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Abstract. In this paper, generalized Neumann solutions for the two-phase fractional Lamé-
Clapeyron-Stefan problems for a semi-infinite material are obtained with constant initial 
condition, and a boundary condition at the fixed face x 0  given by a heat flux or a 
convective (Robin) condition. In these problems, the two governing diffusion equations and a 
governing condition for the free boundary include a fractional time derivative in the Caputo 
sense of order 0 1  . When 1  we recover the classical Neumann solutions for the 
two-phase Lamé-Clapeyron-Stefan problem through the error function, given in: 

(i) Tarzia, Quart. Appl.Math., 39 (1981), 491-497, for a heat flux boundary condition at the 
fixed face x 0  when an inequality for the coefficient which characterizes the heat flux 
boundary condition is satisfied; 
(ii) Tarzia, MAT – Serie A, 8 (2004), 21-27, for a convective boundary condition at the fixed 
face x 0  when an inequality for the coefficient which characterizes the convective boundary 
condition is satisfied. 

 
 
1 INTRODUCTION 

In the last decades the fractional differential equations were developed [10, 14, 16, 18-21] 
and in the recent years some works on the fractional Lamé-Clapeyron-Stefan problem were 
published [1, 8, 12, 13, 22-24, 32, 33].  

In this paper, generalized Neumann solutions for the two-phase fractional Lamé-
Clapeyron-Stefan problems for a semi-infinite material are obtained with constant initial 
temperature, and a boundary condition at the fixed face x 0  given by a heat flux or a 
convective (Robin) condition. Recently, a generalized Neumann solution for the two-phase 
fractional Lamé-Clapeyron-Stefan problem for a semi-infinite material with constant initial 
temperature, and a constant temperature condition at the fixed face x 0  was given in [24]. 

In these problems, the two governing diffusion equations and a governing condition 
for the free boundary include a fractional time derivative in the Caputo sense of order 
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0 1    which is defined in [4]: 

 

  

t '

0

'

1 f ( )D f (t) d for 0 1
(1 ) t

f (t) for 1





    
   

  

    (1) 

 
where 

 
is the Gamma function defined by:

 
 

 

 x 1

0

(x) t exp( t) dt


   .     (2) 

Now, we define two functions (Wright and Mainardi functions) which are very 
important in order to obtain the explicit solutions in the following Sections. 
 

The Wright function is defined in [34]: 
 

n

n 0

zW(z; , ) , z , 1,
n (n )





       
  .   (3) 

 
and the Mainardi function is defined in [10]: 

 
n

n 0

( z)M (z) W( z; ,1 ) , z , 1
n ( n 1 )







      

      (4) 

 
which is a particular case de the Wright function. Some basic properties are given by: 
 

W (z; , ) W(z; , )
z


    


      (5) 

 
1 x 1 xW( x; ,1) erfc , 1 W( x; ,1) erf
2 2 2 2

            
   

  (6) 

 

  (1 )D t t
(1 )

   

 

 .     (7) 

 
 Moreover, for the classical Lamé-Clapeyron-Stefan problem there exist thousands of 
papers on the subject, for example the first published papers [15, 26], the books [2,3,5-7, 9, 
11, 17, 25, 31] and a large bibliography given in [28]. A review on explicit solutions with 
moving boundaries was given in [30].  
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In Section 2, we will obtain a generalized Neumann solution for the two-phase 
fractional Lamé-Clapeyron-Stefan problem for a semi-infinite material with constant initial 
condition, and a heat flux boundary condition at the fixed face x 0 . When 1  we 
recover the Neumann solution for the classical two-phase Lamé-Clapeyron-Stefan problem 
through the error function, given in [27], when an inequality for the coefficient which 
characterizes the heat flux boundary condition is satisfied. 

In Section 3, we will obtain a generalized Neumann solution for the two-phase 
fractional Lamé-Clapeyron-Stefan problem for a semi-infinite material with constant initial 
condition, and a convective (Robin) boundary condition at the fixed face x 0 . When 1  
we also recover the Neumann solution for the classical two-phase Lamé-Clapeyron-Stefan 
problem through the error function, given in [29], when an inequality for the coefficient 
which characterizes the convective boundary condition is satisfied. 

 

2 THE TWO-PHASE FRACTIONAL LAMÉ-CLAPEYRON-STEFAN PROBLEM 
(MELTING PROCESS) WITH A HEAT FLUX BOUNDARY CONDITION AT THE 
FIXED FACE 

We consider the following melting process:  
 
Problem ( FFP ) Find the free boundary  ( )x s t , and the temperature  ( , )T T x t  such that 
the following equations and conditions are satisfied (0 1)   : 
 

    2 0, ( ), 0
xxs s sD T T x s t t ,    (8) 

     2 0, 0 ( ), 0
xx

D T T x s t t ,    (9) 

(0) 0s ,        (10) 

     ( ,0) ( , ) , 0, 0s s i fT x T t T T x t ,   (11) 

 ( ( ), ) , 0s fT s t t T t ,      (12) 

 ( ( ), ) , 0l fT s t t T t ,      (13) 

      ( ), ( ), ( ), 0
x xs sk T s t t k T s t t D s t t ,   (14) 

  0

2
(0, ) , 0

x

qk T t t
t

,      (15) 

 

where 


2 s
s

s

k
c

, 


2 k
c

.
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Theorem 1 Let i fT T  be. 
a) If the coefficient 0q  satisfies the inequality: 

 






 0

( )
(1 )2

s f i

s

k T T
q ,      (16) 

 
then there exists an instantaneous phase-change (melting) process and the problem ( FFP ) 
has the generalized Neumann explicit solution given by: 

 



  

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0

2
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2 2f F

q xT x t T W W
k t

  (17) 







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  
 
   
   
 

2
; ,1

2
( , ) ( )

; ,1
2

s
s i f i

F

xW
t

T x t T T T
W

,      (18) 



  2( ) F ss t t ,         (19) 
 
where the coefficient    0F  is the solution of the following equation: 
 

 
 





 
 
 

1 2( ) , 0
1 2

FF x x x     (20) 

 
with 

 

  




   

  
 0

222

(1 ) ( )2( ) ( ) ( )s f i
F

s s

q k T T
F x M x F x .  (21) 

 


 


   
 

2
2

( )
( )

; ,1
2

M x
F x

W x
.      (22) 

 
b)  If the coefficient 0q  satisfies the inequalities 
 




 

 0

( )
0

(1 )2

s f i

s

k T T
q ,      (23) 
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then the problem ( FFP ) is a fractional diffusion problem for the initial solid phase whose 
solution is given by: 
 



 



  
      
 
 

0

2

(1 )2( , ) ; ,1 , 0, 0
2

s
s i

s s

q xT x t T W x t
k t

.  (24) 

 
 
Theorem 2 Let i fT T  be. If the coefficient 0q  satisfies the inequality (16) then the solution 
of the problem ( FFP ) converges to the solution of the classical Lamé-Clapeyron-Stefan 
problem ( 1FFP ) when 1 , and then we recover the classical Neumann explicit solution 
and the inequality for the coefficient which characterized the heat flux at x 0  obtained for 

1   in [27], that is: 
 




0

( )s f i

s

k T T
q .     (25) 

 

3 THE TWO-PHASE FRACTIONAL LAMÉ-CLAPEYRON-STEFAN PROBLEM 
(SOLIDIFICATION PROCESS) WITH A CONVECTIVE BOUNDARY CONDITION 
AT THE FIXED FACE 

We consider the following solidification process:  
 
Problem ( FCP ) Find the free boundary  ( )x s t , and the temperature  ( , )T T x t  such that 
the following equations and conditions are satisfied (0 1)   : 
 

    2 0, ( ) , 0
xx

D T T s t x t ,     (26) 

     2 0, 0 ( ), 0
xxs s sD T T x s t t ,     (27) 

(0) 0s ,         (28) 

     ( ,0) ( , ) , 0, 0s s i fT x T t T T x t ,    (29) 

 ( ( ), ) , 0s fT s t t T t ,       (30) 

 ( ( ), ) , 0l fT s t t T t ,       (31) 

      ( ), ( ), ( ), 0
x xs sk T s t t k T s t t D s t t ,    (32) 

    0

2
(0, ) (0, ) , 0

xs s s
hk T t T t T t
t

,     (33) 
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where 


2 s
s

s

k
c

, 


2 k
c

. 

 
 
Theorem 3 Let   f iT T T  be. 
  
a) If the coefficient 0h  satisfies the inequality: 
 

 




  0

( ) 1
( ) (1 )2

i f

f

k T T
h

T T
,     (34) 

then there exists an instantaneous phase-change (solidification) process and the problem 
( FCP ) has the generalized Neumann explicit solution given by: 






 

 
 



  
     

        
         

 

2
0

0

1 ; ,1
2(1 )2( , ) ( ) 1

1 ; ,1
2(1 )2

s

s s
s f f

s C

s

k xW
h t

T x t T T T k W
h

 (35) 






 

 
 

 

  
     

        
         

 

2
0

0

1 ; ,1
2(1 )2( )

1 ; ,1
2(1 )2

s

s s
f

s C

s

k xW
h t

T T T k W
h

, 

 










 
   
   
   
 

2
; ,1

2
( , ) ( )

; ,1
2

i i f

C

xW
t

T x t T T T
W

     (36) 










  
                
 

2
; ,1

2
( ) 1

; ,1
2

f i f

C

xW
t

T T T
W

, 

 


  2( ) Cs t t ,        (37) 
 

 
where the coefficient    0C  is the solution of the following equation: 
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 
 


 



 
 

 

1 2( ) , 0
1 2

CF x x x     (38) 

 
with 
 

   
 

 4 2

( ) ( )
( ) ( ) ( )s f i f

C
s

k T T k T TxF x F F x    (39) 

 
 
where 

 


 



     
  

2
4

0

( )
( )

1 ; ,1
2(1 )2

s

s

M x
F x k W x

h

.   (40) 

 
 
b) If the coefficient 0h  satisfies the inequalities 
 

 


 

  0

( ) 10
( ) (1 )2

i f

f

k T T
h

T T
,    (41) 

 
then the problem ( FCP ) is a fractional diffusion problem for the initial liquid phase whose 
solution is given by: 
 




 





            
      

 
2

0

0

( , ) 1 ; ,1 , 0, 0
2(1 )1 2

(1 )2

iT T k xT x t T W x tk h t
h

 (42) 
 
Theorem 4 Let   f iT T T  be. If the coefficient 0h  satisfies the inequality (34) then the 
solution of the problem ( FCP ) converges to the classical solution of the problem ( 1FCP ) 
when 1 ,  and then we recover the classical Neumann explicit solution and the inequality 
for the coefficient 0h  which characterized the convective (Robin) boundary condition at 
x 0  obtained for 1   in [29], that is: 
 

 




0
i f

f

T Tkh
T T

.     (43) 
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4 CONCLUSIONS 
- We have obtained generalized Neumann solutions for two two-phase fractional 

Lamé-Clapeyron-Stefan problems for a semi-infinite material with constant initial 
condition, when a heat flux or a convective (Robin) boundary condition is imposed 
on the fixed face x 0 .  

- The explicit solutions are given through the Wright and Mainardi functions. 
- When 1 , we recover the two classical Neumann solutions (which are 

equivalents among them) for the corresponding classical two-phase Lamé-Clapeyron-
Stefan problem given through the error function, and also the inequalities for the 
corresponding coefficients which characterized the heat flux or the convective 
boundary condition at x 0 .  
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