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Abstract. The convergence of a family of continuous distributed mixed elliptic
optimal control problems (P,), governed by elliptic variational equalities, when
the parameter ¢ — co was studied in Gariboldi - Tarzia, Appl. Math. Optim., 47
(2003}, 213-230 and it has been proved that it is convergent to a distributed
mixed elliptic optimal control problem (7). We consider the discrete approxi-
mations (Py,) and {P;) of the optimal control problems (P,) and (P) respec-
tively, for each & > 0 and o > 0. We study the convergence of the discrete
distributed optimal control problems (Py,) and (Py) when b — 0, @ — o0 and
(i, @) — {0, + oo} obtaining a complete commutative diagram, including the
diagonal convergence, which relates the continuous and discrete distributed
mixcd elliptic optimal control problems (Py,), (Py), (Py} and (P) by taking the
comresponding limits. The convergent corresponds to the optimal conirol, and
the system and adjoint system states in adequate functional spaces.

Keywords: Double convergence - Disiributed optimal control problems -«
Elliptic variational equalities + Mixed boundary conditions + Numerical
analysis + Finite element method - Fixed points - Optimality conditions -
Error estimations

1 Introduction

The purpose of this paper is to do the numerical analysis, by using the finite element
method, of the convergence of the continuous distributed mixed optimal control
problems with respect io a parameter (the heat transfer coefficient) given in [10, 11]
obtaining a double convergence when the parameter of the finite element method goes
to zero and the heat transfer coefficient goes to infinity,

We consider a bounded domain Q C R* whose regular boundary T = 9Q =
Iy UT; consists of the union of two disjoint portions 'y and Ty with meas (I'y) > 0.
We consider the following elliptic partial differential problems with mixed boundary
conditions, given by:

—Au=g in€; u=>~b onrl;—%=q on [y, {1
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. 8 9
—Au=g mQ;—a—::“(u_b) 0“1-1;""'3%:‘? on Iz 2)

where g is the internal energy in Q, b = Const. > 0 is the temperature on [} for the
system (1} and the temperature of the external neighborhood on I'y for the system (2)
respectively, g is the heat flux on I'; and « > 0 is the heat transfer coefficient on I';.
The systems (1)} and (2) can represent the steady-state two-phase Stefan problem for
adequate data [21, 22]. We consider the following continuous distributed optimal
control problem (P) and a family of continuous distributed optimal conirol problems
(P4) for each parameter oz > 0, defined in [10], where the control variable is the internal
energy g in €, that is: Find the continuous distributed optimal controls g,, € H =

L2{Q) and g, € H (for each a > 0) such that:

Problem (P): J(gop) = g‘él};l.f{g), Problem (Ps) : Ju(ge,) = {gnelg.la(g) (3)
where the quadratic cost functional J,J, : H — RJ’I are defined by [2, 18, 26]:

I 2 M 1 2 M
(a) Jg) =§””S _Z_‘IHH+ E”g”iﬂ (b) Ju(g) =5||“=g _Z(I”H'f'?ng“i' (4)
with M > 0 and z; € H given, u, € K and u,, € V are the state pf the systerhs defined

by the mixad ellliptic differential problems (1) and (2) respegtively whase elliptic
yariational egualities are given by [16]: '

wek: )= - [od, wev 5)
T2

g € Vi Gu(gg,v) = (g,v) — /quy—i—a / bvdy, YveV (6}
Fa L

and their adjoint system states p, € V and p,, € V are defined by the following elliptic
variational equalities;

(@) pg € Vo : a(py,v) = (g — 24, v}, Vv € Vg3 )
(b) Pay €V : @u{pag: V) = (ttoag — 2sV), YV E V

with the spaces and bilinear forms defined by:

V=H'(Q), Vo={veV,v/T =0}, K=b+Vy, H=1*(Q), Q=1*T3) (8)

a(u,v) = { VuVvdx, a,(u,v)=alu,v)+a | wdy, {uv)= fwdx (9)
/ [ -

N 4]
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where the bilinear, continuous and symmetric forms a and a, are coercive on Vg and V
respectively, that is [16]:

32> 0 such that 2|3 <a(v,v), YveVy {10)
3% = Aimin(1, &) > O such that Z|v[[3 <a,(v,v), VeV (11)

and 2; > 0 is the coercive constant for the bilinear form q,[16, 21].

The unique continuous distributed optimal energies g, and ga,, have been char-
acterized in [10] as a fixed point on H for a suitable operators W and W, over their
optimal adjoint system states p,,, € Vo and py,, € V defined by:

. 1 1
W,W,:H — H suchthat (a) W(g) = vl (b) Wolg) = — 3P (12)

The ljmit of the aptimal contrpl problem (P,)} when & — oo was studied in [10] and
it was prpven that:

4=0 (13)

=0, Ji.'ﬂ, Pag.,, —pgn,,l

lim ”u —u
el | S04 8 v

=0 Jimllge, —e.
for a large constant M > 0 by usipg the characterization of the optimal controls as fixed
points through aperators (12a) and (12b); this restrictive hypothesis on data was
eliminated in [11] by using the variational formulations. We can summary the condi-
tions (13) saying that the distributed optimal control problems (P,) converges {o the
distributed optimal contro] problem (P) when & — +oc.

Now, we consider the finite element method and a polygonal domain  C R? with
a regular triangulation with Lagrange triangles of type 1, constituted by affine-
equivalent finite element of class C° being k the parameter of the finite element
approximation which goes to zero [3, 7]. Then, we discretize the elliptic variational
equalities for the system states (6) and (5), the adjoint system states (7a) and (7b), and
the cost functional (4a, b) respectively. In general, the solution of a mixed elliptic
boundary problem belongs to H(Q) with 1 <r <3/2 — & {& > 0) but there exist some
examples which solutions belong to H"{Q) with 2<r [i, 17, 20]. Note that mixed
boundary conditions play an important role in various applications, ¢.g. heat conduc-
tion and electric potential problems [12].

The goal of this paper is to study the numerical analysis, by using the finite element
method, of the convergence results (13) corresponding to the continuous distributed
elliptic optimal control problems (P,) and (P) when # — + co. The main result of
this paper can be characterized by the following result:

Theorem 1. We have the following complete commutative diagram which relates the
continuous distributed mixed optimal control problems (P,) and (P), with the discrete
distributed mixed optimal control problems (P;,) and (Py) and it is obtained by taking
the limits & — O, — + o0 and {h, o) — (0, -+00), as in Fig. 1, where gua,,, Unag,,,
and Phag,,, are respectively the optimal control, the system and the adjoint system
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Problem {P,) Problem ()
ga‘? ? uag,w ? pagaq, &> o gop ? ugop * pga?
(1, &} = (0, +0)
h—>0 h—0
ghaq, 2 “kagw » phag’“op O~ 40 gkqo > Hﬁg&p H pkg;bp
Problem () Problem (7,)

Fig. 1. Relationship among optimal control problems (Pi,), {Py), {Pr) and (P} by taking the
limits £ — 0, @ — + 00 and {(h, &) — (0, +00).

states of the discrete distributed mixed optimal congrol problem {Pp,} for each # > 0
and « > 0, 4nd the double convergence is the diagdnal one.

The study of the limit &4 — 0 of the discrete solytions of optimal centro] problems
can be consigdered as a classical limit, see [4-6, 8, 9, 13-15, 19, 23, 24, 27, 28] but the
Jimit & — 4 0o, for each £ >0, and the double limit (h,o) — (0, +o0) can be
considered as a new ones. :

The paper is orgz_;_nized as follows. In Sect. 2 we define the discrete elliptic varia-
tional equalities for the state systems up, and upyg, we define the discrete distributed
cost functional J, and Jy,, we define the discrete distrbuted optimal control problems
(Py) and (P;,), and the discrete elliptic variational equalities for the adjoint state
systems ppg and py,, for each 4> 0 and a > 0, and we obtain properties for the
discrete optimal conirol problems (Py) and (Ppy). In Sect. 3 we study the classmal
convergences of the-discrete distributed optimal conirol problems (P) to (P), and
{Pra) to {P,) when h — 0 (for each a > 0) and the estimations for the discrete cgst
functional J, and Jy,. In Sect. 4 we study the new convergence of the discrete djs-
tributed optimal contiol probiems (Pp,) to {Py) when o0 — + oo for each & > 0 and we
obtain a commutative diagram which relates the continuous and discrete distributed
mixed optimal control problems (Py,}, (Py), (Ps) and (£) by taking the limits k — 0
and o — +co. In Sect. 5 we study the new double convergence of the discrete dis-
tributed optimal control problems (P} to {P) when (4, o) — (0, -+ co) and we obtain
the diagonal convergence in the previous commutative diagram.

2 Discretization by Finite Element Method and Properties

We consider the finite element method and a polygonal domain Q C R” with a regular
triangulation with Lagrange triangles of type 1, constituted by affine-equivalent finite
element of class C? being & the parameter of the finite element approximation which
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goes to zero [3, 7]. We can take h equal to the longest side of the triangles T € 1, and
we can approximate the sets V, Vp and X by:

Vi = {wy € C°(Q)/vi/T € PUT), YT € 1}, Vo = {vs € Vi/wi/T1 =0 K,

where P; is the set of the polymonials of degree less than or equal to 1. Let m :
C%Q)) — V,, be the comesponding linear interpolation operator. Then there exists a
constant ¢g > 0 (independent of the parameter k) such that [3]:

() Il = a9}y S ol vl (B) v = maw)lly S cob™ ol ¥y € HT(Q), 1< r <2.
(15)

We define the discrete cost functional Jiydna 1 H —»]RO‘" by the foll(_f’wing
expressigns; ' : '

(@) J1(8) = 5 g = zalls + % I8l (8) dinle) =5 [l — zal+ 5 sl
(16)

where upg and up,, are the discrete system states defined as the solution of the following
discrete elliptic variational equalltics [16, 24} .

up, € Ky : alupg,va) = (g,v) — /qv;,dy, Vv € Vou, (17)
I

Upag € vh : a!(uu‘lags vfi') = (g1 Vh) - / qvhd?+a / bw:_d},: Vv-‘i e Vh- (18)
Iz I

The corresponding discrete distributed optimal control problems consists in finding
8hipr Bha,, € H such that

(a) Problem (Py) : Ju(gh,) = ggg;l Tu(g),

() Problem (Piq) : Jua(gis,) = Min Jialg) (19)

and their corresponding discrete adjoint states py, and py,, are defined respectively as
the solution of the following discrete elliptic variational equalities:
Prg € Vor i a(Prgvn) = (tne — sV},  Yvn € Vou (20)

Prog € Vi i Aa(Phogs Vi) = (thag — 2a,Vi),  Vvu € Vi 21)
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Remark 1. We note that the discrete (in the n-dimensional space) distributed optimal
control problem (P;) and (£;,) are still infinite dimensional optimal control problems
since the control space is not discretized.

Lemma 2.

(i) There exist unigue solutions wpg € Ky and pry € Vo, and upgg € Vi, and puog €
Vi of the elliptic variational equalities (17) and (200, (18), and (21) respectively
YeeH Yge @, b>0onl.

(i) The operators g€ H - up €V, and g € H — up, €V are Lipschitzians. The
operators g € H — prg € Vo, and g € H — ppop € V), are Lipschitzians and
strictly monotone operators.

Proof. We use the Lax-Milgram Theorem, the variational equalities (17), (18), (20)
and (21), the coerciveness (10) and (11) and following [10, 18, 25]. 0
Theorem 3.

(i) The discrete cost functional J, and Jy, are H - elliptic and stricily convexe
applications, that is (Vgi,g2 € H,Vr € [0, 1]}

t(1—1)

(1~ 1)alga) + Un(ze) — Jultm + (1~ D) > M Ly 1, (22)

t(1—1)
5

(1~ )Mie{g2) + Whalgr) = dualigs + (1 = 1)g2) 2 M llg2 — &1l (23)

(ii) There exist a unigue optimal controls 8hy, € H and gp,,, € H that satisfy the
optimization problems (19a) and (19b) respectively.

Giiy Jn and Jp, are Géteaux differentiable applications and their derivatives are
given by the following expressions:

(@) 1 (8) =Mg+pig, (BYpol8) =Mg+prg, VgE€H, Yh>0 (24)
(iv) The optimality condition for the optimization problems (19a) and (19b) are

given by:

’ I ’
(@) Jh (g.fi!,‘,) =0 < Sy = — Epkg;mp; (b) J_fm (gha{q,) =0 & 8hx,,
1

= T 3 gy (25)

(v) J; and J}, are Lipschitzians and strictly monotone operators.

Proof. We use the definitions (16a, b), the elliptic variational equalities (17) and (18)
and the coerciveness (10) and (11), following [10, 18, 25). O
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We define the operators:

1 1
W, Wy, : H — H such that (a) W, (g) = ~37Pre> (&) Wiu(g) = i (26)

Theorem 4. We have that:

(i) W, and Wy, are Lipschitzian operators, and Wy, ( Wy,) is a contraction operator if
and only if M is large, that is:

(MM:>%. (27)

(a)M > Ii‘s

(iiy If M verifies the inequalities (27a, b} then the discrete distributional optimal
control gp,, € H ( gna,, € H} is obtained as the unique fixed point of Wy (Wpy),

ie.:

1
8hyy = — TiPier, & Welgi,) = 81,y

1
Shoy = _ﬁphag;,,op <> Wy (gﬁsrﬂ,,) = Bhag-
Proof. We use the definitions (25a, b), and the properties (252, b) and Lemma 2. O

3 Convergence of the Discrete Distributed Optimal Control
Problems (P;) to (P) and (Prn,) to (P,) When & — 0

We obtain the following error estimations between the continuous and discrete
solutions:

Theorem 6. We suppose the continuous system states and adjoint system states have
the regularities uy, Uz, € H'(Q) and Py Pag,,, € H'(Q) (1<r<2). If M verifies the
inequalities (27a, b) then we have the following error bonds:

phg’mp --pgw

<ch™H, |

g, = &l <t [lag, — s, |, Saht o (29)

lebes = enly S [, = b, |, B,

|

where ¢’s are constants independents of k.

(30)

-1
Phagi, — Poge, ” v <ch’
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Proof. It is useful to use the restriction & > 1 by splitting a, by [21, 24, 25].

a(u,v) = ar (s, V) + (e — 1) / uvdy (31)

Iy

but then it can be replaced by « > &g for any o > 0. We follow a similar method to the
one developed in [25] for Neumann boundary optimal control problems by using the
elliptic variational equalities (17), (18), (20) and (21), the thesis holds. O

Remark 2, If M verifies the inequalities (27a, b} we can obtain the convergence in
Theorem 6 by using the characterization of the fixed point (28a, b), and the uniqueness
of the optimal controls g,, € H and g, € H.

Now, we give some estimations for the discrete cost functional J,, and J,,.

Lemma 7. If M verifies the inequality (27a, b) and the continuous system states and
adjoint system states have the regularities g, tye € H'(Q) py,Pag € H'(Q)(1<r <2)
_;hen we have the foﬂow;’ng error bonds: :

M o 1 < e ) 2(r-1)
5 llgn, 8ap||HS;(8m,,) I (gep) < CHY, (32)

"i i — Bty g < (g.':a,,p) - J,(gaﬂp) < Cp2lr-1
M .
5 et = 8urlly < (o) = (o) S CHO;
M' 2 A1) (33)
5 |8ty = 8ol < Jhalg) = I, ) < C
|J;,(g,,,,) - J(g,.,,)| <Cch!, I.f;, (g;,qp) —J(gﬁp)‘ < Ch! (34)
|Jhu(gr-y=) - Ja(gr»p)l < Ch-’—], |Jha(g;,,op) - ‘fa(gﬁnp]l <C r—1 (35)

where C's are constants independents of h and «,

Proof. Estimations (32) and (33) follow from the estimations (29), and the equalities
(similar relationship for J and J, )

T M
e e 0 A

Ja(8hay) — Tu (82} = %‘

2 M
ot 5 B, —gally (37)

1
Jha (gnt.,p) — Jra (g.'mop) = E ’ Uhaghy — Whngn,

1
Via(g) — J(8)] < (E [24hag — “azz”,q + [Juog — Zd”n) {Jhsg — H«s”m Vg€ H. (38)

O
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4 Convergence of the Discrete Optimal Control Problems
(Phy) to (Pp) When o0 — + 00

Theorem 9. We have the following limits;

H — = i - = lim
e P || g, — hgny ||, a_'}Tm Phagre, — Phgnoy ||, = ) +wl|3ﬁaﬂp ghrrp”H
=0,¥h > 0. (39)

Proof. We omit this proof because we prefer to prove the next one with more details.

5 Double Convergence of the Discrete Distributed Optimal
Control Problem (P;,) to (P) When (4,2} — (0, + 00)

For the discrete distyibuted optimal control problem (Pjy) we will now consider the
double limit (4, «} — (0, + o).
Theorem 10. We have the following limits:

lim |

[hya}—{0, + ca}

= lim I
1% (hu)—-&(o +00)

= {h, ::)ﬂ(ﬂ +o0) Hgm,, T Exlln

Phug:.:,,,, — Pg,, H v
~0 (40)

u"mghﬁqp - usop

Proof. Prom now op we consider that ¢’s represent positive constants independents
simultangously of 2 >0 and « > 0 (see (31)). We show a sketch of the proof by
obtaining the following estimations (for Vi > 0 and Vo > 1):

lwsolly <crr Neolly Scr (= 1) / (o — DAy <cs  (41)
T

\|@hocp | g7 < €45 ”um;,,,,p |HS€s. &b ||, < €5 (42)

2
v S g, (fx - 1) ] (uhag_:,,w, - b) d}' S Cg {43)
I

“p‘!g;.np ” v e, ” uhxgkkp

Phg,,(w“VSCIO; ’Phag;.w”VSCII; (a_l)/Piagﬁwd'}’SClz- (44)

L

For example, the constant ¢y is a positive constant independent simultaneously of
A >0and o > 0, and it is given by the following expression:



502 D.A. Tarzia

cn=Ilsziln[i(1+—l~(i+l+l))+1(1+i)(1+ . )]
A vM\AL A A4 rl Ay WM
+b[.i(1+i)(1+L+L)+l(l+i (1+ ! ]

A1 AL WM AVM A Al M

)
+ llgllgilol l;l]— [-;I—Jr%(l-q-%)+LM(A_;T+31§(I+%)+)_IT(I+%))]

Therefore, from the above estimations we have that:
3f € H/gha,, —f in H weak as {h,a) — (0, +o0) (46)

34 € V/itpag,,, — nin V weak (H strong) as {h,a) — (0, +o0) with y/Ty =b

(47)

Jte V/Pﬁﬂsm,, — ¢ in V weak (H strong) as (h, «} — (0, +00) with §/T' =0
' (48)
A fu € H/gha,, — fi in H weak as o — + 00 (49)

du, € V/ft;,zgmp — 1, in V weak (in H strong) as & — + oo with 4,/ =5

(50)

¢, € V/phagru,.,, — &, in V weak (in H strong) as & — + o0 with &,/ =0
(51)
Afe € H/gpo,, — fo in H weak as 1 — 0 (52)

3 fy € V/ttiag,,, — 1z in V weak (in H strong) as # — 0 with 5,/ =& (53}
3 &4 € V/Piagy,,,, — &« in V weak (in H strong) as h — 0 with &,/I") =0 (54)
Af € H/gn, —f" in H weak as h — 0 (53)

dpte V/u;,g,w -— % in V weak (H strong) as h — 0 with #*/T = b (56)
3&" € V/pny,, — & in V weak (H strong) as & — 0 with £*/T; = 0 (57
Taking into account the uniqueness of the distributed optimal control problems

(Pra)s (Pa), (Px) and {P), and the uniqueness of the elliptic variational equalities
corresponding to their state systems we get
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My = Unp, = uhg;w,s ‘:h = Prp, = phsnnps ﬁl = gbap (58)
He = Uy, = udgw ' éa = Pof, = p&gw 1 f;t = gﬂop (59)
n=n=w=u,, {=&=p=p ., f==¢g,. (60)

Now, by using [11] we obtain

0, lim | «— Py, || =0 (61)

a— 4+ oo

tim |l — g, e = Hg,, ”v: 0, lim

e+ 400

and therefore the three double limits (40) hold when {,a) — (0, 4 o0).

Proof of Theorem 1. It is a consequence of the properties (29), (30), (39), (40) and
[10, 11].

Remark 3. We note that this double convergence is a novelty with respect to the
recent regults obtaingd for a famlly of discrete Neumann boundary optimal control
problems [25].
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