Computational
Modelling of Free and
Moving Boundary
Problems lli

Editors: L.C. Wrobel,
B.Sarler, C.A. Brebbia

o
S
e
B
s
&
o
SR
-
4 Q3 st
2, glntse o T LT TR T
) P e 3 i e e pee ettt
BRI i el A% Saealetat | s St o a e e s
B R S N O O R R
e ey e N e T, g et et a e N et
R N K L Xy X R O s
N A N atde, ot e
R AN N S S R R R O DS B
R A e e e a0 B N M e L PREA
S SR A NS AN )
Wttt e S B e BN RN CRi W
R CRP L B R R  eS
Wi a RS o G KR GBI
R LA R R PR 42051525
PRI SR L o 00 5 N AN TP a
ARSI NIEE L 00 B B, hese 5 3o 8 Bttt RS
B AN I A IS0 i B A T T
SNt ST A RN RN G 2 SR, GO AR HEE NS
ST 3 gt Rt o e BRI R RN HANS
wenteteduin o e yTo e Tatn T e e e T BT e Tea e e e e el T e
i Rt et ST T L e T ol T
Tt T Pt e T B &) E oottt et s
e Tt T - ” o e e T
B SR Lotaee, Fo e ute 0w 0t e ORI e
DA SN N et S Taattett S B, DRSS
alaletinn” e N S R S S LRSS NS
elelete’ il ot B EEAN TR BT, DS R
0 et SR L e L 0 3
B RN MM L5, X o
B AN I L S SN ST
sfotetatetnieleiels et oTelud  afate ol et BTttty
Wt B T N R e tet el
PN RN R A e
e e N e A s
RO S A S SN
PR e RTINS
BT AT A ST &0
T e S e R
T T A T
SSeieTs Tl &, Tatatator Rty fn
e et e A A
B
A el
R S 008
T NI
RO R R
N et
et
e n i
PR
prXoseny

Computational Mechanics Publications



L.C. Wrobel

Wessex Institute of Technology
Ashurst Lodge

Ashurst

Southampton

SO40 7AA, UK

C.A. Brebbia
Wessex Institute of Technology

Ashurst Lodge
Ashurst

Southampton
S0O40 7AA, UK

Published by

Computational Mechanics Publications

B. Sarler

Laboratory for Fluid Dynamics
and Thermodynamics

Faculty of Mechanical Engineering
University of Ljubljana

Slovenia

Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK
Tel: 44 (0)1703 293223; Fax: 44 (0)1703 292853

For USA, Canada and Mexico

Computational Mechanics Inc
25 Bridge Street, Billerica, MA 01821, USA
Tel: 508 667 5841; Fax: 508 667 7582

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available

from the British Library

ISBN: 1 85312 322 6 Computational Mechanics Publications, Southampton
ISBN: 1 56252 246 9 Computational Mechanics Publications, Boston

Library of Congress Catalog Card Number 95 67482

The texts of the various papers in this volume were set
individually by the authors or under their supervision

No responsibility is assumed by the Publisher for any injury and/or any damage to persons or
property as a matter of products liability, negligence or otherwise, or from any use or operation of

any methods, products, instructions or ideas contained in the material herein.

© Computational Mechanics Publications 1995.

Printed and bound in Great Britain by Bell & Bain Ltd, Glasgow, UK.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior permission of the Publisher.



On the determination of the unknown coefficients

through phase-change processes

D.A. Tarzia
Depto. Matemdtica, FCE, Universidad Austral, Paraguay 1950,
(2000) Rosario, Argentina

Abstract

We present two different approaches on the determination of thermal coefficients of a
semi-infinite material through a phase-change process with an overspecified heat flux
condition on the fixed face.

1) We use a simple mushy zone model in a two-phase solidification problem (Stefan
problem) for the simultaneous determination of some unknown coefficients. We also
find the necessary and sufficient conditions for the existence of a solution and the
corresponding formulae for the unknown coefficients.

2) We use approximate methods (heat balance integral and variational methods) for a
one-phase Stefan problem for the simultaneous determination of some unknown
coefficients. We propose a convexe linear expansion (with a parameter to be also
determined) of the first and second order approximation solutions for the temperature.
We also find the necessary and sufficient conditions for the existence of a solution and

the corresponding formulae for the unknown coefficients .
1 Introduction

Heat transfer problems with phase-change such as melting and freezing have been

studied in the last century because of their wide scientific and technological
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applications (e.g. Alexiades & Solomon [1], Lunardini [10], Rubinstein [11]). For
example, a review of a long bibliography on moving and free boundary problems for
the heat equation, particularly concerning the Stefan problem, is presented in Tarzia
[16] with a large bibliography (we are now preparing an updated one with

approximately 4500 references).

First, we shall consider a semi-infinite material with mass densities p > 0 equal
in both solid and liquid phases and we assume, without loss of generality, that the

phase-change temperature is 02 C.

If the material is initially assumed to be liquid at the constant temperature

E >0 and a constant temperature — D < 0 is imposed on the fixed face x=0, then
three distinct regions can be distinguished (for a mathematical and properties
description of this simple model see Tarzia [20]; for the one-phase model see Solomon,
Wilson & Alexiades [12)) :
(H,) The liquid phase, at temperature 8,=0,(x,t) > 0, occupying the region x > r(t),
t>0.
(H;) The solid phase, at temperature #,=60,(x,t) <0, occupying the region
0<x<s(t),t>0.
(Hz) The mushy zone, at temperature 0, occupying the region s(t) < x <r(t), t > 0.
We make two assumptions on its structure :

(a) The material in the mushy zone contains a fixed fraction ¢h (with 0 < ¢ < 1)

of the total latent heat h > 0, i.e.,
k, 01x(s(t),t) -k, 02x(r(t),t) =ph (e s(t)+(1 — o) i-(t)) , t > 0. (1)

(b) The width of the mushy zone is inversely proportional (with counstant v > 0)
to the temperature gradient at the point (s(t), t), i.e.,

6, (5(1)0) ((t) = s()) =7, t > 0. 2)
We suppose that the temperature 8 = 6(x, t) of the material is defined by
0,(x,t) < 0 if 0 < x < s(t),t >0
- B(x,t) = 0 if s(t) < x < r(t),t > 0 (3)
0(x,t) > 0 if x > r(t),t > 0.

The governing differential equations take the following forms for the solid and
liquid phases :
a, ﬂlxx(x,t) = Blt(x,t) y 0 < x < s(t),t > 0, (4)
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ay ozn(x,t) =02t(x,t) , X > r(t)y,t > 0, (5)

where ¢, >0, k; >0 and ai=ai2=ki / pc; > 0 are the specific heat, the thermal
conductivity and the diffusion coefficient for the phase i (i = 1 : solid phase; i = 2 :

liquid phase) respectively.

The conditions at the solid-mushy interface x=s(t) and the mushy-liquid
interface x = r(t) are given by (1), (2) and the requirement of the continuity of the

temperature, i.e.,

0,(s(t)st) = By(x(t),t) =0 , t > 0. (6)

The initial and boundary conditions are given by

6,0t)=-D <0 ,t >0, (7)
0,(x,0) = 85(4+00,t) =E >0 , x >0,t >0, (8)
8(0) = r(0) = 0. (9)

We consider an overspecified heat flux condition (e.g. Cannon [4], Tarzia [15))
on the fixed face x=0 which is given by (e.g. Stampella & Tarzia [14], Tarzia
[17 — 19], Solomon, Wilson & Alexiades [13])

ky 03 (04) =2, t >0, withqy > 0. (10)

\/z

Moreover, the coefficients q; > 0 (which characterizes the heat flux at the
fixed face x=0) and T, > 0 (which is the temperature at the fixed face x = 0) must
be found through an experimental phase-change process (e.g. Arderius, Lara & Tarzia
[1]). If by means of a phase-change experiment we are able to measure these quantities,
then we shall find formulae for the determination of the unknown coefficients (¢, v :
parameters of the mushy zone; h, p, ¢;, ¢y, k;, ky : thermal coefficients of the
material). Moreover, it does exist iff some complementary conditions for the
corresponding data are verified. We generalize some of the results obtained in
Stampella & Tarzia [14] for the particular case ¢=1 and y=0 (i.e., for a sharp
interphase, without mushy region) and those obtained in Tarzia [19] for the one-phase
case. In Tarzia [18) several references on the determination of physical coefficients were
given. We shall only consider Hem the respective properties for the determination of
the thermal conductivity k, of the liquid phase (initial phase) or the parameter
€ €(0,1) which characterizes the free boundary condition (1). Other cases will be
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considered in Gonzalez & Tarzia [8].

Secondly, we shall consider the determination of the unknown coefficients
through approximate methods (heat balance integral and variational methods)
corresponding to the one-phase Stefan problemmn. We consider the following melting

problem for a semi-infinite material with an overspecified condition on the fixed face :

pcTy=kTyy , 0 < x <s(t) ,t >0, (11)
s(0) =0 , (12)
TO0,t)=Ty, >0 ,t > 0 , (13)
T(s(t),t) =0, ¢ >0, (14)
k Ty(s(t),t) = — phs(t), t > 0 , (15)
kTy(0,t) = — 2 ¢ >0, (16)

N

where T = T(x,t) is the temperature of the liquid phase.

In Tarzia [17,18] one or two thermal coefficients were determined, and
formulae for the unknown coefficients were given by using the exact Lame-Clapeyron
solution. In Garguichevich, Sanziel & Tarzia[7] the approximate solution is given by
using the quasi-stationnary, heat balance integral and variational methods. Now, we
shall consider the heat balance integral and variational methods (e.g. Goodman [9],
Biot [3]) for the determination of one thermal coefficient. We propose a different
approach to the one proposed before by considering a convexe linear expansion (with a
parameter to be also determinated) of the first and second order approximation
solutions for the temperature. We also find the necessary and sufficient conditions for
the existence of a solution and the corresponding formulae for the unknown
coefficients. In Castellini & Tarzia [6] comparison results are obtained for the quasi-

stationnary, heat balance integral and variational methods.

Il Determination of one unknown thermal coefficient
through a mushy zone model for the two-phase Stefan
problem

Taking into account the hypothese (H;) — (H;3) we can formulate the following

Problem (P,) : Find the free boundaries x=s(t) and x=r(t), defined for t > 0 with
0 < s(t) < r(t) and s(0) = r(0) = 0, the temperature § = 6(x,t), defined by (3) for
x>0 and t >0, and k, or ¢ such that they satisfy the conditions (1), (2), (4) ~ (10)
where D > 0, E > 0 and q, > 0 are data and they must be known or determined by an
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experience of phase-change.

The solution of this problem is given by (e.g. Carslaw & Jaeger [5], Rubinstein
[11], Solomon, Wilson & Alexiades [12], Tarzia [15, 20])

8,(x.t) = —D + D f(—X ), (17)
A AT
o)
B,(x,t) = 2B x ), (18
2 1-f(2) 1 -1(2) (282\/5) )
st)=20+t,0 >0, (19)
() =2wvt,w > o, (20)
the coefficient w is given by
w=w(o) =a, W(Z), (21)

and, the coefficient ¢ and the unknown thermal coefficient k, or ¢ are obtained by

solving the following system of equations

q 2 E k w(o)
{2 () () -
a D
k: f( 1) L4 \/; (23)
where
i exp(—x?)
f(x) = erf(x) = % J exp(—t2) dt , F,(x)= —1—}:—%’()— ) (24)
o

We = x+ Y i exped), GG = x+ LI dyenped). (25)

Theorem 1.— (i) (Determination of k,) The necessary and sufficient condition for
Problem (P,), with o and k, unknown, to have a unique solution is that data D > 0,
E > 0, q; > 0, mushy zone coefficients 0 < ¢ < 1 and 7 > 0, and thermal coefficients of
the phase-change material h, p, c,, c,, k; > 0 do verify the condition

Dl
fi , 26
1\/—< (p) (26)
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where p is the unique positive zero of function P. In such case, the solution is given by
(17) — (20) with
k2 = T B2 ’ g =8 é] ’ w =3 w(&]) , (27)

where £, is the unique solution of the equation

__Dk

f(X)—m , x > 0. (28)

and B is the only solution of the equation
1 __h HE) 0 29
Q@ "Eq W) 0 T (29)

where
H(x) = 2 _ exp(—x?) — G(x) Q(x) = /7 x exp(x?) (1 — f(x)) : (30)
hpa, ’

_ % 2y _ (1. 1=OhT VT 2 _ h

P (x) —mexp(—x ) (1 + 5 5 ) 5D f(x) exp(x*®) (1 + 2)x . (31)
(ii) (Determination of ¢) The necessary and sufficient condition for Problem (P,), with
o and ¢ unknown, to have a unique solution is that data D >0, E > 0, q, > 0, mushy
zone coefficient ¥ > 0 and thermal coefficients of the phase-change material h, p, c,,

,, k;, ky > 0 do verify the conditions

Ek, D k,

> , —1
o a, V7 9o 81 /7

where u and v are the unique positive zeros of functions U and V respectively, which
are defined by

f(v) < < f(u) , (32)

Ek
U(x) = - exp(—x?) = x ~ m Fy(at W) (33)
V) = 2V ) exp(xd) — V() Fy(x) = e (34)
In such case, the solution is given by (17) — (20) with
e=:2 \'/); Fy(&y) V(&) o=a &, w=a, W(§), (35)

where £, is the unique solution of the eqn (28).
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Il Determination of one unknown thermal coefficient
through the heat balance integral method in a one-phase
Stefan problem

By using the heat balance integral method (e.g. Goodman [9]) we replace eqn (11) by

s(t)
4( I o) dx )= — K (B2 4(1) + 0,(00) ). 0 < x < s(t) . t> 0, (36)

and condition (15) by
Byx (8(t)st) =-§ #2(s(t)t) ,t > 0. (37)

We can formulate the following
Problem (P,) : Find the free boundary x=s(t), defined for t >0, the temperature
6 =06(x,t), defined for 0 < x < s(t), t > 0, and one of the four thermal coefficient k, p, h
and ¢ such that they satisfy the conditions (12) — (14), (16), (36) and (37).

If we choose a convexe linear expansion for the temperature profile given by

0(x,t)=00[A(1—;(%)2+(1—z\)(l—s(x—t))] . 0<A<l1, (38)

the free boundary of problem (P,) is given by

s(t-)=2a'\/t_ =2pu+at |, a=%, (39)

where 0>0 is the coefficient which caracterizes the free boundary and the unknown
coefficients A, o (or u) and one of the four elements {k, p, h, ¢} must satisfy the

following system of equation

Ste
ote (1 4
”2=—28—t(e_—_),\—’ Ste="5° (40)
1 +2€(1-3)
A= - VA -1, B=1+g | (41)
T2 kpc = 4 4 2 , (42)
° (142)?

Theorem 2. — The solution of the four cases is summarized in Table 1.
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Unknown Restriction Solution
Coefficients
4 2 2 9 2
k .o _ k= q02 ._.L_..f . 0= qO H 3
pecbl (1+2) Pcbo (1+ 1)
where p, A are given by (40) and (41) respectively.
12 2 k 6, (1+ 2)
p y a -— p: 2 2 ) =——-——-2——-—
ke (1+2) 90

where u, A are given by (40) and (41) respectively.

kphT 3
C [} [v2 —'p"—"2 0' <l 0) 2 A+1 (1 -
2q “VZy 2232 —32+3

9]

I\?

_h
0o (1 /\)2'

where A is the unique solution of the equation

kph8
P20 o<a<t.

M()\) =
qo
kpcT? 1—,\)2 q;- A+
hs o < 1 h: 0 N = ————
7 2q2 ° 2 7= 2)3% - 32+3

where ) is the unique solution of the equation

k 62
N =1 552, 0<a<t.
9

Table 1. Restrictions and formulae for the unknown thermal coefficients through the

heat balance integral method, where M and N are defined by

— (1 —=2)? _ A
M('\)_(1+A)(2A2—3A+3) ’ N(A)_(l+,\)(2,\2—3,\+3)

and verify the conditions

M(O):% , M(1)=0, M'(\)<0in (0,1) ; N(0)=0,N(1)= % ,N'(A) > 0in (0,1).
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IV Determination of one unknown thermal coefficient
through the Biot's variational method in a one-phase
Stefan problem

By using the variational method (e.g. Biot [3]) we replace condition (15) by (37) and

eqn (11) by
oV, 0D,

-g-f' 55 —Q 0 < x < s(t), , (43)
where s(t)
V, =% | pec #%(x,t) dx : thermal potential , (44)
0
s(t) )
D, = ;13 J % (Hg(x,t))? dx : dissipation fuuction , (45)
=0
OH,
Qo =0, 55 —2(0,t) : thermal forces , (46)

where H is the heat displacement defined as the solution of the problem

oH,,
a_x —pc B, H(s(t)t) = pL s(t) . (47)

We can then formulate the following
Problem (P;) : Find the free boundary x=s(t), defined for t >0, the temnperature
0 =6(x,t), defined for 0 < x < s(t), t > 0, and one of the four thermal coefficient k, p, h
and c such that they satisfy the conditions (12) — (14), (16), (37) and (43).

If we choose a convexe linear expansion for the temperature profile given by
(38), then the free boundary of problem (P;) is given by (39) and the unknown
coefficients A, o (or p) and one of the four elements {k, p, h, ¢} must satisfy the

following system of equation

2_21 2 4t CTo 2\
=21 XR()) . T4 kpc = . 48
where
R(\) = 30 — 40242527 — A° (49)
315 — 840 A+ 10008 A2 — 574 A3 4+ 143 1
R(0) =& | R(1)=27_6 , R(1)=0 , R">0 in (0,1). (50)

Theorem 3. — The solution of the four cases is summarized in Table 2.
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Unknown Restriction Solution
Coeflicients
4242 21
k.o _ k=229 ARQ) 4o AR()

= , 0=
pch (1+2)? pcly 1+A

where A is given by (41).

, o _ _42409> AR kbo(1+))
‘ ke 2 (14X)%° 2q,
where A is given by (41).
kphT ké
c,o -p——2--9<1 c=%—h A 3+ O =3 2 (1+42)
2qd o (1 -2X) 2q,
where A is the unique solution of the equation
1 -X22R()) kph o
U- VR _*pb0 gerct.
(1+2X) 21q;Z
52 k pe T2 — )2
h, o _5_1‘_"_%__0 <1 |1=cg° a-2 , 0=Eﬂ<?_(1+,\)
147 ¢2 2 A 2q

where ) is the unique solution of the equation

AR()) _kpch?
(1+2)2 4242

,0<A<«l.

Table 2. Restrictions and formulae for the unknown thermal coefficients through the

variational method.
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