-$, we recover the two classical Neumann solutions (which are equivalents among them) for the corresponding classical two-phase Lamé-Clapeyron-Stefan problem given through the error function, and also the inequalities for the corresponding coefficients which characterized the heat flux or the convective boundary condition at x = 0.

AKNOWLEDGEMENTS

The present work has been partially sponsored by the Project PIP No 0534 from CONICET-UA, Rosario, Argentina, and Grant AFORS FA9550-14-1-0122.

REFERENCES

- [1] Atkinson, C. Moving boundary problems for time fractional and composition dependent diffusion. *Fract. Calc. Appl. Anal.*, (2012) **15**: 207-221.
- [2] Alexiades, V. and Solomon, A.D. *Mathematical modeling of melting and freezing processes*. Hemisphere-Taylor & Francis, Washington, (1996).
- [3] Cannon, J.R. The one-dimensional heat equation. Addison-Wesley, Menlo Park, (1984).
- [4] Caputo, M. Linear model of dissipation whose Q is almost frequency independent II. *Geophys. J. R. Astr. Soc.*, (1967) **13**: 529-539.
- [5] Carslaw, H.S. and Jaeger, C.J. Conduction of heat in solids, Clarendon Press, Oxford, (1959).
- [6] Crank, J. Free and moving boundary problem, Clarendon Press, Oxford, (1984).
- [7] Elliott, C.M. and Ockendon, J.R. *Weak and variational methods for moving boundary problems*, Research Notes in Math. No. 59, Pitman, London, (1982).
- [8] Falcini, F., Garra, V. and Voller, V.R. Fractional Stefan problems exhibing lumped and distributed latent-heat memory effects. *Physical Review E*, (2013) **87**: 042401, 1-6.
- [9] Fasano, A. Mathematical models of some diffusive processes with free boundary. *MAT Serie A*, (2005) **11**: 1-128.
- [10] Gorenflo, R., Luchko, Y. and Mainardi, F. Analytical properties and applications of the Wright function. *Fract. Calc. Appl. Anal.*, (1999) **2**: 383-414.
- [11] Gupta, S.C. *The classical Stefan problem. Basic concepts, modelling and analysis*, Elsevier, Amsterdam, (2003).
- [12] Jinyi, L. and Mingyu, X. Some exact solutions to Stefan problems with fractional differential equations, *J. Math. Anal. Appl.*, (2009) **351**: 536-542.

- [13] Kholpanov, L.P., Zaklev, Z.E. and Fedotov, V.A. Neumann-Lamé-Clapeyron-Stefan Problem and its solution using Fractional Differential-Integral Calculus. *Theoretical Fundations of Chemical Engineering*, (2003) **37:** 113-121.
- [14] Kilbas, A., Srivastava, H. and Trujillo, H. *Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam (2006).
- [15] Lamé, G. and Clapeyron, B.P. Memoire sur la solidification par refroidissement d'un globe liquide. *Annales Chimie Physique*, (1831) **47**: 250-256.
- [16] Luchko, Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. *Computer and Mathematics with Applications*, (2010) **59**: 1766-1772.
- [17] Lunardini, V.J. Heat transfer with freezing and thawing, Elsevier, London, (1991).
- [18] Mainardi, F. *Fractional calculus and waves in linear viscoelasticity*, Imperial College Press, London (2010).
- [19] Mainardi, F., Luchko, Y. and Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. *Fract. Calc. Appl. Anal.*, (2001) **4**: 153-192.
- [20] Mainardi, F., Mura, A. and Pagnini, G. The M-Wright function in time-fractional diffusion processes: a tutorial survey. *International Journal of Differential Equations*, (2010) 2010: Article ID 104505, 1-29.
- [21] Podlubny, S I. Fractional Differential Equations. Academic Press, San Diego (1999).
- [22] Roscani, S. and Santillan Marcus, E.A. Two equivalent Stefan's problems for the time-fractional diffusion equation, *Fract. Calc. Appl. Anal.* (2013) **16**: 802-815.
- [23] Roscani, S. and Santillan Marcus, E.A. A new equivalence of Stefan's problems for the time-fractional diffusion equation, *Fract. Calc. Appl. Anal.*, (2014) **17**: 371-381.
- [24] Roscani, S. and Tarzia, D.A. A generalized Neumann solution for the two-phase fractional Lamé-Clapeyron-Stefan problem, *Adv, Math. Sci. Appl.*, (2014) 24 No.2, In Press. See arXiv, (2014) 0985063.
- [25] Rubinstein, L.I. *The Stefan problem*. American Mathematical Society, Providence, (1971).
- [26] Stefan, J. Über einge probleme der theorie der Wärmeleitung, Zitzungberichte der Kaiserlichen Akademie der Wissemschaften Mathematisch-Naturwissemschafthiche classe, (1889) **98**: 473-484.
- [27] Tarzia, D.A. An inequality for the coefficient σ of the free boundary $s(t) = 2\sigma\sqrt{t}$ of the Neumann solution for the two-phase Stefan problem. *Quart. Appl. Math.* (1981) **39**: 491-497.
- [28] Tarzia, D.A. A bibliography on moving-free boundary problems for heat diffusion equation. The Stefan problem. *MAT Serie A*, (2000) **2**: 1-297.
- [29] Tarzia, D.A. An explicit solution for a two-phase unidimensional Stefan problem with a convective boundary condition at the fixed face. *MAT Serie A* (2004) 8: 21-27. See also: Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions. *Themal Science*, (2015), In Press. arXiv (2014): 1406-0552.
- [30] Tarzia, D.A. Explicit and approximated solutions for heat and mass transfer problems with a moving interface, Chapter 20, in *Advanced Topics in Mass Transfer*, (Ed. M. El-Amin), InTech Open Access Publisher, Rijeka, (2011), 439-484.

Available from: <u>http://www.intechopen.com/articles/show/title/explicit-and-</u>

approximated-solutions-for-heat-and-mass-transfer-problems-with-a-moving-interface

- [31] Tayler, A.B. Mathematical models in applied mechanics. Clarendon Press, Oxford, (1986).
- [32] Voller, V.R. An exact solution of a limit case Stefan problem governed by a fractional diffusion equation. *Int. J. Heat Mass Transfer* (2010) **53**: 5622-5625.
- [33] Voller, V.R. Fractional Stefan problems. Int. J. Heat Mass Transfer (2014) 74: 269-277.
- [34] Wright, E.M. On the coefficients of power series having exponential singularities. J. London Math. Soc., (1933) 8: 71-79.